CmmParse.y 29.8 KB
Newer Older
1 2
-----------------------------------------------------------------------------
--
Simon Marlow's avatar
Simon Marlow committed
3
-- (c) The University of Glasgow, 2004-2006
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
--
-- Parser for concrete Cmm.
--
-----------------------------------------------------------------------------

{
module CmmParse ( parseCmmFile ) where

import CgMonad
import CgHeapery
import CgUtils
import CgProf
import CgTicky
import CgInfoTbls
import CgForeignCall
Simon Marlow's avatar
Simon Marlow committed
19 20 21 22 23 24
import CgTailCall
import CgStackery
import ClosureInfo
import CgCallConv
import CgClosure
import CostCentre
25 26 27

import Cmm
import PprCmm
Simon Marlow's avatar
Simon Marlow committed
28
import CmmUtils
29 30 31
import CmmLex
import CLabel
import MachOp
Simon Marlow's avatar
Simon Marlow committed
32
import SMRep
33 34
import Lexer

Simon Marlow's avatar
Simon Marlow committed
35 36
import ForeignCall
import Literal
37 38 39
import Unique
import UniqFM
import SrcLoc
Simon Marlow's avatar
Simon Marlow committed
40 41 42 43
import DynFlags
import StaticFlags
import ErrUtils
import StringBuffer
44
import FastString
Simon Marlow's avatar
Simon Marlow committed
45 46
import Panic
import Constants
47 48
import Outputable

49
import Control.Monad
50
import Data.Char	( ord )
51
import System.Exit
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

#include "HsVersions.h"
}

%token
	':'	{ L _ (CmmT_SpecChar ':') }
	';'	{ L _ (CmmT_SpecChar ';') }
	'{'	{ L _ (CmmT_SpecChar '{') }
	'}'	{ L _ (CmmT_SpecChar '}') }
	'['	{ L _ (CmmT_SpecChar '[') }
	']'	{ L _ (CmmT_SpecChar ']') }
	'('	{ L _ (CmmT_SpecChar '(') }
	')'	{ L _ (CmmT_SpecChar ')') }
	'='	{ L _ (CmmT_SpecChar '=') }
	'`'	{ L _ (CmmT_SpecChar '`') }
	'~'	{ L _ (CmmT_SpecChar '~') }
	'/'	{ L _ (CmmT_SpecChar '/') }
	'*'	{ L _ (CmmT_SpecChar '*') }
	'%'	{ L _ (CmmT_SpecChar '%') }
	'-'	{ L _ (CmmT_SpecChar '-') }
	'+'	{ L _ (CmmT_SpecChar '+') }
	'&'	{ L _ (CmmT_SpecChar '&') }
	'^'	{ L _ (CmmT_SpecChar '^') }
	'|'	{ L _ (CmmT_SpecChar '|') }
	'>'	{ L _ (CmmT_SpecChar '>') }
	'<'	{ L _ (CmmT_SpecChar '<') }
	','	{ L _ (CmmT_SpecChar ',') }
	'!'	{ L _ (CmmT_SpecChar '!') }

 	'..'	{ L _ (CmmT_DotDot) }
 	'::'	{ L _ (CmmT_DoubleColon) }
	'>>'	{ L _ (CmmT_Shr) }
	'<<'	{ L _ (CmmT_Shl) }
	'>='	{ L _ (CmmT_Ge) }
	'<='	{ L _ (CmmT_Le) }
	'=='	{ L _ (CmmT_Eq) }
	'!='	{ L _ (CmmT_Ne) }
        '&&'    { L _ (CmmT_BoolAnd) }
        '||'    { L _ (CmmT_BoolOr) }

	'CLOSURE'	{ L _ (CmmT_CLOSURE) }
	'INFO_TABLE'	{ L _ (CmmT_INFO_TABLE) }
	'INFO_TABLE_RET'{ L _ (CmmT_INFO_TABLE_RET) }
	'INFO_TABLE_FUN'{ L _ (CmmT_INFO_TABLE_FUN) }
	'INFO_TABLE_CONSTR'{ L _ (CmmT_INFO_TABLE_CONSTR) }
	'INFO_TABLE_SELECTOR'{ L _ (CmmT_INFO_TABLE_SELECTOR) }
	'else'		{ L _ (CmmT_else) }
	'export'	{ L _ (CmmT_export) }
	'section'	{ L _ (CmmT_section) }
	'align'		{ L _ (CmmT_align) }
	'goto'		{ L _ (CmmT_goto) }
	'if'		{ L _ (CmmT_if) }
	'jump'		{ L _ (CmmT_jump) }
	'foreign'	{ L _ (CmmT_foreign) }
106
	'prim'		{ L _ (CmmT_prim) }
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	'import'	{ L _ (CmmT_import) }
	'switch'	{ L _ (CmmT_switch) }
	'case'		{ L _ (CmmT_case) }
	'default'	{ L _ (CmmT_default) }
	'bits8'		{ L _ (CmmT_bits8) }
	'bits16'	{ L _ (CmmT_bits16) }
	'bits32'	{ L _ (CmmT_bits32) }
	'bits64'	{ L _ (CmmT_bits64) }
	'float32'	{ L _ (CmmT_float32) }
	'float64'	{ L _ (CmmT_float64) }

	GLOBALREG	{ L _ (CmmT_GlobalReg   $$) }
  	NAME		{ L _ (CmmT_Name	$$) }
	STRING		{ L _ (CmmT_String	$$) }
	INT		{ L _ (CmmT_Int		$$) }
	FLOAT		{ L _ (CmmT_Float	$$) }

%monad { P } { >>= } { return }
%lexer { cmmlex } { L _ CmmT_EOF }
%name cmmParse cmm
%tokentype { Located CmmToken }

-- C-- operator precedences, taken from the C-- spec
%right '||'	-- non-std extension, called %disjoin in C--
%right '&&'	-- non-std extension, called %conjoin in C--
%right '!'
%nonassoc '>=' '>' '<=' '<' '!=' '=='
%left '|'
%left '^'
%left '&'
%left '>>' '<<'
%left '-' '+'
%left '/' '*' '%'
%right '~'

%%

cmm	:: { ExtCode }
	: {- empty -}			{ return () }
	| cmmtop cmm			{ do $1; $2 }

cmmtop	:: { ExtCode }
	: cmmproc			{ $1 }
	| cmmdata			{ $1 }
	| decl				{ $1 } 
	| 'CLOSURE' '(' NAME ',' NAME lits ')' ';'  
		{ do lits <- sequence $6;
		     staticClosure $3 $5 (map getLit lits) }

-- The only static closures in the RTS are dummy closures like
-- stg_END_TSO_QUEUE_closure and stg_dummy_ret.  We don't need
-- to provide the full generality of static closures here.
-- In particular:
-- 	* CCS can always be CCS_DONT_CARE
-- 	* closure is always extern
-- 	* payload is always empty
--	* we can derive closure and info table labels from a single NAME

cmmdata :: { ExtCode }
	: 'section' STRING '{' statics '}' 
		{ do ss <- sequence $4;
		     code (emitData (section $2) (concat ss)) }

statics	:: { [ExtFCode [CmmStatic]] }
	: {- empty -}			{ [] }
	| static statics		{ $1 : $2 }

-- Strings aren't used much in the RTS HC code, so it doesn't seem
-- worth allowing inline strings.  C-- doesn't allow them anyway.
static 	:: { ExtFCode [CmmStatic] }
	: NAME ':'	{ return [CmmDataLabel (mkRtsDataLabelFS $1)] }
	| type expr ';'	{ do e <- $2;
			     return [CmmStaticLit (getLit e)] }
	| type ';'			{ return [CmmUninitialised
							(machRepByteWidth $1)] }
182
        | 'bits8' '[' ']' STRING ';'	{ return [mkString $4] }
183 184 185 186 187 188 189 190 191 192
        | 'bits8' '[' INT ']' ';'	{ return [CmmUninitialised 
							(fromIntegral $3)] }
        | typenot8 '[' INT ']' ';'	{ return [CmmUninitialised 
						(machRepByteWidth $1 * 
							fromIntegral $3)] }
	| 'align' INT ';'		{ return [CmmAlign (fromIntegral $2)] }
	| 'CLOSURE' '(' NAME lits ')'
		{ do lits <- sequence $4;
		     return $ map CmmStaticLit $
		       mkStaticClosure (mkRtsInfoLabelFS $3) 
193
			 dontCareCCS (map getLit lits) [] [] [] }
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	-- arrays of closures required for the CHARLIKE & INTLIKE arrays

lits	:: { [ExtFCode CmmExpr] }
	: {- empty -}		{ [] }
	| ',' expr lits		{ $2 : $3 }

cmmproc :: { ExtCode }
	: info '{' body '}'
		{ do  (info_lbl, info1, info2) <- $1;
		      stmts <- getCgStmtsEC (loopDecls $3)
		      blks <- code (cgStmtsToBlocks stmts)
		      code (emitInfoTableAndCode info_lbl info1 info2 [] blks) }

	| info ';'
		{ do (info_lbl, info1, info2) <- $1;
		     code (emitInfoTableAndCode info_lbl info1 info2 [] []) }

	| NAME '{' body '}'
		{ do stmts <- getCgStmtsEC (loopDecls $3);
		     blks <- code (cgStmtsToBlocks stmts)
		     code (emitProc [] (mkRtsCodeLabelFS $1) [] blks) }

info	:: { ExtFCode (CLabel, [CmmLit],[CmmLit]) }
	: 'INFO_TABLE' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
		-- ptrs, nptrs, closure type, description, type
		{ stdInfo $3 $5 $7 0 $9 $11 $13 }
	
	| 'INFO_TABLE_FUN' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ',' INT ')'
		-- ptrs, nptrs, closure type, description, type, fun type
		{ funInfo $3 $5 $7 $9 $11 $13 $15 }
	
	| 'INFO_TABLE_CONSTR' '(' NAME ',' INT ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
		-- ptrs, nptrs, tag, closure type, description, type
		{ stdInfo $3 $5 $7 $9 $11 $13 $15 }
	
	| 'INFO_TABLE_SELECTOR' '(' NAME ',' INT ',' INT ',' STRING ',' STRING ')'
		-- selector, closure type, description, type
		{ basicInfo $3 (mkIntCLit (fromIntegral $5)) 0 $7 $9 $11 }

	| 'INFO_TABLE_RET' '(' NAME ',' INT ',' INT ',' INT maybe_vec ')'
		{ retInfo $3 $5 $7 $9 $10 }

236
maybe_vec :: { [CmmLit] }
237
	: {- empty -}			{ [] }
238
	| ',' NAME maybe_vec		{ CmmLabel (mkRtsCodeLabelFS $2) : $3 }
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

body	:: { ExtCode }
	: {- empty -}			{ return () }
	| decl body			{ do $1; $2 }
	| stmt body			{ do $1; $2 }

decl	:: { ExtCode }
	: type names ';'		{ mapM_ (newLocal $1) $2 }
	| 'import' names ';'		{ return () }  -- ignore imports
	| 'export' names ';'		{ return () }  -- ignore exports

names 	:: { [FastString] }
	: NAME			{ [$1] }
	| NAME ',' names	{ $1 : $3 }

stmt	:: { ExtCode }
	: ';'					{ nopEC }

257 258
	| NAME ':'
		{ do l <- newLabel $1; code (labelC l) }
259 260 261 262 263 264 265 266 267 268

	| lreg '=' expr ';'			
		{ do reg <- $1; e <- $3; stmtEC (CmmAssign reg e) }
	| type '[' expr ']' '=' expr ';'
		{ doStore $1 $3 $6 }
	| 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% foreignCall $2 [] $3 $5 $7 }
	| lreg '=' 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% let result = do r <- $1; return (r,NoHint) in
		   foreignCall $4 [result] $5 $7 $9 }
269 270 271 272 273
	| 'prim' '%' NAME '(' hint_exprs0 ')' vols ';'
		{% primCall [] $3 $5 $7 }
	| lreg '=' 'prim' '%' NAME '(' hint_exprs0 ')' vols ';'
		{% let result = do r <- $1; return (r,NoHint) in
		   primCall [result] $5 $7 $9 }
274 275 276 277 278 279 280 281 282 283
	| STRING lreg '=' 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% do h <- parseHint $1;
		      let result = do r <- $2; return (r,h) in
		      foreignCall $5 [result] $6 $8 $10 }
	-- stmt-level macros, stealing syntax from ordinary C-- function calls.
	-- Perhaps we ought to use the %%-form?
	| NAME '(' exprs0 ')' ';'
		{% stmtMacro $1 $3  }
	| 'switch' maybe_range expr '{' arms default '}'
		{ doSwitch $2 $3 $5 $6 }
284 285
	| 'goto' NAME ';'
		{ do l <- lookupLabel $2; stmtEC (CmmBranch l) }
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	| 'jump' expr {-maybe_actuals-} ';'
		{ do e <- $2; stmtEC (CmmJump e []) }
	| 'if' bool_expr '{' body '}' else 	
		{ ifThenElse $2 $4 $6 }

bool_expr :: { ExtFCode BoolExpr }
	: bool_op			{ $1 }
	| expr				{ do e <- $1; return (BoolTest e) }

bool_op :: { ExtFCode BoolExpr }
	: bool_expr '&&' bool_expr 	{ do e1 <- $1; e2 <- $3; 
					  return (BoolAnd e1 e2) }
	| bool_expr '||' bool_expr	{ do e1 <- $1; e2 <- $3; 
					  return (BoolOr e1 e2)  }
	| '!' bool_expr			{ do e <- $2; return (BoolNot e) }
	| '(' bool_op ')'		{ $2 }

-- This is not C-- syntax.  What to do?
vols 	:: { Maybe [GlobalReg] }
	: {- empty -}			{ Nothing }
306
	| '[' ']'		        { Just [] }
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	| '[' globals ']'		{ Just $2 }

globals :: { [GlobalReg] }
	: GLOBALREG			{ [$1] }
	| GLOBALREG ',' globals		{ $1 : $3 }

maybe_range :: { Maybe (Int,Int) }
	: '[' INT '..' INT ']'	{ Just (fromIntegral $2, fromIntegral $4) }
	| {- empty -}		{ Nothing }

arms	:: { [([Int],ExtCode)] }
	: {- empty -}			{ [] }
	| arm arms			{ $1 : $2 }

arm	:: { ([Int],ExtCode) }
	: 'case' ints ':' '{' body '}'	{ ($2, $5) }

ints	:: { [Int] }
	: INT				{ [ fromIntegral $1 ] }
	| INT ',' ints			{ fromIntegral $1 : $3 }

default :: { Maybe ExtCode }
	: 'default' ':' '{' body '}'	{ Just $4 }
	-- taking a few liberties with the C-- syntax here; C-- doesn't have
	-- 'default' branches
	| {- empty -}			{ Nothing }

else 	:: { ExtCode }
	: {- empty -}			{ nopEC }
	| 'else' '{' body '}'		{ $3 }

-- we have to write this out longhand so that Happy's precedence rules
-- can kick in.
expr	:: { ExtFCode CmmExpr } 
	: expr '/' expr			{ mkMachOp MO_U_Quot [$1,$3] }
	| expr '*' expr			{ mkMachOp MO_Mul [$1,$3] }
	| expr '%' expr			{ mkMachOp MO_U_Rem [$1,$3] }
	| expr '-' expr			{ mkMachOp MO_Sub [$1,$3] }
	| expr '+' expr			{ mkMachOp MO_Add [$1,$3] }
	| expr '>>' expr		{ mkMachOp MO_U_Shr [$1,$3] }
	| expr '<<' expr		{ mkMachOp MO_Shl [$1,$3] }
	| expr '&' expr			{ mkMachOp MO_And [$1,$3] }
	| expr '^' expr			{ mkMachOp MO_Xor [$1,$3] }
	| expr '|' expr			{ mkMachOp MO_Or [$1,$3] }
	| expr '>=' expr		{ mkMachOp MO_U_Ge [$1,$3] }
	| expr '>' expr			{ mkMachOp MO_U_Gt [$1,$3] }
	| expr '<=' expr		{ mkMachOp MO_U_Le [$1,$3] }
	| expr '<' expr			{ mkMachOp MO_U_Lt [$1,$3] }
	| expr '!=' expr		{ mkMachOp MO_Ne [$1,$3] }
	| expr '==' expr		{ mkMachOp MO_Eq [$1,$3] }
	| '~' expr			{ mkMachOp MO_Not [$2] }
	| '-' expr			{ mkMachOp MO_S_Neg [$2] }
	| expr0 '`' NAME '`' expr0  	{% do { mo <- nameToMachOp $3 ;
					        return (mkMachOp mo [$1,$5]) } }
	| expr0				{ $1 }

expr0	:: { ExtFCode CmmExpr }
	: INT   maybe_ty	 { return (CmmLit (CmmInt $1 $2)) }
	| FLOAT maybe_ty	 { return (CmmLit (CmmFloat $1 $2)) }
	| STRING		 { do s <- code (mkStringCLit $1); 
				      return (CmmLit s) }
	| reg			 { $1 }
	| type '[' expr ']'	 { do e <- $3; return (CmmLoad e $1) }
	| '%' NAME '(' exprs0 ')' {% exprOp $2 $4 }
	| '(' expr ')'		 { $2 }


-- leaving out the type of a literal gives you the native word size in C--
maybe_ty :: { MachRep }
	: {- empty -}			{ wordRep }
	| '::' type			{ $2 }

hint_exprs0 :: { [ExtFCode (CmmExpr, MachHint)] }
	: {- empty -}			{ [] }
	| hint_exprs			{ $1 }

hint_exprs :: { [ExtFCode (CmmExpr, MachHint)] }
	: hint_expr			{ [$1] }
	| hint_expr ',' hint_exprs	{ $1 : $3 }

hint_expr :: { ExtFCode (CmmExpr, MachHint) }
	: expr				{ do e <- $1; return (e, inferHint e) }
	| expr STRING			{% do h <- parseHint $2;
					      return $ do
						e <- $1; return (e,h) }

exprs0  :: { [ExtFCode CmmExpr] }
	: {- empty -}			{ [] }
	| exprs				{ $1 }

exprs	:: { [ExtFCode CmmExpr] }
	: expr				{ [ $1 ] }
	| expr ',' exprs		{ $1 : $3 }

reg	:: { ExtFCode CmmExpr }
	: NAME			{ lookupName $1 }
	| GLOBALREG		{ return (CmmReg (CmmGlobal $1)) }

lreg	:: { ExtFCode CmmReg }
	: NAME			{ do e <- lookupName $1;
				     return $
				       case e of 
					CmmReg r -> r
					other -> pprPanic "CmmParse:" (ftext $1 <> text " not a register") }
	| GLOBALREG		{ return (CmmGlobal $1) }

type	:: { MachRep }
	: 'bits8'		{ I8 }
	| typenot8		{ $1 }

typenot8 :: { MachRep }
	: 'bits16'		{ I16 }
	| 'bits32'		{ I32 }
	| 'bits64'		{ I64 }
	| 'float32'		{ F32 }
	| 'float64'		{ F64 }
{
section :: String -> Section
section "text"	 = Text
section "data" 	 = Data
section "rodata" = ReadOnlyData
428
section "relrodata" = RelocatableReadOnlyData
429 430 431
section "bss"	 = UninitialisedData
section s	 = OtherSection s

432 433 434
mkString :: String -> CmmStatic
mkString s = CmmString (map (fromIntegral.ord) s)

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
-- mkMachOp infers the type of the MachOp from the type of its first
-- argument.  We assume that this is correct: for MachOps that don't have
-- symmetrical args (e.g. shift ops), the first arg determines the type of
-- the op.
mkMachOp :: (MachRep -> MachOp) -> [ExtFCode CmmExpr] -> ExtFCode CmmExpr
mkMachOp fn args = do
  arg_exprs <- sequence args
  return (CmmMachOp (fn (cmmExprRep (head arg_exprs))) arg_exprs)

getLit :: CmmExpr -> CmmLit
getLit (CmmLit l) = l
getLit (CmmMachOp (MO_S_Neg _) [CmmLit (CmmInt i r)])  = CmmInt (negate i) r
getLit _ = panic "invalid literal" -- TODO messy failure

nameToMachOp :: FastString -> P (MachRep -> MachOp)
nameToMachOp name = 
  case lookupUFM machOps name of
	Nothing -> fail ("unknown primitive " ++ unpackFS name)
	Just m  -> return m

exprOp :: FastString -> [ExtFCode CmmExpr] -> P (ExtFCode CmmExpr)
exprOp name args_code =
  case lookupUFM exprMacros name of
     Just f  -> return $ do
        args <- sequence args_code
	return (f args)
     Nothing -> do
	mo <- nameToMachOp name
	return $ mkMachOp mo args_code

exprMacros :: UniqFM ([CmmExpr] -> CmmExpr)
exprMacros = listToUFM [
  ( FSLIT("ENTRY_CODE"),   \ [x] -> entryCode x ),
Simon Marlow's avatar
Simon Marlow committed
468
  ( FSLIT("INFO_PTR"),     \ [x] -> closureInfoPtr x ),
469
  ( FSLIT("STD_INFO"),     \ [x] -> infoTable x ),
Simon Marlow's avatar
Simon Marlow committed
470 471
  ( FSLIT("FUN_INFO"),     \ [x] -> funInfoTable x ),
  ( FSLIT("GET_ENTRY"),    \ [x] -> entryCode (closureInfoPtr x) ),
472 473 474 475 476
  ( FSLIT("GET_STD_INFO"), \ [x] -> infoTable (closureInfoPtr x) ),
  ( FSLIT("GET_FUN_INFO"), \ [x] -> funInfoTable (closureInfoPtr x) ),
  ( FSLIT("INFO_TYPE"),    \ [x] -> infoTableClosureType x ),
  ( FSLIT("INFO_PTRS"),    \ [x] -> infoTablePtrs x ),
  ( FSLIT("INFO_NPTRS"),   \ [x] -> infoTableNonPtrs x ),
477
  ( FSLIT("RET_VEC"),      \ [info, conZ] -> retVec info conZ )
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  ]

-- we understand a subset of C-- primitives:
machOps = listToUFM $
	map (\(x, y) -> (mkFastString x, y)) [
	( "add",	MO_Add ),
	( "sub",	MO_Sub ),
	( "eq",		MO_Eq ),
	( "ne",		MO_Ne ),
	( "mul",	MO_Mul ),
	( "neg",	MO_S_Neg ),
	( "quot",	MO_S_Quot ),
	( "rem",	MO_S_Rem ),
	( "divu",	MO_U_Quot ),
	( "modu",	MO_U_Rem ),

	( "ge",		MO_S_Ge ),
	( "le",		MO_S_Le ),
	( "gt",		MO_S_Gt ),
	( "lt",		MO_S_Lt ),

	( "geu",	MO_U_Ge ),
	( "leu",	MO_U_Le ),
	( "gtu",	MO_U_Gt ),
	( "ltu",	MO_U_Lt ),

	( "flt",	MO_S_Lt ),
	( "fle",	MO_S_Le ),
	( "feq",	MO_Eq ),
	( "fne",	MO_Ne ),
	( "fgt",	MO_S_Gt ),
	( "fge",	MO_S_Ge ),
	( "fneg",	MO_S_Neg ),

	( "and",	MO_And ),
	( "or",		MO_Or ),
	( "xor",	MO_Xor ),
	( "com",	MO_Not ),
	( "shl",	MO_Shl ),
	( "shrl",	MO_U_Shr ),
	( "shra",	MO_S_Shr ),

	( "lobits8",  flip MO_U_Conv I8  ),
	( "lobits16", flip MO_U_Conv I16 ),
	( "lobits32", flip MO_U_Conv I32 ),
	( "lobits64", flip MO_U_Conv I64 ),
	( "sx16",     flip MO_S_Conv I16 ),
	( "sx32",     flip MO_S_Conv I32 ),
	( "sx64",     flip MO_S_Conv I64 ),
	( "zx16",     flip MO_U_Conv I16 ),
	( "zx32",     flip MO_U_Conv I32 ),
	( "zx64",     flip MO_U_Conv I64 ),
	( "f2f32",    flip MO_S_Conv F32 ),  -- TODO; rounding mode
	( "f2f64",    flip MO_S_Conv F64 ),  -- TODO; rounding mode
	( "f2i8",     flip MO_S_Conv I8 ),
	( "f2i16",    flip MO_S_Conv I8 ),
	( "f2i32",    flip MO_S_Conv I8 ),
	( "f2i64",    flip MO_S_Conv I8 ),
	( "i2f32",    flip MO_S_Conv F32 ),
	( "i2f64",    flip MO_S_Conv F64 )
	]

540 541 542 543 544 545
callishMachOps = listToUFM $
	map (\(x, y) -> (mkFastString x, y)) [
        ( "write_barrier", MO_WriteBarrier )
        -- ToDo: the rest, maybe
    ]

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
parseHint :: String -> P MachHint
parseHint "ptr"    = return PtrHint
parseHint "signed" = return SignedHint
parseHint "float"  = return FloatHint
parseHint str      = fail ("unrecognised hint: " ++ str)

-- labels are always pointers, so we might as well infer the hint
inferHint :: CmmExpr -> MachHint
inferHint (CmmLit (CmmLabel _)) = PtrHint
inferHint (CmmReg (CmmGlobal g)) | isPtrGlobalReg g = PtrHint
inferHint _ = NoHint

isPtrGlobalReg Sp		= True
isPtrGlobalReg SpLim		= True
isPtrGlobalReg Hp		= True
isPtrGlobalReg HpLim		= True
isPtrGlobalReg CurrentTSO	= True
isPtrGlobalReg CurrentNursery	= True
isPtrGlobalReg _		= False

happyError :: P a
happyError = srcParseFail

-- -----------------------------------------------------------------------------
-- Statement-level macros

stmtMacro :: FastString -> [ExtFCode CmmExpr] -> P ExtCode
stmtMacro fun args_code = do
  case lookupUFM stmtMacros fun of
    Nothing -> fail ("unknown macro: " ++ unpackFS fun)
    Just fcode -> return $ do
	args <- sequence args_code
	code (fcode args)

stmtMacros :: UniqFM ([CmmExpr] -> Code)
stmtMacros = listToUFM [
  ( FSLIT("CCS_ALLOC"),		   \[words,ccs]  -> profAlloc words ccs ),
  ( FSLIT("CLOSE_NURSERY"),	   \[]  -> emitCloseNursery ),
  ( FSLIT("ENTER_CCS_PAP_CL"),     \[e] -> enterCostCentrePAP e ),
  ( FSLIT("ENTER_CCS_THUNK"),      \[e] -> enterCostCentreThunk e ),
  ( FSLIT("HP_CHK_GEN"),           \[words,liveness,reentry] -> 
                                      hpChkGen words liveness reentry ),
  ( FSLIT("HP_CHK_NP_ASSIGN_SP0"), \[e,f] -> hpChkNodePointsAssignSp0 e f ),
  ( FSLIT("LOAD_THREAD_STATE"),    \[] -> emitLoadThreadState ),
  ( FSLIT("LDV_ENTER"),            \[e] -> ldvEnter e ),
  ( FSLIT("LDV_RECORD_CREATE"),    \[e] -> ldvRecordCreate e ),
  ( FSLIT("OPEN_NURSERY"),	   \[]  -> emitOpenNursery ),
  ( FSLIT("PUSH_UPD_FRAME"),	   \[sp,e] -> emitPushUpdateFrame sp e ),
  ( FSLIT("SAVE_THREAD_STATE"),    \[] -> emitSaveThreadState ),
  ( FSLIT("SET_HDR"),		   \[ptr,info,ccs] -> 
					emitSetDynHdr ptr info ccs ),
  ( FSLIT("STK_CHK_GEN"),          \[words,liveness,reentry] -> 
                                      stkChkGen words liveness reentry ),
  ( FSLIT("STK_CHK_NP"),	   \[e] -> stkChkNodePoints e ),
  ( FSLIT("TICK_ALLOC_PRIM"), 	   \[hdr,goods,slop] -> 
					tickyAllocPrim hdr goods slop ),
  ( FSLIT("TICK_ALLOC_PAP"),       \[goods,slop] -> 
					tickyAllocPAP goods slop ),
  ( FSLIT("TICK_ALLOC_UP_THK"),    \[goods,slop] -> 
					tickyAllocThunk goods slop ),
  ( FSLIT("UPD_BH_UPDATABLE"),       \[] -> emitBlackHoleCode False ),
  ( FSLIT("UPD_BH_SINGLE_ENTRY"),    \[] -> emitBlackHoleCode True ),

  ( FSLIT("RET_P"),	\[a] ->       emitRetUT [(PtrArg,a)]),
  ( FSLIT("RET_N"),	\[a] ->       emitRetUT [(NonPtrArg,a)]),
  ( FSLIT("RET_PP"),	\[a,b] ->     emitRetUT [(PtrArg,a),(PtrArg,b)]),
  ( FSLIT("RET_NN"),	\[a,b] ->     emitRetUT [(NonPtrArg,a),(NonPtrArg,b)]),
  ( FSLIT("RET_NP"),	\[a,b] ->     emitRetUT [(NonPtrArg,a),(PtrArg,b)]),
  ( FSLIT("RET_PPP"),	\[a,b,c] ->   emitRetUT [(PtrArg,a),(PtrArg,b),(PtrArg,c)]),
  ( FSLIT("RET_NNP"),	\[a,b,c] ->   emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(PtrArg,c)]),
  ( FSLIT("RET_NNNP"),	\[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(NonPtrArg,c),(PtrArg,d)]),
  ( FSLIT("RET_NPNP"),	\[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(PtrArg,b),(NonPtrArg,c),(PtrArg,d)])

 ]

-- -----------------------------------------------------------------------------
-- Our extended FCode monad.

-- We add a mapping from names to CmmExpr, to support local variable names in
-- the concrete C-- code.  The unique supply of the underlying FCode monad
-- is used to grab a new unique for each local variable.

-- In C--, a local variable can be declared anywhere within a proc,
-- and it scopes from the beginning of the proc to the end.  Hence, we have
-- to collect declarations as we parse the proc, and feed the environment
-- back in circularly (to avoid a two-pass algorithm).

633 634 635
data Named = Var CmmExpr | Label BlockId
type Decls = [(FastString,Named)]
type Env   = UniqFM Named
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

newtype ExtFCode a = EC { unEC :: Env -> Decls -> FCode (Decls, a) }

type ExtCode = ExtFCode ()

returnExtFC a = EC $ \e s -> return (s, a)
thenExtFC (EC m) k = EC $ \e s -> do (s',r) <- m e s; unEC (k r) e s'

instance Monad ExtFCode where
  (>>=) = thenExtFC
  return = returnExtFC

-- This function takes the variable decarations and imports and makes 
-- an environment, which is looped back into the computation.  In this
-- way, we can have embedded declarations that scope over the whole
-- procedure, and imports that scope over the entire module.
loopDecls :: ExtFCode a -> ExtFCode a
loopDecls (EC fcode) = 
   EC $ \e s -> fixC (\ ~(decls,a) -> fcode (addListToUFM e decls) [])

getEnv :: ExtFCode Env
getEnv = EC $ \e s -> return (s, e)

addVarDecl :: FastString -> CmmExpr -> ExtCode
660 661 662 663
addVarDecl var expr = EC $ \e s -> return ((var, Var expr):s, ())

addLabel :: FastString -> BlockId -> ExtCode
addLabel name block_id = EC $ \e s -> return ((name, Label block_id):s, ())
664 665 666 667 668 669

newLocal :: MachRep -> FastString -> ExtCode
newLocal ty name  = do
   u <- code newUnique
   addVarDecl name (CmmReg (CmmLocal (LocalReg u ty)))

670 671 672 673 674 675 676 677 678 679 680 681 682 683
newLabel :: FastString -> ExtFCode BlockId
newLabel name = do
   u <- code newUnique
   addLabel name (BlockId u)
   return (BlockId u)

lookupLabel :: FastString -> ExtFCode BlockId
lookupLabel name = do
  env <- getEnv
  return $ 
     case lookupUFM env name of
	Just (Label l) -> l
	_other -> BlockId (newTagUnique (getUnique name) 'L')

684 685 686 687 688 689 690 691
-- Unknown names are treated as if they had been 'import'ed.
-- This saves us a lot of bother in the RTS sources, at the expense of
-- deferring some errors to link time.
lookupName :: FastString -> ExtFCode CmmExpr
lookupName name = do
  env <- getEnv
  return $ 
     case lookupUFM env name of
692 693
	Just (Var e) -> e
	_other -> CmmLit (CmmLabel (mkRtsCodeLabelFS name))
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

-- Lifting FCode computations into the ExtFCode monad:
code :: FCode a -> ExtFCode a
code fc = EC $ \e s -> do r <- fc; return (s, r)

code2 :: (FCode (Decls,b) -> FCode ((Decls,b),c))
	 -> ExtFCode b -> ExtFCode c
code2 f (EC ec) = EC $ \e s -> do ((s',b),c) <- f (ec e s); return (s',c)

nopEC = code nopC
stmtEC stmt = code (stmtC stmt)
stmtsEC stmts = code (stmtsC stmts)
getCgStmtsEC = code2 getCgStmts'

forkLabelledCodeEC ec = do
  stmts <- getCgStmtsEC ec
  code (forkCgStmts stmts)

retInfo name size live_bits cl_type vector = do
  let liveness = smallLiveness (fromIntegral size) (fromIntegral live_bits)
714 715
      info_lbl = mkRtsRetInfoLabelFS name
      (info1,info2) = mkRetInfoTable info_lbl liveness NoC_SRT 
716
				(fromIntegral cl_type) vector
717
  return (info_lbl, info1, info2)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

stdInfo name ptrs nptrs srt_bitmap cl_type desc_str ty_str =
  basicInfo name (packHalfWordsCLit ptrs nptrs) 
	srt_bitmap cl_type desc_str ty_str

basicInfo name layout srt_bitmap cl_type desc_str ty_str = do
  lit1 <- if opt_SccProfilingOn 
		   then code $ mkStringCLit desc_str
		   else return (mkIntCLit 0)
  lit2 <- if opt_SccProfilingOn 
		   then code $ mkStringCLit ty_str
		   else return (mkIntCLit 0)
  let info1 = mkStdInfoTable lit1 lit2 (fromIntegral cl_type) 
			(fromIntegral srt_bitmap)
			layout
  return (mkRtsInfoLabelFS name, info1, [])

funInfo name ptrs nptrs cl_type desc_str ty_str fun_type = do
  (label,info1,_) <- stdInfo name ptrs nptrs 0{-srt_bitmap-}
			 cl_type desc_str ty_str 
  let info2 = mkFunGenInfoExtraBits (fromIntegral fun_type) 0 zero zero zero
		-- we leave most of the fields zero here.  This is only used
		-- to generate the BCO info table in the RTS at the moment.
  return (label,info1,info2)
 where
   zero = mkIntCLit 0


staticClosure :: FastString -> FastString -> [CmmLit] -> ExtCode
staticClosure cl_label info payload
  = code $ emitDataLits (mkRtsDataLabelFS cl_label) lits
749
  where  lits = mkStaticClosure (mkRtsInfoLabelFS info) dontCareCCS payload [] [] []
750 751 752 753 754 755 756 757 758 759 760 761

foreignCall
	:: String
	-> [ExtFCode (CmmReg,MachHint)]
	-> ExtFCode CmmExpr
	-> [ExtFCode (CmmExpr,MachHint)]
	-> Maybe [GlobalReg] -> P ExtCode
foreignCall "C" results_code expr_code args_code vols
  = return $ do
	results <- sequence results_code
	expr <- expr_code
	args <- sequence args_code
762 763
        code (emitForeignCall' PlayRisky results 
                 (CmmForeignCall expr CCallConv) args vols)
764 765 766
foreignCall conv _ _ _ _
  = fail ("unknown calling convention: " ++ conv)

767 768 769 770 771 772 773 774 775 776 777 778 779
primCall
	:: [ExtFCode (CmmReg,MachHint)]
	-> FastString
	-> [ExtFCode (CmmExpr,MachHint)]
	-> Maybe [GlobalReg] -> P ExtCode
primCall results_code name args_code vols
  = case lookupUFM callishMachOps name of
	Nothing -> fail ("unknown primitive " ++ unpackFS name)
	Just p  -> return $ do
		results <- sequence results_code
		args <- sequence args_code
        	code (emitForeignCall' PlayRisky results (CmmPrim p) args vols)

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
doStore :: MachRep -> ExtFCode CmmExpr  -> ExtFCode CmmExpr -> ExtCode
doStore rep addr_code val_code
  = do addr <- addr_code
       val <- val_code
	-- if the specified store type does not match the type of the expr
	-- on the rhs, then we insert a coercion that will cause the type
	-- mismatch to be flagged by cmm-lint.  If we don't do this, then
	-- the store will happen at the wrong type, and the error will not
	-- be noticed.
       let coerce_val 
		| cmmExprRep val /= rep = CmmMachOp (MO_U_Conv rep rep) [val]
		| otherwise             = val
       stmtEC (CmmStore addr coerce_val)

-- Return an unboxed tuple.
emitRetUT :: [(CgRep,CmmExpr)] -> Code
emitRetUT args = do
  tickyUnboxedTupleReturn (length args)  -- TICK
  (sp, stmts) <- pushUnboxedTuple 0 args
  emitStmts stmts
  when (sp /= 0) $ stmtC (CmmAssign spReg (cmmRegOffW spReg (-sp)))
  stmtC (CmmJump (entryCode (CmmLoad (cmmRegOffW spReg sp) wordRep)) [])

-- -----------------------------------------------------------------------------
-- If-then-else and boolean expressions

data BoolExpr
  = BoolExpr `BoolAnd` BoolExpr
  | BoolExpr `BoolOr`  BoolExpr
  | BoolNot BoolExpr
  | BoolTest CmmExpr

-- ToDo: smart constructors which simplify the boolean expression.

ifThenElse cond then_part else_part = do
     then_id <- code newLabelC
     join_id <- code newLabelC
     c <- cond
     emitCond c then_id
     else_part
     stmtEC (CmmBranch join_id)
     code (labelC then_id)
     then_part
     -- fall through to join
     code (labelC join_id)

-- 'emitCond cond true_id'  emits code to test whether the cond is true,
-- branching to true_id if so, and falling through otherwise.
emitCond (BoolTest e) then_id = do
  stmtEC (CmmCondBranch e then_id)
emitCond (BoolNot (BoolTest (CmmMachOp op args))) then_id
  | Just op' <- maybeInvertComparison op
  = emitCond (BoolTest (CmmMachOp op' args)) then_id
emitCond (BoolNot e) then_id = do
  else_id <- code newLabelC
  emitCond e else_id
  stmtEC (CmmBranch then_id)
  code (labelC else_id)
emitCond (e1 `BoolOr` e2) then_id = do
  emitCond e1 then_id
  emitCond e2 then_id
emitCond (e1 `BoolAnd` e2) then_id = do
	-- we'd like to invert one of the conditionals here to avoid an
	-- extra branch instruction, but we can't use maybeInvertComparison
	-- here because we can't look too closely at the expression since
	-- we're in a loop.
  and_id <- code newLabelC
  else_id <- code newLabelC
  emitCond e1 and_id
  stmtEC (CmmBranch else_id)
  code (labelC and_id)
  emitCond e2 then_id
  code (labelC else_id)


-- -----------------------------------------------------------------------------
-- Table jumps

-- We use a simplified form of C-- switch statements for now.  A
-- switch statement always compiles to a table jump.  Each arm can
-- specify a list of values (not ranges), and there can be a single
-- default branch.  The range of the table is given either by the
-- optional range on the switch (eg. switch [0..7] {...}), or by
-- the minimum/maximum values from the branches.

doSwitch :: Maybe (Int,Int) -> ExtFCode CmmExpr -> [([Int],ExtCode)]
         -> Maybe ExtCode -> ExtCode
doSwitch mb_range scrut arms deflt
   = do 
	-- Compile code for the default branch
	dflt_entry <- 
		case deflt of
		  Nothing -> return Nothing
		  Just e  -> do b <- forkLabelledCodeEC e; return (Just b)

	-- Compile each case branch
	table_entries <- mapM emitArm arms

	-- Construct the table
	let
	    all_entries = concat table_entries
	    ixs = map fst all_entries
	    (min,max) 
		| Just (l,u) <- mb_range = (l,u)
		| otherwise              = (minimum ixs, maximum ixs)

	    entries = elems (accumArray (\_ a -> Just a) dflt_entry (min,max)
				all_entries)
	expr <- scrut
	-- ToDo: check for out of range and jump to default if necessary
        stmtEC (CmmSwitch expr entries)
   where
	emitArm :: ([Int],ExtCode) -> ExtFCode [(Int,BlockId)]
	emitArm (ints,code) = do
	   blockid <- forkLabelledCodeEC code
	   return [ (i,blockid) | i <- ints ]


-- -----------------------------------------------------------------------------
-- Putting it all together

-- The initial environment: we define some constants that the compiler
-- knows about here.
initEnv :: Env
initEnv = listToUFM [
  ( FSLIT("SIZEOF_StgHeader"), 
906
    Var (CmmLit (CmmInt (fromIntegral (fixedHdrSize * wORD_SIZE)) wordRep) )),
907
  ( FSLIT("SIZEOF_StgInfoTable"),
908
    Var (CmmLit (CmmInt (fromIntegral stdInfoTableSizeB) wordRep) ))
909 910
  ]

Simon Marlow's avatar
Simon Marlow committed
911 912
parseCmmFile :: DynFlags -> FilePath -> IO (Maybe Cmm)
parseCmmFile dflags filename = do
913 914 915 916 917 918 919 920 921
  showPass dflags "ParseCmm"
  buf <- hGetStringBuffer filename
  let
	init_loc = mkSrcLoc (mkFastString filename) 1 0
	init_state = (mkPState buf init_loc dflags) { lex_state = [0] }
		-- reset the lex_state: the Lexer monad leaves some stuff
		-- in there we don't want.
  case unP cmmParse init_state of
    PFailed span err -> do printError span err; return Nothing
922
    POk pst code -> do
Simon Marlow's avatar
Simon Marlow committed
923
	cmm <- initC dflags no_module (getCmm (unEC code initEnv [] >> return ()))
924 925 926 927
	let ms = getMessages pst
	printErrorsAndWarnings dflags ms
        when (errorsFound dflags ms) $ exitWith (ExitFailure 1)
        dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (pprCmms [cmm])
928 929 930 931
	return (Just cmm)
  where
	no_module = panic "parseCmmFile: no module"
}