DsBinds.hs 53.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TysPrim ( mkProxyPrimTy )
43
import TyCon
44
import TcEvidence
45
import TcType
46
import Type
47
import Kind( isKind )
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, mkListTy
50 51
                  , mkBoxedTupleTy, charTy
                  , typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
52
import Id
53
import MkId(proxyHashId)
54
import Class
55
import DataCon  ( dataConTyCon )
56
import Name
57
import IdInfo   ( IdDetails(..) )
58
import Var
59
import VarSet
Simon Marlow's avatar
Simon Marlow committed
60
import Rules
61
import VarEnv
62
import Outputable
63
import Module
Simon Marlow's avatar
Simon Marlow committed
64 65
import SrcLoc
import Maybes
66
import OrdList
Simon Marlow's avatar
Simon Marlow committed
67 68
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
69
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
70
import FastString
71
import Util
72
import MonadUtils
73
import Control.Monad(liftM,when,foldM)
74

75
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
76
*                                                                      *
77
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
78
*                                                                      *
79
**********************************************************************-}
80

81 82
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
83
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
84
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
85

86 87 88 89 90 91
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
92 93

------------------------
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
120 121
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
122
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
123
                   | otherwise         = var
124 125 126 127 128 129 130 131
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
              force_var = if xopt Opt_Strict dflags
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
132
                  , fun_co_fn = co_fn, fun_tick = tick })
133
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
134
        ; let body' = mkOptTickBox tick body
135
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
136 137 138 139 140 141
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
                if xopt Opt_Strict dflags
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
142
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
143
           return (force_var, [core_binds]) }
144

145 146
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
147
                  , pat_ticks = (rhs_tick, var_ticks) })
148
  = do  { body_expr <- dsGuarded grhss ty
149
        ; let body' = mkOptTickBox rhs_tick body_expr
150 151 152
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
153 154
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
155 156 157 158
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
159

160
        -- A common case: one exported variable, only non-strict binds
161 162 163
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
164 165
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
166 167
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
168 169
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
170 171
  , not (xopt Opt_Strict dflags)                 -- handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
172 173 174
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (_, bind_prs) <- ds_lhs_binds binds
175
        ; let core_bind = Rec bind_prs
176
        ; ds_binds <- dsTcEvBinds_s ev_binds
177
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
178 179 180 181
                 mkLams tyvars $ mkLams dicts $
                 mkCoreLets ds_binds $
                 Let core_bind $
                 Var local
182

183 184 185 186 187 188
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

189
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
190

191 192
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
193 194
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
195
         -- See Note [Desugaring AbsBinds]
196 197 198
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
199
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
200
                              | (lcl_id, rhs) <- bind_prs ]
201
                -- Monomorphic recursion possible, hence Rec
202
              new_force_vars = get_new_force_vars local_force_vars
203
              locals       = map abe_mono exports
204 205
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
206
              tup_ty       = exprType tup_expr
207
        ; ds_binds <- dsTcEvBinds_s ev_binds
208 209 210 211
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
212

213
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
214

215 216 217 218 219
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

220
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
221
                           , abe_mono = local, abe_prags = spec_prags })
222 223
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
224
                                 mkLams tyvars $ mkLams dicts $
225
                                 mkTupleSelector all_locals local tup_id $
226
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
227
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
228 229
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
230 231 232
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
233
                           -- Id is just the selector.  Hmm.
234
                     ; return ((global', rhs) : fromOL spec_binds) }
235

236
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
237

238 239 240
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
241 242 243 244 245 246 247 248 249 250 251
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
287

288
------------------------
289 290
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
291
  | is_default_method                 -- Default methods are *always* inlined
292 293
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

294
  | DFunId is_newtype <- idDetails gbl_id
295 296
  = (mk_dfun_w_stuff is_newtype, rhs)

297 298
  | otherwise
  = case inlinePragmaSpec inline_prag of
299 300 301
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
302
          Inline          -> inline_pair
303

304 305
  where
    inline_prag   = idInlinePragma gbl_id
306
    inlinable_unf = mkInlinableUnfolding dflags rhs
307 308
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
309 310
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
311
       , let real_arity = dict_arity + arity
312
        -- NB: The arity in the InlineRule takes account of the dictionaries
313 314 315 316 317 318
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
319

320 321 322
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
323
       | is_newtype
324 325 326 327 328 329 330 331 332 333 334 335
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

336 337 338 339

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
340

Austin Seipp's avatar
Austin Seipp committed
341
{-
342 343
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
344 345 346 347 348 349 350 351
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

352 353 354 355 356
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
357 358
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
359
But we don't want that, because if M.f isn't exported,
360 361
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
362 363 364
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
365 366 367
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
368 369 370 371
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
372
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
373
Although I'm a bit worried about whether full laziness might
374
float the f_lcl binding out and then inline M.f at its call site
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

390
The top-level AbsBinds for $cround has no tyvars or dicts (because the
391 392 393 394 395 396 397
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

398 399 400 401 402
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
403 404 405

and desugar it to

406 407 408
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
409 410

where B is the *non-recursive* binding
411 412 413
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
414 415

Notice (a) g has a different number of type variables to f, so we must
416 417
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
418

419 420 421 422
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
423

424 425 426 427
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
428 429

Why got to this trouble?  It's a common case, and it removes the
430
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
431 432 433 434
compilation, especially in a case where there are a *lot* of
bindings.


435 436 437 438 439 440 441 442
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
443
happen as a result of method sharing), there's a danger that we never
444 445 446 447
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
448
has the arity with which it is declared in the source code.  In this
449
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
450
should mean that (foo d) is a PAP and we don't share it.
451 452 453

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
454 455 456 457 458 459 460 461 462 463 464 465 466 467
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
524
The simplest thing is to return it in the polymorphic
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
542
-}
543

544
------------------------
545
dsSpecs :: CoreExpr     -- Its rhs
546
        -> TcSpecPrags
547 548
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
549
-- See Note [Handling SPECIALISE pragmas] in TcBinds
550 551 552 553 554 555
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

556 557 558
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
559 560 561
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
562
  | isJust (isClassOpId_maybe poly_id)
563 564
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
565 566
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
567 568
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
569

570 571
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
572 573 574
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
575
                            -- See Note [Activation pragmas for SPECIALISE]
576

577
  | otherwise
578
  = putSrcSpanDs loc $
579 580
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
581 582
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
583 584 585
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
586 587 588 589
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
590
           Left msg -> do { warnDs msg; return Nothing } ;
591
           Right (rule_bndrs, _fn, args) -> do
592

593
       { dflags <- getDynFlags
594
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
595 596 597 598
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
599 600 601
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
602
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
603
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
604 605 606
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
607

608
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
609

610 611 612 613
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
614 615 616 617 618

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
619 620 621 622
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
623
             = rhs          -- Local Id; this is its rhs
624 625
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
626 627 628
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
629
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
630
                            -- The type checker has checked that it *has* an unfolding
631

632 633 634 635 636
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
637
                                 -- in OccurAnal
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


655 656 657 658 659 660 661 662 663 664 665
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
666

667 668 669 670 671 672 673 674 675 676 677 678 679
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

680 681 682 683 684 685 686 687
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

688
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
710
SPEC [n] f :: ty            [n]   INLINE [k]
711 712 713 714 715 716 717 718 719 720
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
721 722
************************************************************************
*                                                                      *
723
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
724 725 726
*                                                                      *
************************************************************************
-}
727

728
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
729 730
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
731
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
732
--
733
-- Returns Nothing if the LHS isn't of the expected shape
734 735 736 737 738 739
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

740 741
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
742 743 744
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
745 746
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
747
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
748
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
749

750
  | otherwise
751
  = Left bad_shape_msg
752
 where
753 754 755 756
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

757 758
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
759

760
   orig_bndr_set = mkVarSet orig_bndrs
761

762
        -- Add extra dict binders: Note [Free dictionaries]
763 764 765 766 767 768 769 770 771 772 773 774
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
775 776

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
777 778
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
779
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
780
                             , ptext (sLit "is not bound in RULE lhs")])
781 782 783
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
784
   pp_bndr bndr
785 786 787
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
788 789

   drop_dicts :: CoreExpr -> CoreExpr
790
   drop_dicts e
791 792 793
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
794
       (bnds, body) = split_lets (occurAnalyseExpr e)
795
           -- The occurAnalyseExpr drops dead bindings which is
796 797
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
816

Austin Seipp's avatar
Austin Seipp committed
817
{-
818
Note [Decomposing the left-hand side of a RULE]
819
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
820
There are several things going on here.
821 822
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
823
* extra_dict_bndrs: see Note [Free dictionaries]
824 825 826

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
827
drop_dicts drops dictionary bindings on the LHS where possible.
828 829
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
830
   Reasoning here is that there is only one d:Eq [Int], and so we can
831 832 833 834
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
835
         one of the orig_bndrs, which we assume occur on RHS.
836 837 838 839 840 841
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
842
         to match, but there is no other way to get d:Eq a
843

844
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
845 846 847 848 849 850
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
851
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
852 853 854 855 856 857
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
858
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
859 860
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

861 862 863
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

864 865 866 867 868 869 870 871 872 873
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
874
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
875 876 877 878 879 880
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


881 882 883 884
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

885
   (a) Inline any remaining dictionary bindings (which hopefully
886 887 888
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
889
       Note that we substitute the function too; we might
890 891
       have this as a LHS:  let f71 = M.f Int in f71

892
   (c) Do eta reduction.  To see why, consider the fold/build rule,
893 894 895 896
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
897
         augment g (build h)
898
       we do not want to get
899
         augment (\a. g a) (build h)
900 901
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
902

903
Note [Matching seqId]
904 905
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
906
and this code turns it back into an application of seq!
907 908
See Note [Rules for seq] in MkId for the details.

909 910 911
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
912
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
913
        ... SPECIALISE f :: Eq a => a -> a ...
914 915
It's true that this *is* a more specialised type, but the rule
we get is something like this:
916 917
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
918 919
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
920 921 922 923
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

924 925
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
926 927
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
928 929 930
over it too.  *Any* dict with that type will do.

So for example when you have
931 932
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
933
        ... SPECIALISE f :: Int -> Int ...
934 935

Then we get the SpecPrag
936
        SpecPrag (f Int dInt)
937 938

And from that we want the rule
939 940 941

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
942 943 944 945 946 947 948

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

949

Austin Seipp's avatar
Austin Seipp committed
950 951
************************************************************************
*                                                                      *
952
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
953 954
*                                                                      *
************************************************************************
955

Austin Seipp's avatar
Austin Seipp committed
956
-}
957

958
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
959
dsHsWrapper WpHole            e = return e
960 961 962
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
963 964 965 966
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
967
                                      ; e2 <- dsHsWrapper c2 (mkCoreAppDs (text "dsHsWrapper") e e1)
968
                                      ; return (Lam x e2) }
969
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
970
                                  dsTcCoercion co (mkCastDs e)
971 972
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
973
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
974 975

--------------------------------------
976 977 978 979