CNF.c 37.2 KB
Newer Older
gcampax's avatar
gcampax committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team 1998-2014
 *
 * GC support for immutable non-GCed structures, also known as Compact
 * Normal Forms (CNF for short). This provides the RTS support for
 * the 'compact' package and the Data.Compact module.
 *
 * ---------------------------------------------------------------------------*/

#define _GNU_SOURCE

#include "PosixSource.h"
#include <string.h>
#include "Rts.h"
#include "RtsUtils.h"

#include "Capability.h"
#include "GC.h"
#include "Storage.h"
#include "CNF.h"
#include "Hash.h"
#include "HeapAlloc.h"
#include "BlockAlloc.h"

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif

/**
 * Note [Compact Normal Forms]
 *
 * A Compact Normal Form, is at its essence a chain of memory blocks (multiple
 * of block allocator blocks) containing other closures inside.
 *
 * Each block starts with a header, of type StgCompactNFDataBlock, that points
 * to the first and to the next block in the chain. Right after the header
 * in the first block we have a closure of type StgCompactNFData, which holds
 * compact-wide metadata. This closure is the Compact# that Cmm and Haskell
 * see, and it's mostly a regular Haskell closure.
 *
 * Blocks are appended to the chain automatically as needed, or manually with a
 * compactResize() call, which also adjust the size of automatically appended
 * blocks.
 *
 * Objects can be appended to the block currently marked to the nursery, or any
 * of the later blocks if the nursery block is too full to fit the entire
 * object. For each block in the chain (which can be multiple block allocator
 * blocks), we use the bdescr of its beginning to store how full it is.
 * After an object is appended, it is scavenged for any outgoing pointers,
 * and all pointed to objects are appended, recursively, in a manner similar
 * to copying GC (further discussion in the note [Appending to a Compact])
 *
 * We also flag each bdescr in each block allocator block of a compact
 * (including those there were obtained as second or later from a single
 * allocGroup(n) call) with the BF_COMPACT. This allows the GC to quickly
 * realize that a given pointer is in a compact region, and trigger the
 * CNF path.
 *
 * These two facts combined mean that in any compact block where some object
 * begins bdescrs must be valid. For this simplicity this is achieved by
 * restricting the maximum size of a compact block to 252 block allocator
 * blocks (so that the total with the bdescr is one megablock).
 *
 * Compacts as a whole live in special list in each generation, where the
 * list is held through the bd->link field of the bdescr of the StgCompactNFData
 * closure (as for large objects). They live in a different list than large
 * objects because the operation to free them is different (all blocks in
 * a compact must be freed individually), and stats/sanity behavior are
 * slightly different. This is also the reason that compact allocates memory
 * using a special function instead of just calling allocate().
 *
 * Compacts are also suitable for network or disk serialization, and to
 * that extent they support a pointer fixup operation, which adjusts pointers
 * from a previous layout of the chain in memory to the new allocation.
 * This works by constructing a temporary binary search table (in the C heap)
 * of the old block addresses (which are known from the block header), and
 * then searching for each pointer in the table, and adjusting it.
 * It relies on ABI compatibility and static linking (or no ASLR) because it
 * does not attempt to reconstruct info tables, and uses info tables to detect
 * pointers. In practice this means only the exact same binary should be
 * used.
 */

typedef enum {
    ALLOCATE_APPEND,
    ALLOCATE_NEW,
    ALLOCATE_IMPORT_NEW,
    ALLOCATE_IMPORT_APPEND,
} AllocateOp;

static StgCompactNFDataBlock *
compactAllocateBlockInternal(Capability            *cap,
                             StgWord                aligned_size,
                             StgCompactNFDataBlock *first,
                             AllocateOp             operation)
{
    StgCompactNFDataBlock *self;
    bdescr *block, *head;
    uint32_t n_blocks;
    generation *g;

    n_blocks = aligned_size / BLOCK_SIZE;

    // Attempting to allocate an object larger than maxHeapSize
    // should definitely be disallowed.  (bug #1791)
    if ((RtsFlags.GcFlags.maxHeapSize > 0 &&
         n_blocks >= RtsFlags.GcFlags.maxHeapSize) ||
        n_blocks >= HS_INT32_MAX)   // avoid overflow when
                                    // calling allocGroup() below
    {
        heapOverflow();
        // heapOverflow() doesn't exit (see #2592), but we aren't
        // in a position to do a clean shutdown here: we
        // either have to allocate the memory or exit now.
        // Allocating the memory would be bad, because the user
        // has requested that we not exceed maxHeapSize, so we
        // just exit.
        stg_exit(EXIT_HEAPOVERFLOW);
    }

    // It is imperative that first is the first block in the compact
    // (or NULL if the compact does not exist yet)
    // because the evacuate code does not update the generation of
    // blocks other than the first (so we would get the statistics
    // wrong and crash in Sanity)
    if (first != NULL) {
        block = Bdescr((P_)first);
        g = block->gen;
    } else {
        g = g0;
    }

    ACQUIRE_SM_LOCK;
    block = allocGroup(n_blocks);
    switch (operation) {
    case ALLOCATE_NEW:
        ASSERT (first == NULL);
        ASSERT (g == g0);
        dbl_link_onto(block, &g0->compact_objects);
        g->n_compact_blocks += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_IMPORT_NEW:
        dbl_link_onto(block, &g0->compact_blocks_in_import);
        /* fallthrough */
    case ALLOCATE_IMPORT_APPEND:
        ASSERT (first == NULL);
        ASSERT (g == g0);
        g->n_compact_blocks_in_import += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_APPEND:
        g->n_compact_blocks += block->blocks;
        if (g == g0)
            g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    default:
#ifdef DEBUG
        ASSERT(!"code should not be reached");
167
#else
168
        RTS_UNREACHABLE;
gcampax's avatar
gcampax committed
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
#endif
    }
    RELEASE_SM_LOCK;

    cap->total_allocated += aligned_size / sizeof(StgWord);

    self = (StgCompactNFDataBlock*) block->start;
    self->self = self;
    self->next = NULL;

    head = block;
    initBdescr(head, g, g);
    head->flags = BF_COMPACT;
    for (block = head + 1, n_blocks --; n_blocks > 0; block++, n_blocks--) {
        block->link = head;
        block->blocks = 0;
        block->flags = BF_COMPACT;
    }

    return self;
}

static inline StgCompactNFDataBlock *
compactGetFirstBlock(StgCompactNFData *str)
{
    return (StgCompactNFDataBlock*) ((W_)str - sizeof(StgCompactNFDataBlock));
}

static inline StgCompactNFData *
firstBlockGetCompact(StgCompactNFDataBlock *block)
{
    return (StgCompactNFData*) ((W_)block + sizeof(StgCompactNFDataBlock));
}

static void
freeBlockChain(StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *next;
    bdescr *bd;

    for ( ; block; block = next) {
        next = block->next;
        bd = Bdescr((StgPtr)block);
        ASSERT((bd->flags & BF_EVACUATED) == 0);
        freeGroup(bd);
    }
}

void
compactFree(StgCompactNFData *str)
{
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    freeBlockChain(block);
}

void
compactMarkKnown(StgCompactNFData *str)
{
    bdescr *bd;
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    for ( ; block; block = block->next) {
        bd = Bdescr((StgPtr)block);
        bd->flags |= BF_KNOWN;
    }
}

StgWord
countCompactBlocks(bdescr *outer)
{
    StgCompactNFDataBlock *block;
    W_ count;

    count = 0;
    while (outer) {
        bdescr *inner;

        block = (StgCompactNFDataBlock*)(outer->start);
        do {
            inner = Bdescr((P_)block);
            ASSERT (inner->flags & BF_COMPACT);

            count += inner->blocks;
            block = block->next;
        } while(block);

        outer = outer->link;
    }

    return count;
}

StgCompactNFData *
compactNew (Capability *cap, StgWord size)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    StgCompactNFData *self;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size + sizeof(StgCompactNFDataBlock)
                                  + sizeof(StgCompactNFDataBlock));
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         ALLOCATE_NEW);

    self = firstBlockGetCompact(block);
    SET_INFO((StgClosure*)self, &stg_COMPACT_NFDATA_info);
    self->totalDataW = aligned_size / sizeof(StgWord);
    self->autoBlockW = aligned_size / sizeof(StgWord);
    self->nursery = block;
    self->last = block;

    block->owner = self;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)self + sizeof(StgCompactNFData));
    ASSERT (bd->free == (StgPtr)self + sizeofW(StgCompactNFData));

    self->totalW = bd->blocks * BLOCK_SIZE_W;

    return self;
}

static StgCompactNFDataBlock *
compactAppendBlock (Capability       *cap,
                    StgCompactNFData *str,
                    StgWord           aligned_size)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;

    block = compactAllocateBlockInternal(cap, aligned_size,
                                         compactGetFirstBlock(str),
                                         ALLOCATE_APPEND);
    block->owner = str;
    block->next = NULL;

    ASSERT (str->last->next == NULL);
    str->last->next = block;
    str->last = block;
    if (str->nursery == NULL)
        str->nursery = block;
    str->totalDataW += aligned_size / sizeof(StgWord);

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)block + sizeof(StgCompactNFDataBlock));
    ASSERT (bd->free == (StgPtr)block + sizeofW(StgCompactNFDataBlock));

    str->totalW += bd->blocks * BLOCK_SIZE_W;

    return block;
}

void
compactResize (Capability *cap, StgCompactNFData *str, StgWord new_size)
{
    StgWord aligned_size;

    aligned_size = BLOCK_ROUND_UP(new_size + sizeof(StgCompactNFDataBlock));
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    str->autoBlockW = aligned_size / sizeof(StgWord);

    compactAppendBlock(cap, str, aligned_size);
}

/* Note [Appending to a Compact]

   This is a simple reimplementation of the copying GC.
   One could be tempted to reuse the actual GC code here, but he
   would quickly find out that it would bring all the generational
   GC complexity for no need at all.

   Plus, we don't need to scavenge/evacuate all kinds of weird
   objects here, just constructors and primitives. Thunks are
   expected to be evaluated before appending by the API layer
   (in Haskell, above the primop which is implemented here).
   Also, we have a different policy for large objects: instead
   of relinking to the new large object list, we fully copy
   them inside the compact and scavenge them normally.

   Note that if we allowed thunks and lazy evaluation the compact
   would be a mutable object, which would create all sorts of
   GC problems (besides, evaluating a thunk could exaust the
   compact space or yield an invalid object, and we would have
   no way to signal that to the user)

   Just like the real evacuate/scavenge pairs, we need to handle
   object loops. We would want to use the same strategy of rewriting objects
   with forwarding pointer, but in a real GC, at the end the
   blocks from the old space are dropped (dropping all forwarding
   pointers at the same time), which we can't do here as we don't
   know all pointers to the objects being evacuated. Also, in parallel
   we don't know which other threads are evaluating the thunks
   that we just corrupted at the same time.

   So instead we use a hash table of "visited" objects, and add
   the pointer as we copy it. To reduce the overhead, we also offer
   a version of the API that does not preserve sharing (TODO).

   You might be tempted to replace the objects with StdInd to
   the object in the compact, but you would be wrong: the haskell
   code assumes that objects in the heap only become more evaluated
   (thunks to blackholes to inds to actual objects), and in
   particular it assumes that if a pointer is tagged the object
   is directly referenced and the values can be read directly,
   without entering the closure.

   FIXME: any better idea than the hash table?
*/

static void
unroll_memcpy(StgPtr to, StgPtr from, StgWord size)
{
    for (; size > 0; size--)
        *(to++) = *(from++);
}

static rtsBool
allocate_in_compact (StgCompactNFDataBlock *block, StgWord sizeW, StgPtr *at)
{
    bdescr *bd;
    StgPtr top;
    StgPtr free;

    bd = Bdescr((StgPtr)block);
    top = bd->start + BLOCK_SIZE_W * bd->blocks;
    if (bd->free + sizeW > top)
        return rtsFalse;

    free = bd->free;
    bd->free += sizeW;
    *at = free;

    return rtsTrue;
}

static rtsBool
block_is_full (StgCompactNFDataBlock *block)
{
    bdescr *bd;
    StgPtr top;
    StgWord sizeW;

    bd = Bdescr((StgPtr)block);
    top = bd->start + BLOCK_SIZE_W * bd->blocks;

    // We consider a block full if we could not fit
    // an entire closure with 7 payload items
    // (this leaves a slop of 64 bytes at most, but
    // it avoids leaving a block almost empty to fit
    // a large byte array, while at the same time
    // it avoids trying to allocate a large closure
    // in a chain of almost empty blocks)
    sizeW = sizeofW(StgHeader) + 7;
    return (bd->free + sizeW > top);
}

static rtsBool
allocate_loop (Capability       *cap,
               StgCompactNFData *str,
               StgWord           sizeW,
               StgPtr           *at)
{
    StgCompactNFDataBlock *block;
    StgWord next_size;

    // try the nursery first
 retry:
    if (str->nursery != NULL) {
        if (allocate_in_compact(str->nursery, sizeW, at))
            return rtsTrue;

        if (block_is_full (str->nursery)) {
            str->nursery = str->nursery->next;
            goto retry;
        }

        // try subsequent blocks
        block = str->nursery->next;
        while (block != NULL) {
            if (allocate_in_compact(block, sizeW, at))
                return rtsTrue;

            block = block->next;
        }
    }

464
    next_size = stg_max(str->autoBlockW * sizeof(StgWord),
gcampax's avatar
gcampax committed
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
                    BLOCK_ROUND_UP(sizeW * sizeof(StgWord)));
    if (next_size >= BLOCKS_PER_MBLOCK * BLOCK_SIZE)
        next_size = BLOCKS_PER_MBLOCK * BLOCK_SIZE;
    if (next_size < sizeW * sizeof(StgWord) + sizeof(StgCompactNFDataBlock))
        return rtsFalse;

    block = compactAppendBlock(cap, str, next_size);
    ASSERT (str->nursery != NULL);
    return allocate_in_compact(block, sizeW, at);
}

static void
copy_tag (Capability        *cap,
          StgCompactNFData  *str,
          HashTable         *hash,
          StgClosure       **p,
          StgClosure        *from,
          StgWord            tag)
{
    StgPtr to;
    StgWord sizeW;

    sizeW = closure_sizeW(from);

    if (!allocate_loop(cap, str, sizeW, &to)) {
        barf("Failed to copy object in compact, object too large\n");
        return;
    }

    // unroll memcpy for small sizes because we can
    // benefit of known alignment
    // (32 extracted from my magic hat)
    if (sizeW < 32)
        unroll_memcpy(to, (StgPtr)from, sizeW);
    else
        memcpy(to, from, sizeW * sizeof(StgWord));

    if (hash != NULL)
        insertHashTable(hash, (StgWord)from, to);

    *p = TAG_CLOSURE(tag, (StgClosure*)to);
}

STATIC_INLINE rtsBool
object_in_compact (StgCompactNFData *str, StgClosure *p)
{
    bdescr *bd;

    if (!HEAP_ALLOCED(p))
        return rtsFalse;

    bd = Bdescr((P_)p);
    return (bd->flags & BF_COMPACT) != 0 &&
        objectGetCompact(p) == str;
}

static void
simple_evacuate (Capability        *cap,
                 StgCompactNFData  *str,
                 HashTable         *hash,
                 StgClosure       **p)
{
    StgWord tag;
    StgClosure *from;
    void *already;

    from = *p;
    tag = GET_CLOSURE_TAG(from);
    from = UNTAG_CLOSURE(from);

    // If the object referenced is already in this compact
    // (for example by reappending an object that was obtained
    // by compactGetRoot) then do nothing
    if (object_in_compact(str, from))
        return;

    switch (get_itbl(from)->type) {
    case BLACKHOLE:
        // If tag == 0, the indirectee is the TSO that claimed the tag
        //
        // Not useful and not NFData
        from = ((StgInd*)from)->indirectee;
        if (GET_CLOSURE_TAG(from) == 0) {
            debugBelch("Claimed but not updated BLACKHOLE in Compact,"
                       " not normal form");
            return;
        }

        *p = from;
        return simple_evacuate(cap, str, hash, p);

    case IND:
    case IND_STATIC:
        // follow chains of indirections, don't evacuate them
        from = ((StgInd*)from)->indirectee;
        *p = from;
        // Evac.c uses a goto, but let's rely on a smart compiler
        // and get readable code instead
        return simple_evacuate(cap, str, hash, p);

    default:
        // This object was evacuated already, return the existing
        // pointer
        if (hash != NULL &&
            (already = lookupHashTable (hash, (StgWord)from))) {
            *p = TAG_CLOSURE(tag, (StgClosure*)already);
            return;
        }

        copy_tag(cap, str, hash, p, from, tag);
    }
}

static void
simple_scavenge_mut_arr_ptrs (Capability       *cap,
                              StgCompactNFData *str,
                              HashTable        *hash,
                              StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        simple_evacuate(cap, str, hash, (StgClosure**)p);
    }
}

static void
simple_scavenge_block (Capability            *cap,
                       StgCompactNFData      *str,
                       StgCompactNFDataBlock *block,
                       HashTable             *hash,
                       StgPtr                 p)
{
    const StgInfoTable *info;
    bdescr *bd = Bdescr((P_)block);

    while (p < bd->free) {
        ASSERT (LOOKS_LIKE_CLOSURE_PTR(p));
        info = get_itbl((StgClosure*)p);

        switch (info->type) {
        case CONSTR_1_0:
            simple_evacuate(cap, str, hash, &((StgClosure*)p)->payload[0]);
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            simple_evacuate(cap, str, hash, &((StgClosure*)p)->payload[1]);
        case CONSTR_1_1:
            simple_evacuate(cap, str, hash, &((StgClosure*)p)->payload[0]);
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
        case CONSTR_NOCAF_STATIC:
        case CONSTR_STATIC:
        {
            StgPtr end;

            end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
            for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
                simple_evacuate(cap, str, hash, (StgClosure **)p);
            }
            p += info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
            simple_scavenge_mut_arr_ptrs(cap, str, hash, (StgMutArrPtrs*)p);
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN:
        case SMALL_MUT_ARR_PTRS_FROZEN0:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++)
                simple_evacuate(cap, str, hash, &arr->payload[i]);

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case IND:
        case BLACKHOLE:
        case IND_STATIC:
            // They get shortcircuited by simple_evaluate()
            barf("IND/BLACKHOLE in Compact");
            break;

        default:
            barf("Invalid non-NFData closure in Compact\n");
        }
    }
}

static void
scavenge_loop (Capability            *cap,
               StgCompactNFData      *str,
               StgCompactNFDataBlock *first_block,
               HashTable             *hash,
               StgPtr                 p)
{
    // Scavenge the first block
    simple_scavenge_block(cap, str, first_block, hash, p);

    // Note: simple_scavenge_block can change str->last, which
    // changes this check, in addition to iterating through
    while (first_block != str->last) {
        // we can't allocate in blocks that were already scavenged
        // so push the nursery forward
        if (str->nursery == first_block)
            str->nursery = str->nursery->next;

        first_block = first_block->next;
        simple_scavenge_block(cap, str, first_block, hash,
                              (P_)first_block + sizeofW(StgCompactNFDataBlock));
    }
}

#ifdef DEBUG
static rtsBool
objectIsWHNFData (StgClosure *what)
{
    switch (get_itbl(what)->type) {
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_STATIC:
    case CONSTR_NOCAF_STATIC:
    case ARR_WORDS:
    case MUT_ARR_PTRS_FROZEN:
    case MUT_ARR_PTRS_FROZEN0:
    case SMALL_MUT_ARR_PTRS_FROZEN:
    case SMALL_MUT_ARR_PTRS_FROZEN0:
        return rtsTrue;

    case IND:
    case BLACKHOLE:
        return objectIsWHNFData(UNTAG_CLOSURE(((StgInd*)what)->indirectee));

    default:
        return rtsFalse;
    }
}

static rtsBool
verify_mut_arr_ptrs (StgCompactNFData *str,
                     StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        if (!object_in_compact(str, UNTAG_CLOSURE(*(StgClosure**)p)))
            return rtsFalse;
    }

    return rtsTrue;
}

static rtsBool
verify_consistency_block (StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    bdescr *bd;
    StgPtr p;
    const StgInfoTable *info;
    StgClosure *q;

    p = (P_)firstBlockGetCompact(block);
    bd = Bdescr((P_)block);
    while (p < bd->free) {
        q = (StgClosure*)p;

        if (!LOOKS_LIKE_CLOSURE_PTR(q))
            return rtsFalse;

        info = get_itbl(q);
        switch (info->type) {
        case CONSTR_1_0:
            if (!object_in_compact(str, UNTAG_CLOSURE(q->payload[0])))
                return rtsFalse;
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            if (!object_in_compact(str, UNTAG_CLOSURE(q->payload[1])))
                return rtsFalse;
        case CONSTR_1_1:
            if (!object_in_compact(str, UNTAG_CLOSURE(q->payload[0])))
                return rtsFalse;
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
        case CONSTR_STATIC:
        case CONSTR_NOCAF_STATIC:
        {
            uint32_t i;

            for (i = 0; i < info->layout.payload.ptrs; i++)
                if (!object_in_compact(str, UNTAG_CLOSURE(q->payload[i])))
                    return rtsFalse;

            p += sizeofW(StgClosure) + info->layout.payload.ptrs +
                info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
            if (!verify_mut_arr_ptrs(str, (StgMutArrPtrs*)p))
                return rtsFalse;
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN:
        case SMALL_MUT_ARR_PTRS_FROZEN0:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++)
                if (!object_in_compact(str, UNTAG_CLOSURE(arr->payload[i])))
                    return rtsFalse;

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            p += sizeofW(StgCompactNFData);
            break;

        default:
            return rtsFalse;
        }
    }

    return rtsTrue;
}

static rtsBool
verify_consistency_loop (StgCompactNFData *str)
{
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    do {
        if (!verify_consistency_block(str, block))
            return rtsFalse;
        block = block->next;
    } while (block && block->owner);

    return rtsTrue;
}
#endif


StgPtr
compactAppend (Capability       *cap,
               StgCompactNFData *str,
               StgClosure       *what,
               StgWord           share)
{
    StgClosure *root;
    StgClosure *tagged_root;
    HashTable *hash;
    StgCompactNFDataBlock *evaced_block;

    ASSERT(objectIsWHNFData(UNTAG_CLOSURE(what)));

    tagged_root = what;
    simple_evacuate(cap, str, NULL, &tagged_root);

    root = UNTAG_CLOSURE(tagged_root);
    evaced_block = objectGetCompactBlock(root);

    if (share) {
        hash = allocHashTable ();
        insertHashTable(hash, (StgWord)UNTAG_CLOSURE(what), root);
    } else
        hash = NULL;

    scavenge_loop(cap, str, evaced_block, hash, (P_)root);

    if (share)
        freeHashTable(hash, NULL);

    ASSERT(verify_consistency_loop(str));

    return (StgPtr)tagged_root;
}

StgWord
compactContains (StgCompactNFData *str, StgPtr what)
{
    bdescr *bd;

    // This check is the reason why this needs to be
    // implemented in C instead of (possibly faster) Cmm
    if (!HEAP_ALLOCED (what))
        return 0;

    // Note that we don't care about tags, they are eaten
    // away by the Bdescr operation anyway
    bd = Bdescr((P_)what);
    return (bd->flags & BF_COMPACT) != 0 &&
        (str == NULL || objectGetCompact((StgClosure*)what) == str);
}

StgCompactNFDataBlock *
compactAllocateBlock(Capability            *cap,
                     StgWord                size,
                     StgCompactNFDataBlock *previous)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size);

    // We do not link the new object into the generation ever
    // - we cannot let the GC know about this object until we're done
    // importing it and we have fixed up all info tables and stuff
    //
    // but we do update n_compact_blocks, otherwise memInventory()
    // in Sanity will think we have a memory leak, because it compares
    // the blocks he knows about with the blocks obtained by the
    // block allocator
    // (if by chance a memory leak does happen due to a bug somewhere
    // else, memInventory will also report that all compact blocks
    // associated with this compact are leaked - but they are not really,
    // we have a pointer to them and we're not losing track of it, it's
    // just we can't use the GC until we're done with the import)
    //
    // (That btw means that the high level import code must be careful
    // not to lose the pointer, so don't use the primops directly
    // unless you know what you're doing!)

    // Other trickery: we pass NULL as first, which means our blocks
    // are always in generation 0
    // This is correct because the GC has never seen the blocks so
    // it had no chance of promoting them

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         previous != NULL ? ALLOCATE_IMPORT_APPEND : ALLOCATE_IMPORT_NEW);
    if (previous != NULL)
        previous->next = block;

    bd = Bdescr((P_)block);
    bd->free = (P_)((W_)bd->start + size);

    return block;
}

STATIC_INLINE rtsBool
any_needs_fixup(StgCompactNFDataBlock *block)
{
    // ->next pointers are always valid, even if some blocks were
    // not allocated where we want them, because compactAllocateAt()
    // will take care to adjust them

    do {
        if (block->self != block)
            return rtsTrue;
        block = block->next;
    } while (block && block->owner);

    return rtsFalse;
}

#ifdef DEBUG
static void
spew_failing_pointer(StgWord *fixup_table, uint32_t count, StgWord address)
{
    uint32_t i;
    StgWord key, value;
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord size;

970
    debugBelch("Failed to adjust 0x%" FMT_HexWord ". Block dump follows...\n",
gcampax's avatar
gcampax committed
971 972 973 974 975 976 977 978 979 980
               address);

    for (i  = 0; i < count; i++) {
        key = fixup_table [2 * i];
        value = fixup_table [2 * i + 1];

        block = (StgCompactNFDataBlock*)value;
        bd = Bdescr((P_)block);
        size = (W_)bd->free - (W_)bd->start;

981 982 983
        debugBelch("%" FMT_Word32 ": was 0x%" FMT_HexWord "-0x%" FMT_HexWord
                   ", now 0x%" FMT_HexWord "-0x%" FMT_HexWord "\n", i, key,
                   key+size, value, value+size);
gcampax's avatar
gcampax committed
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    }
}
#endif

STATIC_INLINE StgCompactNFDataBlock *
find_pointer(StgWord *fixup_table, uint32_t count, StgClosure *q)
{
    StgWord address = (W_)q;
    uint32_t a, b, c;
    StgWord key, value;
    bdescr *bd;

    a = 0;
    b = count;
    while (a < b-1) {
        c = (a+b)/2;

        key = fixup_table[c * 2];
        value = fixup_table[c * 2 + 1];

        if (key > address)
            b = c;
        else
            a = c;
    }

    // three cases here: 0, 1 or 2 blocks to check
    for ( ; a < b; a++) {
        key = fixup_table[a * 2];
        value = fixup_table[a * 2 + 1];

        if (key > address)
            goto fail;

        bd = Bdescr((P_)value);

        if (key + bd->blocks * BLOCK_SIZE <= address)
            goto fail;

        return (StgCompactNFDataBlock*)value;
    }

 fail:
    // We should never get here

#ifdef DEBUG
    spew_failing_pointer(fixup_table, count, address);
#endif
    return NULL;
}

static rtsBool
fixup_one_pointer(StgWord *fixup_table, uint32_t count, StgClosure **p)
{
    StgWord tag;
    StgClosure *q;
    StgCompactNFDataBlock *block;

    q = *p;
    tag = GET_CLOSURE_TAG(q);
    q = UNTAG_CLOSURE(q);

    block = find_pointer(fixup_table, count, q);
    if (block == NULL)
        return rtsFalse;
    if (block == block->self)
        return rtsTrue;

    q = (StgClosure*)((W_)q - (W_)block->self + (W_)block);
    *p = TAG_CLOSURE(tag, q);

    return rtsTrue;
}

static rtsBool
fixup_mut_arr_ptrs (StgWord          *fixup_table,
                    uint32_t               count,
                    StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        if (!fixup_one_pointer(fixup_table, count, (StgClosure**)p))
            return rtsFalse;
    }

    return rtsTrue;
}

static rtsBool
fixup_block(StgCompactNFDataBlock *block, StgWord *fixup_table, uint32_t count)
{
    const StgInfoTable *info;
    bdescr *bd;
    StgPtr p;

    bd = Bdescr((P_)block);
    p = bd->start + sizeofW(StgCompactNFDataBlock);
    while (p < bd->free) {
        ASSERT (LOOKS_LIKE_CLOSURE_PTR(p));
        info = get_itbl((StgClosure*)p);

        switch (info->type) {
        case CONSTR_1_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
                return rtsFalse;
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[1]))
                return rtsFalse;
        case CONSTR_1_1:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
                return rtsFalse;
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
        case CONSTR_STATIC:
        case CONSTR_NOCAF_STATIC:
        {
            StgPtr end;

            end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
            for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
                if (!fixup_one_pointer(fixup_table, count, (StgClosure **)p))
                    return rtsFalse;
            }
            p += info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
            fixup_mut_arr_ptrs(fixup_table, count, (StgMutArrPtrs*)p);
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN:
        case SMALL_MUT_ARR_PTRS_FROZEN0:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++) {
                if (!fixup_one_pointer(fixup_table, count,
                                       &arr->payload[i]))
                    return rtsFalse;
            }

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            if (p == (bd->start + sizeofW(StgCompactNFDataBlock))) {
                // Ignore the COMPACT_NFDATA header
                // (it will be fixed up later)
                p += sizeofW(StgCompactNFData);
                break;
            }

            // fall through

        default:
            debugBelch("Invalid non-NFData closure (type %d) in Compact\n",
                       info->type);
            return rtsFalse;
        }
    }

    return rtsTrue;
}

static int
cmp_fixup_table_item (const void *e1, const void *e2)
{
    const StgWord *w1 = e1;
    const StgWord *w2 = e2;

    return *w1 - *w2;
}

static StgWord *
build_fixup_table (StgCompactNFDataBlock *block, uint32_t *pcount)
{
    uint32_t count;
    StgCompactNFDataBlock *tmp;
    StgWord *table;

    count = 0;
    tmp = block;
    do {
        count++;
        tmp = tmp->next;
    } while(tmp && tmp->owner);

    table = stgMallocBytes(sizeof(StgWord) * 2 * count, "build_fixup_table");

    count = 0;
    do {
        table[count * 2] = (W_)block->self;
        table[count * 2 + 1] = (W_)block;
        count++;
        block = block->next;
    } while(block && block->owner);

    qsort(table, count, sizeof(StgWord) * 2, cmp_fixup_table_item);

    *pcount = count;
    return table;
}

static rtsBool
fixup_loop(StgCompactNFDataBlock *block, StgClosure **proot)
{
    StgWord *table;
    rtsBool ok;
    uint32_t count;

    table = build_fixup_table (block, &count);

    do {
        if (!fixup_block(block, table, count)) {
            ok = rtsFalse;
            goto out;
        }

        block = block->next;
    } while(block && block->owner);

    ok = fixup_one_pointer(table, count, proot);

 out:
    stgFree(table);
    return ok;
}

static void
fixup_early(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *last;

    do {
        last = block;
        block = block->next;
    } while(block);

    str->last = last;
}

static void
fixup_late(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *nursery;
    bdescr *bd;
    StgWord totalW;
    StgWord totalDataW;

    nursery = block;
    totalW = 0;
    totalDataW = 0;
    do {
        block->self = block;

        bd = Bdescr((P_)block);
        totalW += bd->blocks * BLOCK_SIZE_W;

        if (block->owner != NULL) {
            if (bd->free != bd->start)
                nursery = block;
            block->owner = str;
            totalDataW += bd->blocks * BLOCK_SIZE_W;
        }

        block = block->next;
    } while(block);

    str->nursery = nursery;
    str->totalW = totalW;
    str->totalDataW = totalDataW;
}

static StgClosure *
maybe_fixup_internal_pointers (StgCompactNFDataBlock *block,
                               StgClosure            *root)
{
    rtsBool ok;
    StgClosure **proot;

    // Check for fast path
    if (!any_needs_fixup(block))
        return root;

    debugBelch("Compact imported at the wrong address, will fix up"
               " internal pointers\n");

    // I am PROOT!
    proot = &root;

    ok = fixup_loop(block, proot);
    if (!ok)
        *proot = NULL;

    return *proot;
}

StgPtr
compactFixupPointers(StgCompactNFData *str,
                     StgClosure       *root)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord total_blocks;

    block = compactGetFirstBlock(str);

    fixup_early(str, block);

    root = maybe_fixup_internal_pointers(block, root);

    // Do the late fixup even if we did not fixup all
    // internal pointers, we need that for GC and Sanity
    fixup_late(str, block);

    // Now we're ready to let the GC, Sanity, the profiler
    // etc. know about this object
    bd = Bdescr((P_)block);

    total_blocks = str->totalW / BLOCK_SIZE_W;

    ACQUIRE_SM_LOCK;
    ASSERT (bd->gen == g0);
    ASSERT (g0->n_compact_blocks_in_import >= total_blocks);
    g0->n_compact_blocks_in_import -= total_blocks;
    g0->n_compact_blocks += total_blocks;
    dbl_link_remove(bd, &g0->compact_blocks_in_import);
    dbl_link_onto(bd, &g0->compact_objects);
    RELEASE_SM_LOCK;

#if DEBUG
    if (root)
        verify_consistency_loop(str);
#endif

    return (StgPtr)root;
}