Parser.y.pp 51.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41 42

import FastString
import Maybes		( orElse )
import Outputable
43
import GLAEXTS
44 45 46
}

{-
47 48 49 50 51 52 53 54 55 56 57
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

58
-----------------------------------------------------------------------------
59
Conflicts: 36 shift/reduce (1.25)
60

61
10 for abiguity in 'if x then y else z + 1'		[State 178]
62 63 64
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

65
1 for ambiguity in 'if x then y else z :: T'		[State 178]
66 67
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

68
4 for ambiguity in 'if x then y else z -< e'		[State 178]
69
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
70 71 72 73 74 75 76 77 78 79
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
80

81
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
82 83
	(e::a) `b` c, or 
	(e :: (a `b` c))
84
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
85
    Same duplication between states 11 and 253 as the previous case
86

87
1 for ambiguity in 'let ?x ...'				[State 329]
88 89 90 91
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

92
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
93 94 95 96
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

97
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

 'forall'	{ L _ ITforall }			-- GHC extension keywords
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

193 194 195
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension
 IPSPLITVARID  	{ L _ (ITsplitipvarid _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
 		    
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
283
%name parseType ctype
284
%partial parseHeader header
285
%tokentype { (Located Token) }
286 287
%%

288 289 290 291 292 293 294 295
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

296 297 298 299 300 301 302 303 304 305 306 307 308
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc ->
309
		   return (L loc (HsModule (Just $2) $4 (fst $6) (snd $6) $3)) }
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
				(fst $2) (snd $2) Nothing)) }

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule (Just $2) $4 $6 [] $3)) }
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing)) }

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

349 350 351 352 353 354 355
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

356 357 358 359 360
exportlist  :: { [LIE RdrName] }
	: ','					{ [] }
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
361 362
	:  export				{ [$1] }
	|  export ',' exportlist		{ $1 : $3 }
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	|  {- empty -}				{ [] }

   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
	:  qcnames ',' qcname			{ unLoc $3 : $1 }
	|  qcname				{ [unLoc $1]  }

qcname 	:: { Located RdrName }	-- Variable or data constructor
	:  qvar					{ $1 }
381
	|  qcon					{ $1 }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
407
maybeas :: { Located (Maybe ModuleName) }
408 409 410 411 412 413 414 415
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
416 417
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

438
topdecls :: { OrdList (LHsDecl RdrName) }
439
	: topdecls ';' topdecl		{ $1 `appOL` $3 }
440
	| topdecls ';'			{ $1 }
441
	| topdecl			{ $1 }
442

443
topdecl :: { OrdList (LHsDecl RdrName) }
444 445
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
  	| ty_decl			{% checkTopTyClD $1 >>= return.unitOL.L1 }
446
	| 'instance' inst_type where
447 448 449
		{ let (binds, sigs, ats) = cvBindsAndSigs (unLoc $3)
		  in unitOL (L (comb3 $1 $2 $3) 
			    (InstD (InstDecl $2 binds sigs ats))) }
450 451 452 453
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
454 455
      	| decl					{ unLoc $1 }

456 457 458 459 460 461
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
	: 'class' tycl_hdr fds where
		{% do { let { (binds, sigs, ats)           = 
			        cvBindsAndSigs (unLoc $4)
		            ; (ctxt, tc, tvs, Just tparms) = unLoc $2}
                      ; checkTyVars tparms
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
					        (unLoc $3) sigs binds ats) } }

-- Type declarations
--
ty_decl :: { LTyClDecl RdrName }
477 478 479 480 481
 	: 'type' type '=' ctype	
		-- Note type on the left of the '='; this allows
		-- infix type constructors to be declared
		-- 
		-- Note ctype, not sigtype, on the right
482 483 484
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
485 486
 		{% do { (tc,tvs) <- checkSynHdr $2
		      ; return (LL (TySynonym tc tvs $4)) } }
487

488
	| data_or_newtype tycl_hdr constrs deriving
489 490
		{ L (comb4 $1 $2 $3 $4)	-- We need the location on tycl_hdr 
					-- in case constrs and deriving are both empty
491
		    (mkTyData (unLoc $1) (unLoc $2) Nothing (reverse (unLoc $3)) (unLoc $4)) }
492

493
        | data_or_newtype tycl_hdr opt_kind_sig 
494
		 'where' gadt_constrlist
495
		 deriving
496
		{ L (comb4 $1 $2 $4 $5)
497
		    (mkTyData (unLoc $1) (unLoc $2) $3 (reverse (unLoc $5)) (unLoc $6)) }
498

499 500 501 502
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

503 504 505 506
opt_kind_sig :: { Maybe Kind }
	: 				{ Nothing }
	| '::' kind			{ Just $2 }

507
-- tycl_hdr parses the header of a type decl,
508 509 510 511
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
512
--      T Int [a]			-- for associated types
513
-- Rather a lot of inlining here, else we get reduce/reduce errors
514 515 516 517
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
		       Maybe [LHsType RdrName]) }
518
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
519 520 521 522 523
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

-----------------------------------------------------------------------------
-- Nested declarations

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
-- Type declaration or value declaration
--
tydecl  :: { Located (OrdList (LHsDecl RdrName)) }
tydecl  : ty_decl		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	| decl                          { $1 }

tydecls	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: tydecls ';' tydecl		{ LL (unLoc $1 `appOL` unLoc $3) }
	| tydecls ';'			{ LL (unLoc $1) }
	| tydecl			{ $1 }
	| {- empty -}			{ noLoc nilOL }


tydecllist 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'            tydecls '}'	{ LL (unLoc $2) }
	|     vocurly    tydecls close	{ $2 }

-- Form of the body of class and instance declarations
--
where 	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' tydecllist		{ LL (unLoc $2) }
	| {- empty -}			{ noLoc nilOL }

550
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
551
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
552
	| decls ';'			{ LL (unLoc $1) }
553
	| decl				{ $1 }
554
	| {- empty -}			{ noLoc nilOL }
555 556


557
decllist :: { Located (OrdList (LHsDecl RdrName)) }
558 559 560
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

561 562
-- Binding groups other than those of class and instance declarations
--
563
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
564
						-- No type declarations
565 566 567
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
568

569
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
570
						-- No type declarations
571
	: 'where' binds			{ LL (unLoc $2) }
572
	| {- empty -}			{ noLoc emptyLocalBinds }
573 574 575 576 577


-----------------------------------------------------------------------------
-- Transformation Rules

578
rules	:: { OrdList (LHsDecl RdrName) }
579
	:  rules ';' rule			{ $1 `snocOL` $3 }
580
        |  rules ';'				{ $1 }
581 582
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
583

584
rule  	:: { LHsDecl RdrName }
585
	: STRING activation rule_forall infixexp '=' exp
586 587
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
588
				  $3 $4 placeHolderNames $6 placeHolderNames) }
589

590 591 592
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

613
deprecations :: { OrdList (LHsDecl RdrName) }
614
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
615
	| deprecations ';' 			{ $1 }
616 617
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
618 619

-- SUP: TEMPORARY HACK, not checking for `module Foo'
620
deprecation :: { OrdList (LHsDecl RdrName) }
621
	: depreclist STRING
622 623
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
624 625 626 627 628 629


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
630
fdecl : 'import' callconv safety fspec
631
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
632
      | 'import' callconv        fspec		
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
       : STRING var '::' sigtype      { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtype      { LL (noLoc nilFS, $1, $3) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

666
sigtypes1 :: { [LHsType RdrName] }
667
	: sigtype			{ [ $1 ] }
668
	| sigtype ',' sigtypes1		{ $1 : $3 }
669 670 671 672 673 674 675 676 677 678 679 680

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

681 682 683 684
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
700
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
701 702 703 704 705
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
706
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
707
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
708 709 710 711 712 713 714

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
715
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
716
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
717
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
718
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
719 720
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
721 722 723 724 725 726 727 728 729 730
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 $4 }
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
731
	: sigtype			{% checkInstType $1 }
732

733 734 735 736
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

737 738 739 740 741
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
742 743
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) $4) }

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

kind	:: { Kind }
	: akind			{ $1 }
	| akind '->' kind	{ mkArrowKind $1 $3 }

akind	:: { Kind }
	: '*'			{ liftedTypeKind }
Simon Marlow's avatar
Simon Marlow committed
778
	| '!'			{ unliftedTypeKind }
779 780 781 782 783 784
	| '(' kind ')'		{ $2 }


-----------------------------------------------------------------------------
-- Datatype declarations

785 786 787 788 789 790
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
791
        | gadt_constrs ';' 		{ $1 }
792 793
        | gadt_constr                   { L1 [$1] } 

794 795 796 797 798 799
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

800
gadt_constr :: { LConDecl RdrName }
801
        : con '::' sigtype
802 803 804
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
805
        -- XXX revisit audreyt
806 807 808 809 810 811 812 813 814 815 816 817
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3)) }
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6)) }
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4)) }
-}

818 819 820 821 822 823 824 825 826 827 828 829

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
        | '=' constrs1                  { LL (unLoc $2) }

constrs1 :: { Located [LConDecl RdrName] }
	: constrs1 '|' constr		{ LL ($3 : unLoc $1) }
	| constr			{ L1 [$1] }

constr :: { LConDecl RdrName }
	: forall context '=>' constr_stuff	
		{ let (con,details) = unLoc $4 in 
830
		  LL (ConDecl con Explicit (unLoc $1) $2 details ResTyH98) }
831 832
	| forall constr_stuff
		{ let (con,details) = unLoc $2 in 
833
		  LL (ConDecl con Explicit (unLoc $1) (noLoc []) details ResTyH98) }
834 835 836 837 838 839

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
840 841 842 843 844 845 846
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
847 848 849
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
850
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
851

852 853 854 855
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

856 857 858 859 860
fielddecls :: { [([Located RdrName], LBangType RdrName)] }
	: fielddecl ',' fielddecls	{ unLoc $1 : $3 }
	| fielddecl			{ [unLoc $1] }

fielddecl :: { Located ([Located RdrName], LBangType RdrName) }
861
	: sig_vars '::' ctype		{ LL (reverse (unLoc $1), $3) }
862

863 864 865 866
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
867 868
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
869 870 871
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
872 873
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

900
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
901
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
902 903 904 905
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
					        return (LL $ unitOL $ LL $ ValD $ 
							PatBind (LL $ BangPat pat) (unLoc $3)
								placeHolderType placeHolderNames) } }
906
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
907
						return (LL $ unitOL (LL $ ValD r)) } }
908 909

rhs	:: { Located (GRHSs RdrName) }
910 911
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
912 913 914 915 916 917

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
918
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
919

920
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
921 922
	: infixexp '::' sigtype
				{% do s <- checkValSig $1 $3; 
923
				      return (LL $ unitOL (LL $ SigD s)) }
924 925
		-- See the above notes for why we need infixexp here
	| var ',' sig_vars '::' sigtype	
926
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
927
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
928 929
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
930
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
931
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
932
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
933
					    | t <- $4] }
934
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
935
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
936
					    | t <- $5] }
937
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
938
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
939 940 941 942 943 944

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
945 946 947 948
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
949 950 951 952 953 954 955 956 957
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
958
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
959
					    (GRHSs (unguardedRHS $6) emptyLocalBinds
960
							)])) }
961 962
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
963
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
964 965 966
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
967 968
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
969
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
970 971
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1001
--	| '!' aexp			{ LL $ EBangPat $2 }
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1025
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1026 1027 1028 1029 1030 1031 1032
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1033
	-- Template Haskell Extension
1034
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1035
					(L1 $ HsVar (mkUnqual varName 
1036 1037 1038
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1039
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1040
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1060 1061 1062 1063 1064 1065
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1066

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1067 1068 1069 1070 1071 1072
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1073
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1074 1075
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1076 1077 1078 1079 1080 1081 1082 1083 1084


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1085
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1086
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1087 1088 1089 1090 1091
	| texp '..'		{ LL $ ArithSeq noPostTcExpr (From $1) }
	| texp ',' exp '..' 	{ LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
	| texp '..' exp	 	{ LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
	| texp ',' exp '..' exp	{ LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| texp pquals		{ sL (comb2 $1 $>) $ mkHsDo ListComp (reverse (unLoc $2)) $1 }
1092 1093

lexps :: { Located [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1094 1095
	: lexps ',' texp 		{ LL ($3 : unLoc $1) }
	| texp ',' texp			{ LL [$3,$1] }
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

-----------------------------------------------------------------------------
-- List Comprehensions

pquals :: { Located [LStmt RdrName] }	-- Either a singleton ParStmt, 
					-- or a reversed list of Stmts
	: pquals1			{ case unLoc $1 of
					    [qs] -> L1 qs
					    qss  -> L1 [L1 (ParStmt stmtss)]
						 where
						    stmtss = [ (reverse qs, undefined) 
						    	     | qs <- qss ]
					}
			
pquals1 :: { Located [[LStmt RdrName]] }
	: pquals1 '|' quals		{ LL (unLoc $3 : unLoc $1) }
	| '|' quals			{ L (getLoc $2) [unLoc $2] }

quals :: { Located [LStmt RdrName] }
	: quals ',' qual		{ LL ($3 : unLoc $1) }
	| qual				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { LHsExpr RdrName }
	: 				{ noLoc (ExplicitPArr placeHolderType []) }
	| exp				{ L1 $ ExplicitPArr placeHolderType [$1] }
	| lexps 			{ L1 $ ExplicitPArr placeHolderType 
						       (reverse (unLoc $1)) }
1131 1132 1133
	| exp '..' exp	 		{ LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
	| exp ',' exp '..' exp		{ LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| exp pquals			{ sL (comb2 $1 $>) $ mkHsDo PArrComp (reverse (unLoc $2)) $1 }
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

-- We are reusing `lexps' and `pquals' from the list case.

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located [LMatch RdrName] }
	: '{'            alts '}'	{ LL (reverse (unLoc $2)) }
	|     vocurly    alts  close	{ L (getLoc $2) (reverse (unLoc $2)) }

alts    :: { Located [LMatch RdrName] }
        : alts1				{ L1 (unLoc $1) }
	| ';' alts			{ LL (unLoc $2) }

alts1 	:: { Located [LMatch RdrName] }
	: alts1 ';' alt			{ LL ($3 : unLoc $1) }
	| alts1 ';'			{ LL (unLoc $1) }
	| alt				{ L1 [$1] }

alt 	:: { LMatch RdrName }
	: infixexp opt_sig alt_rhs	{%  checkPattern $1 >>= \p ->
			    		    return (LL (Match [p] $2 (unLoc $3))) }
1156 1157
	| '!' infixexp opt_sig alt_rhs	{%  checkPattern $2 >>= \p ->
			    		    return (LL (Match [LL $ BangPat p] $3 (unLoc $4))) }
1158 1159

alt_rhs :: { Located (GRHSs RdrName) }
1160
	: ralt wherebinds		{ LL (GRHSs (unLoc $1) (unLoc $2)) }
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

ralt :: { Located [LGRHS RdrName] }
	: '->' exp			{ LL (unguardedRHS $2) }
	| gdpats			{ L1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName] }
	: gdpats gdpat			{ LL ($2 : unLoc $1) }
	| gdpat				{ L1 [$1] }

gdpat	:: { LGRHS RdrName }
1171
	: '|' quals '->' exp	 	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1172 1173 1174 1175 1176 1177 1178 1179 1180

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located [LStmt RdrName] }
	: '{'         	stmts '}'	{ LL (unLoc $2) }
	|     vocurly   stmts close	{ $2 }

--	do { ;; s ; s ; ; s ;; }
1181
-- The last Stmt should be an expression, but that's hard to enforce
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
	: stmt stmts_help		{ LL ($1 : unLoc $2) }
	| ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

stmts_help :: { Located [LStmt RdrName] } -- might be empty
	: ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

-- For typing stmts at the GHCi prompt, where 
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
	: stmt				{ Just $1 }
	| {- nothing -}			{ Nothing }

stmt  :: { LStmt RdrName }
	: qual				{ $1 }
	| infixexp '->' exp		{% checkPattern $3 >>= \p ->
1203 1204
					   return (LL $ mkBindStmt p $1) }
  	| 'rec' stmtlist		{ LL $ mkRecStmt (unLoc $2) }
1205 1206

qual  :: { LStmt RdrName }
1207
	: exp '<-' exp			{% checkPattern $1 >>= \p ->
1208 1209
					   return (LL $ mkBindStmt p $3) }
	| exp				{ L1 $ mkExprStmt $1 }
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
  	| 'let' binds			{ LL $ LetStmt (unLoc $2) }

-----------------------------------------------------------------------------
-- Record Field Update/Construction

fbinds 	:: { HsRecordBinds RdrName }
	: fbinds1			{ $1 }
  	| {- empty -}			{ [] }

fbinds1	:: { HsRecordBinds RdrName }
	: fbinds1 ',' fbind		{ $3 : $1 }
	| fbind				{ [$1] }
  
fbind	:: { (Located RdrName, LHsExpr RdrName) }
	: qvar '=' exp			{ ($1,$3) }

-----------------------------------------------------------------------------
-- Implicit Parameter Bindings

dbinds 	:: { Located [LIPBind RdrName] }
	: dbinds ';' dbind		{ LL ($3 : unLoc $1) }
	| dbinds ';'			{ LL (unLoc $1) }
	| dbind				{ L1 [$1] }
--	| {- empty -}			{ [] }

dbind	:: { LIPBind RdrName }
dbind	: ipvar '=' exp			{ LL (IPBind (unLoc $1) $3) }

1238 1239 1240
ipvar	:: { Located (IPName RdrName) }
	: IPDUPVARID		{ L1 (Dupable (mkUnqual varName (getIPDUPVARID $1))) }
	| IPSPLITVARID		{ L1 (Linear  (mkUnqual varName (getIPSPLITVARID $1))) }
1241

1242 1243
-----------------------------------------------------------------------------
-- Deprecations
1244 1245 1246 1247 1248 1249 1250

depreclist :: { Located [RdrName] }
depreclist : deprec_var			{ L1 [unLoc $1] }
	   | deprec_var ',' depreclist	{ LL (unLoc $1 : unLoc $3) }

deprec_var :: { Located RdrName }
deprec_var : var			{ $1 }
1251
	   | con			{ $1 }
1252

1253 1254
-----------------------------------------
-- Data constructors
1255 1256 1257
qcon	:: { Located RdrName }
	: qconid		{ $1 }
	| '(' qconsym ')'	{ LL (unLoc $2) }
1258 1259
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
-- The case of '[:' ':]' is part of the production `parr'
1260

1261 1262 1263 1264
con	:: { Located RdrName }
	: conid			{ $1 }
	| '(' consym ')'	{ LL (unLoc $2) }
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
1265

1266 1267 1268 1269
sysdcon	:: { Located DataCon }	-- Wired in data constructors
	: '(' ')'		{ LL unitDataCon }
	| '(' commas ')'	{ LL $ tupleCon Boxed $2 }
	| '[' ']'		{ LL nilDataCon }
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

conop :: { Located RdrName }
	: consym		{ $1 }	
	| '`' conid '`'		{ LL (unLoc $2) }

qconop :: { Located RdrName }
	: qconsym		{ $1 }
	| '`' qconid '`'	{ LL (unLoc $2) }

-----------------------------------------------------------------------------
-- Type constructors

gtycon 	:: { Located RdrName }	-- A "general" qualified tycon
	: oqtycon			{ $1 }
	| '(' ')'			{ LL $ getRdrName unitTyCon }
	| '(' commas ')'		{ LL $ getRdrName (tupleTyCon Boxed $2) }
	| '(' '->' ')'			{ LL $ getRdrName funTyCon }
	| '[' ']'			{ LL $ listTyCon_RDR }
	| '[:' ':]'			{ LL $ parrTyCon_RDR }

oqtycon :: { Located RdrName }	-- An "ordinary" qualified tycon
	: qtycon			{ $1 }
 	| '(' qtyconsym ')'		{ LL (unLoc $2) }

qtyconop :: { Located RdrName }	-- Qualified or unqualified
	: qtyconsym			{ $1 }
	| '`' qtycon '`'		{ LL (unLoc $2) }

qtycon :: { Located RdrName }	-- Qualified or unqualified
	: QCONID			{ L1 $! mkQual tcClsName (getQCONID $1) }
	| tycon				{ $1 }

tycon 	:: { Located RdrName }	-- Unqualified
	: CONID				{ L1 $! mkUnqual tcClsName (getCONID $1) }

qtyconsym :: { Located RdrName }
	: QCONSYM			{ L1 $! mkQual tcClsName (getQCONSYM $1) }
	| tyconsym			{ $1 }

tyconsym :: { Located RdrName }
	: CONSYM			{ L1 $! mkUnqual tcClsName (getCONSYM $1) }

-----------------------------------------------------------------------------
1313
-- Operators
1314 1315 1316 1317 1318

op	:: { Located RdrName }   -- used in infix decls
	: varop			{ $1 }
	| conop 		{ $1 }

1319 1320 1321 1322
varop	:: { Located RdrName }
	: varsym		{ $1 }
	| '`' varid '`'		{ LL (unLoc $2) }

1323 1324 1325 1326 1327 1328 1329 1330
qop	:: { LHsExpr RdrName }   -- used in sections
	: qvarop		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

qopm	:: { LHsExpr RdrName }   -- used in sections
	: qvaropm		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

1331 1332 1333
qvarop :: { Located RdrName }
	: qvarsym		{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1334

1335 1336 1337
qvaropm :: { Located RdrName }
	: qvarsym_no_minus	{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1338

1339 1340
-----------------------------------------------------------------------------
-- Type variables
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350
tyvar   :: { Located RdrName }
tyvar   : tyvarid		{ $1 }
	| '(' tyvarsym ')'	{ LL (unLoc $2) }

tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`'	{ LL (unLoc $2) }
	| tyvarsym		{ $1 }

tyvarid	:: { Located RdrName }
1351 1352 1353 1354 1355 1356
	: VARID			{ L1 $! mkUnqual tvName (getVARID $1) }
	| special_id		{ L1 $! mkUnqual tvName (unLoc $1) }
	| 'unsafe' 		{ L1 $! mkUnqual tvName FSLIT("unsafe") }
	| 'safe' 		{ L1 $! mkUnqual tvName FSLIT("safe") }
	| 'threadsafe' 		{ L1 $! mkUnqual tvName FSLIT("threadsafe") }

1357 1358 1359 1360 1361 1362
tyvarsym :: { Located RdrName }
-- Does not include "!", because that is used for strictness marks
--	         or ".", because that separates the quantified type vars from the rest
--		 or "*", because that's used for kinds
tyvarsym : VARSYM		{ L1 $! mkUnqual tvName (getVARSYM $1) }

1363 1364 1365
-----------------------------------------------------------------------------
-- Variables 

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
var 	:: { Located RdrName }
	: varid			{ $1 }
	| '(' varsym ')'	{ LL (unLoc $2) }

qvar 	:: { Located RdrName }
	: qvarid		{ $1 }
	| '(' varsym ')'	{ LL (unLoc $2) }
	| '(' qvarsym1 ')'	{ LL (unLoc $2) }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.

qvarid :: { Located RdrName }
	: varid			{ $1 }
	| QVARID		{ L1 $ mkQual varName (getQVARID $1) }

varid :: { Located RdrName }
	: varid_no_unsafe 	{ $1 }
	| 'unsafe'		{ L1 $! mkUnqual varName FSLIT("unsafe") }
	| 'safe'		{ L1 $! mkUnqual varName FSLIT("safe") }
	| 'threadsafe'		{ L1 $! mkUnqual varName FSLIT("threadsafe") }

varid_no_unsafe :: { Located RdrName }
	: VARID			{ L1 $! mkUnqual varName (getVARID $1) }
	| special_id		{ L1 $! mkUnqual varName (unLoc $1) }
	| 'forall'		{ L1 $! mkUnqual varName FSLIT("forall") }

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
qvarsym :: { Located RdrName }
	: varsym		{ $1 }
	| qvarsym1		{ $1 }

qvarsym_no_minus :: { Located RdrName }
	: varsym_no_minus	{ $1 }
	| qvarsym1		{ $1 }

qvarsym1 :: { Located RdrName }
qvarsym1 : QVARSYM		{ L1 $ mkQual varName (getQVARSYM $1) }

varsym :: { Located RdrName }
	: varsym_no_minus 	{ $1 }
	| '-'			{ L1 $ mkUnqual varName FSLIT("-") }

varsym_no_minus :: { Located RdrName } -- varsym not including '-'
	: VARSYM		{ L1 $ mkUnqual varName (getVARSYM $1) }
	| special_sym		{ L1 $ mkUnqual varName (unLoc $1) }


1413 1414 1415
-- These special_ids are treated as keywords in various places, 
-- but as ordinary ids elsewhere.   'special_id' collects all these
-- except 'unsafe' and 'forall' whose treatment differs depending on context
1416
special_id :: { Located FastString }
1417 1418 1419 1420 1421 1422 1423 1424 1425
special_id
	: 'as'			{ L1 FSLIT("as") }
	| 'qualified'		{ L1 FSLIT("qualified") }
	| 'hiding'		{ L1 FSLIT("hiding") }
	| 'export'		{ L1 FSLIT("export") }
	| 'label'		{ L1 FSLIT("label")  }
	| 'dynamic'		{ L1 FSLIT("dynamic") }
	| 'stdcall'             { L1 FSLIT("stdcall") }
	| 'ccall'               { L1 FSLIT("ccall") }
1426
	| 'iso'                 { L1 FSLIT("iso") }
1427

1428
special_sym :: { Located FastString }
1429 1430 1431 1432 1433 1434 1435
special_sym : '!'	{ L1 FSLIT("!") }
	    | '.' 	{ L1 FSLIT(".") }
 	    | '*' 	{ L1 FSLIT("*") }

-----------------------------------------------------------------------------
-- Data constructors

1436
qconid :: { Located RdrName }	-- Qualified or unqualified
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	: conid			{ $1 }
	| QCONID		{ L1 $ mkQual dataName (getQCONID $1) }

conid 	:: { Located RdrName }
	: CONID			{ L1 $ mkUnqual dataName (getCONID $1) }

qconsym :: { Located RdrName }	-- Qualified or unqualified
	: consym		{ $1 }
	| QCONSYM		{ L1 $ mkQual dataName (getQCONSYM $1) }

consym :: { Located RdrName }
	: CONSYM		{ L1 $ mkUnqual dataName (getCONSYM $1) }

	-- ':' means only list cons
	| ':'			{ L1 $ consDataCon_RDR }


-----------------------------------------------------------------------------
-- Literals

literal :: { Located HsLit }
	: CHAR 			{ L1 $ HsChar       $ getCHAR $1 }
	| STRING		{ L1 $ HsString     $ getSTRING $1 }
	| PRIMINTEGER		{ L1 $ HsIntPrim    $ getPRIMINTEGER $1 }
	| PRIMCHAR		{ L1 $ HsCharPrim   $ getPRIMCHAR $1 }
	| PRIMSTRING		{ L1 $ HsStringPrim $ getPRIMSTRING $1 }
	| PRIMFLOAT		{ L1 $ HsFloatPrim  $ getPRIMFLOAT $1 }
	| PRIMDOUBLE		{ L1 $ HsDoublePrim $ getPRIMDOUBLE $1 }

-----------------------------------------------------------------------------
-- Layout

close :: { () }
	: vccurly		{ () } -- context popped in lexer.
	| error			{% popContext }

-----------------------------------------------------------------------------
-- Miscellaneous (mostly renamings)

Simon Marlow's avatar
Simon Marlow committed
1476 1477
modid 	:: { Located ModuleName }
	: CONID			{ L1 $ mkModuleNameFS (getCONID $1) }
1478
        | QCONID		{ L1 $ let (mod,c) = getQCONID $1 in
Simon Marlow's avatar
Simon Marlow committed
1479
				  mkModuleNameFS
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
				   (mkFastString
				     (unpackFS mod ++ '.':unpackFS c))
				}

commas :: { Int }
	: commas ','			{ $1 + 1 }
	| ','				{ 2 }

-----------------------------------------------------------------------------

{
happyError :: P a
happyError = srcParseFail

getVARID   	(L _ (ITvarid    x)) = x
getCONID   	(L _ (ITconid    x)) = x
getVARSYM  	(L _ (ITvarsym   x)) = x
getCONSYM  	(L _ (ITconsym   x)) = x
getQVARID  	(L _ (ITqvarid   x)) = x
getQCONID  	(L _ (ITqconid   x)) = x
getQVARSYM 	(L _ (ITqvarsym  x)) = x
getQCONSYM 	(L _ (ITqconsym  x)) = x
getIPDUPVARID   (L _ (ITdupipvarid   x)) = x
getIPSPLITVARID (L _ (ITsplitipvarid x)) = x
getCHAR		(L _ (ITchar     x)) = x
getSTRING	(L _ (ITstring   x)) = x
getINTEGER	(L _ (ITinteger  x)) = x
getRATIONAL	(L _ (ITrational x)) = x
getPRIMCHAR	(L _ (ITprimchar   x)) = x
getPRIMSTRING	(L _ (ITprimstring x)) = x
getPRIMINTEGER	(L _ (ITprimint    x)) = x
getPRIMFLOAT	(L _ (ITprimfloat  x)) = x
getPRIMDOUBLE	(L _ (ITprimdouble x)) = x
getTH_ID_SPLICE (L _ (ITidEscape x)) = x
1514 1515
getINLINE	(L _ (ITinline_prag b)) = b
getSPEC_INLINE	(L _ (ITspec_inline_prag b)) = b
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

-- Utilities for combining source spans
comb2 :: Located a -> Located b -> SrcSpan
comb2 = combineLocs

comb3 :: Located a -> Located b -> Located c -> SrcSpan
comb3 a b c = combineSrcSpans (getLoc a) (combineSrcSpans (getLoc b) (getLoc c))

comb4 :: Located a -> Located b -> Located c -> Located d -> SrcSpan
comb4 a b c d = combineSrcSpans (getLoc a) $ combineSrcSpans (getLoc b) $
		combineSrcSpans (getLoc c) (getLoc d)

-- strict constructor version:
{-# INLINE sL #-}
sL :: SrcSpan -> a -> Located a
sL span a = span `seq` L span a

1533 1534 1535
-- Make a source location for the file.  We're a bit lazy here and just
-- make a point SrcSpan at line 1, column 0.  Strictly speaking we should
-- try to find the span of the whole file (ToDo).
1536
fileSrcSpan :: P SrcSpan
1537 1538 1539 1540
fileSrcSpan = do 
  l <- getSrcLoc; 
  let loc = mkSrcLoc (srcLocFile l) 1 0;
  return (mkSrcSpan loc loc)
1541
}