TcBinds.hs 84.6 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5
\section[TcBinds]{TcBinds}
Austin Seipp's avatar
Austin Seipp committed
6
-}
7

8 9
{-# LANGUAGE CPP, RankNTypes, ScopedTypeVariables #-}

10
module TcBinds ( tcLocalBinds, tcTopBinds, tcRecSelBinds,
11
                 tcValBinds, tcHsBootSigs, tcPolyCheck,
12
                 tcSpecPrags, tcSpecWrapper,
13
                 tcVectDecls, addTypecheckedBinds,
14 15
                 TcSigInfo(..), TcSigFun,
                 TcPragEnv, mkPragEnv,
16 17
                 tcUserTypeSig, instTcTySig, chooseInferredQuantifiers,
                 instTcTySigFromId, tcExtendTyVarEnvFromSig,
18
                 badBootDeclErr, mkExport ) where
19

20
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
21
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
22
import {-# SOURCE #-} TcPatSyn ( tcInferPatSynDecl, tcCheckPatSynDecl, tcPatSynBuilderBind )
Simon Marlow's avatar
Simon Marlow committed
23 24
import DynFlags
import HsSyn
25
import HscTypes( isHsBootOrSig )
26
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
27 28 29
import TcEnv
import TcUnify
import TcSimplify
30
import TcEvidence
Simon Marlow's avatar
Simon Marlow committed
31 32 33
import TcHsType
import TcPat
import TcMType
cactus's avatar
cactus committed
34
import ConLike
35
import Inst( deeplyInstantiate )
36 37
import FamInstEnv( normaliseType )
import FamInst( tcGetFamInstEnvs )
38
import TyCon
Simon Marlow's avatar
Simon Marlow committed
39 40
import TcType
import TysPrim
41
import TysWiredIn
Simon Marlow's avatar
Simon Marlow committed
42
import Id
43
import Var
44
import VarSet
45
import VarEnv( TidyEnv )
46
import Module
Simon Marlow's avatar
Simon Marlow committed
47
import Name
48
import NameSet
49
import NameEnv
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
52
import ListSetOps
Simon Marlow's avatar
Simon Marlow committed
53 54 55 56 57
import ErrUtils
import Digraph
import Maybes
import Util
import BasicTypes
58
import Outputable
59
import FastString
60
import Type(mkStrLitTy, tidyOpenType)
61
import PrelNames( mkUnboundName, gHC_PRIM )
62
import TcValidity (checkValidType)
63 64

import Control.Monad
65
import Data.List (partition)
66 67

#include "HsVersions.h"
68

69 70 71 72 73 74 75 76
{- *********************************************************************
*                                                                      *
               A useful helper function
*                                                                      *
********************************************************************* -}

addTypecheckedBinds :: TcGblEnv -> [LHsBinds Id] -> TcGblEnv
addTypecheckedBinds tcg_env binds
77
  | isHsBootOrSig (tcg_src tcg_env) = tcg_env
78 79 80 81 82 83
    -- Do not add the code for record-selector bindings
    -- when compiling hs-boot files
  | otherwise = tcg_env { tcg_binds = foldr unionBags
                                            (tcg_binds tcg_env)
                                            binds }

Austin Seipp's avatar
Austin Seipp committed
84 85 86
{-
************************************************************************
*                                                                      *
87
\subsection{Type-checking bindings}
Austin Seipp's avatar
Austin Seipp committed
88 89
*                                                                      *
************************************************************************
90

91
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
92 93 94 95 96 97 98 99 100 101
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

102
The real work is done by @tcBindWithSigsAndThen@.
103 104 105 106 107 108 109 110 111 112

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

113 114 115
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

116 117
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
118
The game plan for polymorphic recursion in the code above is
119 120

        * Bind any variable for which we have a type signature
121
          to an Id with a polymorphic type.  Then when type-checking
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
          the RHSs we'll make a full polymorphic call.

This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:

        f :: Eq a => [a] -> [a]
        f xs = ...f...

If we don't take care, after typechecking we get

        f = /\a -> \d::Eq a -> let f' = f a d
                               in
                               \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

        ff :: [Int] -> [Int]
        ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

        ff = f Int dEqInt

           = let f' = f Int dEqInt in \ys. ...f'...

           = let f' = let f' = f Int dEqInt in \ys. ...f'...
                      in \ys. ...f'...

Etc.

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.

Then we get

        f = /\a -> \d::Eq a -> letrec
                                 fm = \ys:[a] -> ...fm...
                               in
                               fm
Austin Seipp's avatar
Austin Seipp committed
174
-}
175

176 177 178 179
tcTopBinds :: HsValBinds Name -> TcM (TcGblEnv, TcLclEnv)
-- The TcGblEnv contains the new tcg_binds and tcg_spects
-- The TcLclEnv has an extended type envt for the new bindings
tcTopBinds (ValBindsOut binds sigs)
cactus's avatar
cactus committed
180 181 182 183 184
  = do  { -- Pattern synonym bindings populate the global environment
          (binds', (tcg_env, tcl_env)) <- tcValBinds TopLevel binds sigs $
            do { gbl <- getGblEnv
               ; lcl <- getLclEnv
               ; return (gbl, lcl) }
185 186
        ; specs <- tcImpPrags sigs   -- SPECIALISE prags for imported Ids

187 188
        ; let { tcg_env' = tcg_env { tcg_imp_specs = specs ++ tcg_imp_specs tcg_env }
                           `addTypecheckedBinds` map snd binds' }
189 190

        ; return (tcg_env', tcl_env) }
191
        -- The top level bindings are flattened into a giant
Ian Lynagh's avatar
Ian Lynagh committed
192
        -- implicitly-mutually-recursive LHsBinds
cactus's avatar
cactus committed
193

194 195 196 197
tcTopBinds (ValBindsIn {}) = panic "tcTopBinds"

tcRecSelBinds :: HsValBinds Name -> TcM TcGblEnv
tcRecSelBinds (ValBindsOut binds sigs)
198
  = tcExtendGlobalValEnv [sel_id | L _ (IdSig sel_id) <- sigs] $
199 200 201
    do { (rec_sel_binds, tcg_env) <- discardWarnings $
                                     tcValBinds TopLevel binds sigs getGblEnv
       ; let tcg_env' = tcg_env `addTypecheckedBinds` map snd rec_sel_binds
202 203
       ; return tcg_env' }
tcRecSelBinds (ValBindsIn {}) = panic "tcRecSelBinds"
204

205
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
206 207
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
208
tcHsBootSigs (ValBindsOut binds sigs)
Ian Lynagh's avatar
Ian Lynagh committed
209
  = do  { checkTc (null binds) badBootDeclErr
210
        ; concat <$> mapM (addLocM tc_boot_sig) (filter isTypeLSig sigs) }
211
  where
212
    tc_boot_sig (TypeSig lnames hs_ty) = mapM f lnames
213
      where
214
        f (L _ name)
215
          = do { sigma_ty <- tcHsSigWcType (FunSigCtxt name False) hs_ty
216
               ; return (mkVanillaGlobal name sigma_ty) }
Ian Lynagh's avatar
Ian Lynagh committed
217
        -- Notice that we make GlobalIds, not LocalIds
Ian Lynagh's avatar
Ian Lynagh committed
218
    tc_boot_sig s = pprPanic "tcHsBootSigs/tc_boot_sig" (ppr s)
219
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
220

221
badBootDeclErr :: MsgDoc
Ian Lynagh's avatar
Ian Lynagh committed
222
badBootDeclErr = ptext (sLit "Illegal declarations in an hs-boot file")
223

224 225
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
Ian Lynagh's avatar
Ian Lynagh committed
226
             -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
227

228
tcLocalBinds EmptyLocalBinds thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
229 230
  = do  { thing <- thing_inside
        ; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
231

232 233 234 235
tcLocalBinds (HsValBinds (ValBindsOut binds sigs)) thing_inside
  = do  { (binds', thing) <- tcValBinds NotTopLevel binds sigs thing_inside
        ; return (HsValBinds (ValBindsOut binds' sigs), thing) }
tcLocalBinds (HsValBinds (ValBindsIn {})) _ = panic "tcLocalBinds"
236

237
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
238
  = do  { (given_ips, ip_binds') <-
239
            mapAndUnzipM (wrapLocSndM (tc_ip_bind ipClass)) ip_binds
240

241
        -- If the binding binds ?x = E, we  must now
Ian Lynagh's avatar
Ian Lynagh committed
242
        -- discharge any ?x constraints in expr_lie
243
        -- See Note [Implicit parameter untouchables]
244
        ; (ev_binds, result) <- checkConstraints (IPSkol ips)
245
                                  [] given_ips thing_inside
246 247

        ; return (HsIPBinds (IPBinds ip_binds' ev_binds), result) }
248
  where
Alan Zimmerman's avatar
Alan Zimmerman committed
249
    ips = [ip | L _ (IPBind (Left (L _ ip)) _) <- ip_binds]
250

Ian Lynagh's avatar
Ian Lynagh committed
251 252 253
        -- I wonder if we should do these one at at time
        -- Consider     ?x = 4
        --              ?y = ?x + 1
Alan Zimmerman's avatar
Alan Zimmerman committed
254
    tc_ip_bind ipClass (IPBind (Left (L _ ip)) expr)
255
       = do { ty <- newFlexiTyVarTy openTypeKind
256 257
            ; let p = mkStrLitTy $ hsIPNameFS ip
            ; ip_id <- newDict ipClass [ p, ty ]
258
            ; expr' <- tcMonoExpr expr ty
259 260 261 262 263 264
            ; let d = toDict ipClass p ty `fmap` expr'
            ; return (ip_id, (IPBind (Right ip_id) d)) }
    tc_ip_bind _ (IPBind (Right {}) _) = panic "tc_ip_bind"

    -- Coerces a `t` into a dictionry for `IP "x" t`.
    -- co : t -> IP "x" t
265
    toDict ipClass x ty = HsWrap $ mkWpCastR $ TcCoercion $
266
                          wrapIP $ mkClassPred ipClass [x,ty]
267

Austin Seipp's avatar
Austin Seipp committed
268
{-
269 270 271 272 273 274 275
Note [Implicit parameter untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We add the type variables in the types of the implicit parameters
as untouchables, not so much because we really must not unify them,
but rather because we otherwise end up with constraints like this
    Num alpha, Implic { wanted = alpha ~ Int }
The constraint solver solves alpha~Int by unification, but then
276
doesn't float that solved constraint out (it's not an unsolved
277
wanted).  Result disaster: the (Num alpha) is again solved, this
278 279
time by defaulting.  No no no.

280
However [Oct 10] this is all handled automatically by the
281 282
untouchable-range idea.

283 284 285 286 287 288 289 290 291 292 293 294
Note [Placeholder PatSyn kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (Trac #9161)

  {-# LANGUAGE PatternSynonyms, DataKinds #-}
  pattern A = ()
  b :: A
  b = undefined

Here, the type signature for b mentions A.  But A is a pattern
synonym, which is typechecked (for very good reasons; a view pattern
in the RHS may mention a value binding) as part of a group of
Gabor Greif's avatar
Gabor Greif committed
295
bindings.  It is entirely reasonable to reject this, but to do so
296 297 298 299 300 301 302 303 304
we need A to be in the kind environment when kind-checking the signature for B.

Hence the tcExtendKindEnv2 patsyn_placeholder_kinds, which adds a binding
    A -> AGlobal (AConLike (PatSynCon _|_))
to the environment. Then TcHsType.tcTyVar will find A in the kind environment,
and will give a 'wrongThingErr' as a result.  But the lookup of A won't fail.

The _|_ (= panic "fakePatSynCon") works because the wrongThingErr call, in
tcTyVar, doesn't look inside the TcTyThing.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

Note [Inlining and hs-boot files]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this example (Trac #10083):

    ---------- RSR.hs-boot ------------
    module RSR where
      data RSR
      eqRSR :: RSR -> RSR -> Bool

    ---------- SR.hs ------------
    module SR where
      import {-# SOURCE #-} RSR
      data SR = MkSR RSR
      eqSR (MkSR r1) (MkSR r2) = eqRSR r1 r2

    ---------- RSR.hs ------------
    module RSR where
      import SR
      data RSR = MkRSR SR -- deriving( Eq )
      eqRSR (MkRSR s1) (MkRSR s2) = (eqSR s1 s2)
      foo x y = not (eqRSR x y)

When compiling RSR we get this code

    RSR.eqRSR :: RSR -> RSR -> Bool
    RSR.eqRSR = \ (ds1 :: RSR.RSR) (ds2 :: RSR.RSR) ->
                case ds1 of _ { RSR.MkRSR s1 ->
                case ds2 of _ { RSR.MkRSR s2 ->
                SR.eqSR s1 s2 }}

    RSR.foo :: RSR -> RSR -> Bool
    RSR.foo = \ (x :: RSR) (y :: RSR) -> not (RSR.eqRSR x y)

Now, when optimising foo:
    Inline eqRSR (small, non-rec)
    Inline eqSR  (small, non-rec)
but the result of inlining eqSR from SR is another call to eqRSR, so
everything repeats.  Neither eqSR nor eqRSR are (apparently) loop
breakers.

Solution: when compiling RSR, add a NOINLINE pragma to every function
exported by the boot-file for RSR (if it exists).

ALAS: doing so makes the boostrappted GHC itself slower by 8% overall
      (on Trac #9872a-d, and T1969.  So I un-did this change, and
      parked it for now.  Sigh.
Austin Seipp's avatar
Austin Seipp committed
352
-}
353

354
tcValBinds :: TopLevelFlag
355 356
           -> [(RecFlag, LHsBinds Name)] -> [LSig Name]
           -> TcM thing
357
           -> TcM ([(RecFlag, LHsBinds TcId)], thing)
358

359
tcValBinds top_lvl binds sigs thing_inside
360
  = do  {  -- Typecheck the signature
361
        ; (poly_ids, sig_fn) <- tcExtendKindEnv2 patsyn_placeholder_kinds $
thomasw's avatar
thomasw committed
362
                                         -- See Note [Placeholder PatSyn kinds]
363
                                tcTySigs sigs
Ian Lynagh's avatar
Ian Lynagh committed
364

365 366 367 368 369 370 371 372 373 374 375 376 377
        ; _self_boot <- tcSelfBootInfo
        ; let prag_fn = mkPragEnv sigs (foldr (unionBags . snd) emptyBag binds)

-- -------  See Note [Inlining and hs-boot files] (change parked) --------
--              prag_fn | isTopLevel top_lvl   -- See Note [Inlining and hs-boot files]
--                      , SelfBoot { sb_ids = boot_id_names } <- self_boot
--                      = foldNameSet add_no_inl prag_fn1 boot_id_names
--                      | otherwise
--                      = prag_fn1
--              add_no_inl boot_id_name prag_fn
--                = extendPragEnv prag_fn (boot_id_name, no_inl_sig boot_id_name)
--              no_inl_sig name = L boot_loc (InlineSig (L boot_loc name) neverInlinePragma)
--              boot_loc = mkGeneralSrcSpan (fsLit "The hs-boot file for this module")
Ian Lynagh's avatar
Ian Lynagh committed
378

379 380 381 382 383
                -- Extend the envt right away with all the Ids
                -- declared with complete type signatures
                -- Do not extend the TcIdBinderStack; instead
                -- we extend it on a per-rhs basis in tcExtendForRhs
        ; tcExtendLetEnvIds top_lvl [(idName id, id) | id <- poly_ids] $ do
384 385
            { (binds', (extra_binds', thing)) <- tcBindGroups top_lvl sig_fn prag_fn binds $ do
                   { thing <- thing_inside
386 387 388
                     -- See Note [Pattern synonym builders don't yield dependencies]
                   ; patsyn_builders <- mapM tcPatSynBuilderBind patsyns
                   ; let extra_binds = [ (NonRecursive, builder) | builder <- patsyn_builders ]
389 390
                   ; return (extra_binds, thing) }
             ; return (binds' ++ extra_binds', thing) }}
391
  where
392
    patsyns = [psb | (_, lbinds) <- binds, L _ (PatSynBind psb) <- bagToList lbinds]
393
    patsyn_placeholder_kinds -- See Note [Placeholder PatSyn kinds]
394
      = [(name, placeholder_patsyn_tything)| PSB{ psb_id = L _ name } <- patsyns ]
395
    placeholder_patsyn_tything
396
      = AGlobal $ AConLike $ PatSynCon $ panic "fakePatSynCon"
397

398
------------------------
399
tcBindGroups :: TopLevelFlag -> TcSigFun -> TcPragEnv
Ian Lynagh's avatar
Ian Lynagh committed
400 401
             -> [(RecFlag, LHsBinds Name)] -> TcM thing
             -> TcM ([(RecFlag, LHsBinds TcId)], thing)
402 403
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time
404
-- Here a "strongly connected component" has the strightforward
405
-- meaning of a group of bindings that mention each other,
406
-- ignoring type signatures (that part comes later)
407

408
tcBindGroups _ _ _ [] thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
409 410
  = do  { thing <- thing_inside
        ; return ([], thing) }
411

412
tcBindGroups top_lvl sig_fn prag_fn (group : groups) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
413
  = do  { (group', (groups', thing))
414
                <- tc_group top_lvl sig_fn prag_fn group $
415
                   tcBindGroups top_lvl sig_fn prag_fn groups thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
416
        ; return (group' ++ groups', thing) }
sof's avatar
sof committed
417

418
------------------------
419
tc_group :: forall thing.
420
            TopLevelFlag -> TcSigFun -> TcPragEnv
Ian Lynagh's avatar
Ian Lynagh committed
421 422
         -> (RecFlag, LHsBinds Name) -> TcM thing
         -> TcM ([(RecFlag, LHsBinds TcId)], thing)
423 424

-- Typecheck one strongly-connected component of the original program.
425
-- We get a list of groups back, because there may
426 427
-- be specialisations etc as well

428
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
429 430
        -- A single non-recursive binding
        -- We want to keep non-recursive things non-recursive
431
        -- so that we desugar unlifted bindings correctly
cactus's avatar
cactus committed
432 433
  = do { let bind = case bagToList binds of
                 [bind] -> bind
434 435
                 []     -> panic "tc_group: empty list of binds"
                 _      -> panic "tc_group: NonRecursive binds is not a singleton bag"
cactus's avatar
cactus committed
436 437
       ; (bind', thing) <- tc_single top_lvl sig_fn prag_fn bind thing_inside
       ; return ( [(NonRecursive, bind')], thing) }
438 439

tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
440 441
  =     -- To maximise polymorphism, we do a new
        -- strongly-connected-component analysis, this time omitting
Ian Lynagh's avatar
Ian Lynagh committed
442
        -- any references to variables with type signatures.
443
        -- (This used to be optional, but isn't now.)
444
        -- See Note [Polymorphic recursion] in HsBinds.
445
    do  { traceTc "tc_group rec" (pprLHsBinds binds)
cactus's avatar
cactus committed
446
        ; when hasPatSyn $ recursivePatSynErr binds
447
        ; (binds1, thing) <- go sccs
448
        ; return ([(Recursive, binds1)], thing) }
Ian Lynagh's avatar
Ian Lynagh committed
449
                -- Rec them all together
450
  where
451
    hasPatSyn = anyBag (isPatSyn . unLoc) binds
cactus's avatar
cactus committed
452 453 454
    isPatSyn PatSynBind{} = True
    isPatSyn _ = False

455
    sccs :: [SCC (LHsBind Name)]
456 457
    sccs = stronglyConnCompFromEdgedVertices (mkEdges sig_fn binds)

458
    go :: [SCC (LHsBind Name)] -> TcM (LHsBinds TcId, thing)
459 460
    go (scc:sccs) = do  { (binds1, ids1) <- tc_scc scc
                        ; (binds2, thing) <- tcExtendLetEnv top_lvl ids1 $
461 462 463
                                             go sccs
                        ; return (binds1 `unionBags` binds2, thing) }
    go []         = do  { thing <- thing_inside; return (emptyBag, thing) }
464

465 466
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive [bind]
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    binds
sof's avatar
sof committed
467

468
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
469

cactus's avatar
cactus committed
470 471 472 473
recursivePatSynErr :: OutputableBndr name => LHsBinds name -> TcM a
recursivePatSynErr binds
  = failWithTc $
    hang (ptext (sLit "Recursive pattern synonym definition with following bindings:"))
474
       2 (vcat $ map pprLBind . bagToList $ binds)
cactus's avatar
cactus committed
475 476 477 478 479 480
  where
    pprLoc loc  = parens (ptext (sLit "defined at") <+> ppr loc)
    pprLBind (L loc bind) = pprWithCommas ppr (collectHsBindBinders bind) <+>
                            pprLoc loc

tc_single :: forall thing.
481
            TopLevelFlag -> TcSigFun -> TcPragEnv
482
          -> LHsBind Name -> TcM thing
cactus's avatar
cactus committed
483
          -> TcM (LHsBinds TcId, thing)
484
tc_single _top_lvl sig_fn _prag_fn (L _ (PatSynBind psb@PSB{ psb_id = L _ name })) thing_inside
485 486
  = do { (aux_binds, tcg_env) <- tc_pat_syn_decl
       ; thing <- setGblEnv tcg_env thing_inside
cactus's avatar
cactus committed
487 488
       ; return (aux_binds, thing)
       }
489
  where
490
    tc_pat_syn_decl :: TcM (LHsBinds TcId, TcGblEnv)
491
    tc_pat_syn_decl = case sig_fn name of
492 493 494
        Nothing                 -> tcInferPatSynDecl psb
        Just (TcPatSynSig tpsi) -> tcCheckPatSynDecl psb tpsi
        Just                 _  -> panic "tc_single"
495

cactus's avatar
cactus committed
496
tc_single top_lvl sig_fn prag_fn lbind thing_inside
497 498 499 500
  = do { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn
                                      NonRecursive NonRecursive
                                      [lbind]
       ; thing <- tcExtendLetEnv top_lvl ids thing_inside
cactus's avatar
cactus committed
501
       ; return (binds1, thing) }
502

503
------------------------
504
type BKey = Int -- Just number off the bindings
505

506 507
mkEdges :: TcSigFun -> LHsBinds Name -> [Node BKey (LHsBind Name)]
-- See Note [Polymorphic recursion] in HsBinds.
508
mkEdges sig_fn binds
509
  = [ (bind, key, [key | n <- nameSetElems (bind_fvs (unLoc bind)),
Ian Lynagh's avatar
Ian Lynagh committed
510
                         Just key <- [lookupNameEnv key_map n], no_sig n ])
511 512 513 514
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
thomasw's avatar
thomasw committed
515
    no_sig n = noCompleteSig (sig_fn n)
516 517 518

    keyd_binds = bagToList binds `zip` [0::BKey ..]

Ian Lynagh's avatar
Ian Lynagh committed
519
    key_map :: NameEnv BKey     -- Which binding it comes from
520
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
521
                                     , bndr <- collectHsBindBinders bind ]
522

523
------------------------
524
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragEnv
525 526 527 528
            -> RecFlag         -- Whether the group is really recursive
            -> RecFlag         -- Whether it's recursive after breaking
                               -- dependencies based on type signatures
            -> [LHsBind Name]  -- None are PatSynBind
529
            -> TcM (LHsBinds TcId, [TcId])
530

531
-- Typechecks a single bunch of values bindings all together,
532 533 534
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
535 536
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
537 538
-- important.
--
539
-- Knows nothing about the scope of the bindings
540
-- None of the bindings are pattern synonyms
541

542 543
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc bind_list
  = setSrcSpan loc                              $
544
    recoverM (recoveryCode binder_names sig_fn) $ do
545
        -- Set up main recover; take advantage of any type sigs
546

547
    { traceTc "------------------------------------------------" Outputable.empty
548
    ; traceTc "Bindings for {" (ppr binder_names)
549
    ; dflags   <- getDynFlags
550
    ; type_env <- getLclTypeEnv
551
    ; let plan = decideGeneralisationPlan dflags type_env
552
                         binder_names bind_list sig_fn
553
    ; traceTc "Generalisation plan" (ppr plan)
554 555 556 557
    ; result@(tc_binds, poly_ids) <- case plan of
         NoGen              -> tcPolyNoGen rec_tc prag_fn sig_fn bind_list
         InferGen mn        -> tcPolyInfer rec_tc prag_fn sig_fn mn bind_list
         CheckGen lbind sig -> tcPolyCheck rec_tc prag_fn sig lbind
558

chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
559
        -- Check whether strict bindings are ok
Ian Lynagh's avatar
Ian Lynagh committed
560 561
        -- These must be non-recursive etc, and are not generalised
        -- They desugar to a case expression in the end
562 563 564 565
    ; checkStrictBinds top_lvl rec_group bind_list tc_binds poly_ids
    ; traceTc "} End of bindings for" (vcat [ ppr binder_names, ppr rec_group
                                            , vcat [ppr id <+> ppr (idType id) | id <- poly_ids]
                                          ])
566

567
    ; return result }
568
  where
569 570
    binder_names = collectHsBindListBinders bind_list
    loc = foldr1 combineSrcSpans (map getLoc bind_list)
571
         -- The mbinds have been dependency analysed and
572
         -- may no longer be adjacent; so find the narrowest
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
573
         -- span that includes them all
574

575
------------------
576
tcPolyNoGen     -- No generalisation whatsoever
577
  :: RecFlag       -- Whether it's recursive after breaking
578
                   -- dependencies based on type signatures
579
  -> TcPragEnv -> TcSigFun
580
  -> [LHsBind Name]
581
  -> TcM (LHsBinds TcId, [TcId])
582

583 584
tcPolyNoGen rec_tc prag_fn tc_sig_fn bind_list
  = do { (binds', mono_infos) <- tcMonoBinds rec_tc tc_sig_fn
585
                                             (LetGblBndr prag_fn)
586
                                             bind_list
587
       ; mono_ids' <- mapM tc_mono_info mono_infos
588
       ; return (binds', mono_ids') }
589 590
  where
    tc_mono_info (name, _, mono_id)
591
      = do { mono_ty' <- zonkTcType (idType mono_id)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
592
             -- Zonk, mainly to expose unboxed types to checkStrictBinds
593
           ; let mono_id' = setIdType mono_id mono_ty'
594
           ; _specs <- tcSpecPrags mono_id' (lookupPragEnv prag_fn name)
595
           ; return mono_id' }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
596 597 598 599
           -- NB: tcPrags generates error messages for
           --     specialisation pragmas for non-overloaded sigs
           -- Indeed that is why we call it here!
           -- So we can safely ignore _specs
600 601

------------------
602
tcPolyCheck :: RecFlag       -- Whether it's recursive after breaking
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
603
                             -- dependencies based on type signatures
604
            -> TcPragEnv
605
            -> TcIdSigInfo
606
            -> LHsBind Name
607
            -> TcM (LHsBinds TcId, [TcId])
608
-- There is just one binding,
609
--   it binds a single variable,
Simon Peyton Jones's avatar
Simon Peyton Jones committed
610
--   it has a complete type signature,
611
tcPolyCheck rec_tc prag_fn
612
            sig@(TISI { sig_bndr  = CompleteSig poly_id
613
                      , sig_skols = skol_prs
614 615 616 617
                      , sig_theta = theta
                      , sig_tau   = tau
                      , sig_ctxt  = ctxt
                      , sig_loc   = loc })
618
            bind
619 620
  = do { ev_vars <- newEvVars theta
       ; let skol_info = SigSkol ctxt (mkPhiTy theta tau)
621
             prag_sigs = lookupPragEnv prag_fn name
622
             skol_tvs  = map snd skol_prs
623 624 625 626
                 -- Find the location of the original source type sig, if
                 -- there is was one.  This will appear in messages like
                 -- "type variable x is bound by .. at <loc>"
             name = idName poly_id
627 628
       ; (ev_binds, (binds', [mono_info]))
            <- setSrcSpan loc $
629
               checkConstraints skol_info skol_tvs ev_vars $
630
               tcMonoBinds rec_tc (\_ -> Just (TcIdSig sig)) LetLclBndr [bind]
631

632 633
       ; spec_prags <- tcSpecPrags poly_id prag_sigs
       ; poly_id    <- addInlinePrags poly_id prag_sigs
634

635 636 637 638 639
       ; let (_, _, mono_id) = mono_info
             export = ABE { abe_wrap = idHsWrapper
                          , abe_poly = poly_id
                          , abe_mono = mono_id
                          , abe_prags = SpecPrags spec_prags }
640
             abs_bind = L loc $ AbsBinds
641
                        { abs_tvs = skol_tvs
642
                        , abs_ev_vars = ev_vars, abs_ev_binds = [ev_binds]
643
                        , abs_exports = [export], abs_binds = binds' }
644
       ; return (unitBag abs_bind, [poly_id]) }
645

646 647 648
tcPolyCheck _rec_tc _prag_fn sig _bind
  = pprPanic "tcPolyCheck" (ppr sig)

649
------------------
650
tcPolyInfer
651
  :: RecFlag       -- Whether it's recursive after breaking
652
                   -- dependencies based on type signatures
653
  -> TcPragEnv -> TcSigFun
654
  -> Bool         -- True <=> apply the monomorphism restriction
655
  -> [LHsBind Name]
656 657
  -> TcM (LHsBinds TcId, [TcId])
tcPolyInfer rec_tc prag_fn tc_sig_fn mono bind_list
658
  = do { (tclvl, wanted, (binds', mono_infos))
659
             <- pushLevelAndCaptureConstraints  $
660
                tcMonoBinds rec_tc tc_sig_fn LetLclBndr bind_list
661

662
       ; let name_taus = [(name, idType mono_id) | (name, _, mono_id) <- mono_infos]
663 664
             sigs      = [ sig | (_, Just sig, _) <- mono_infos ]
       ; traceTc "simplifyInfer call" (ppr tclvl $$ ppr name_taus $$ ppr wanted)
665
       ; (qtvs, givens, ev_binds)
666
                 <- simplifyInfer tclvl mono sigs name_taus wanted
667

668
       ; let inferred_theta = map evVarPred givens
669 670
       ; exports <- checkNoErrs $
                    mapM (mkExport prag_fn qtvs inferred_theta) mono_infos
thomasw's avatar
thomasw committed
671

672
       ; loc <- getSrcSpanM
673
       ; let poly_ids = map abe_poly exports
674
             abs_bind = L loc $
675
                        AbsBinds { abs_tvs = qtvs
676
                                 , abs_ev_vars = givens, abs_ev_binds = [ev_binds]
677
                                 , abs_exports = exports, abs_binds = binds' }
678

679 680
       ; traceTc "Binding:" (ppr (poly_ids `zip` map idType poly_ids))
       ; return (unitBag abs_bind, poly_ids) }
681
         -- poly_ids are guaranteed zonked by mkExport
682 683

--------------
684
mkExport :: TcPragEnv
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
685
         -> [TyVar] -> TcThetaType      -- Both already zonked
Ian Lynagh's avatar
Ian Lynagh committed
686
         -> MonoBindInfo
687
         -> TcM (ABExport Id)
688 689 690 691
-- Only called for generalisation plan IferGen, not by CheckGen or NoGen
--
-- mkExport generates exports with
--      zonked type variables,
Ian Lynagh's avatar
Ian Lynagh committed
692
--      zonked poly_ids
693 694 695 696
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
697
-- type environment; see the invariant on TcEnv.tcExtendIdEnv
698

699
-- Pre-condition: the qtvs and theta are already zonked
700

701 702 703
mkExport prag_fn qtvs theta mono_info@(poly_name, mb_sig, mono_id)
  = do  { mono_ty  <- zonkTcType (idType mono_id)
        ; poly_id <- case mb_sig of
704
              Just sig | Just poly_id <- completeIdSigPolyId_maybe sig
705 706 707 708
                       -> return poly_id
              _other   -> checkNoErrs $
                          mkInferredPolyId qtvs theta
                                           poly_name mb_sig mono_ty
709
              -- The checkNoErrs ensures that if the type is ambiguous
710 711 712
              -- we don't carry on to the impedence matching, and generate
              -- a duplicate ambiguity error.  There is a similar
              -- checkNoErrs for complete type signatures too.
713 714

        -- NB: poly_id has a zonked type
715
        ; poly_id <- addInlinePrags poly_id prag_sigs
716
        ; spec_prags <- tcSpecPrags poly_id prag_sigs
Ian Lynagh's avatar
Ian Lynagh committed
717
                -- tcPrags requires a zonked poly_id
718

719
        -- See Note [Impedence matching]
720 721
        -- NB: we have already done checkValidType, including an ambiguity check,
        --     on the type; either when we checked the sig or in mkInferredPolyId
722 723 724 725 726 727 728 729
        ; let sel_poly_ty = mkSigmaTy qtvs theta mono_ty
              poly_ty     = idType poly_id
        ; wrap <- if sel_poly_ty `eqType` poly_ty
                  then return idHsWrapper  -- Fast path; also avoids complaint when we infer
                                           -- an ambiguouse type and have AllowAmbiguousType
                                           -- e..g infer  x :: forall a. F a -> Int
                  else addErrCtxtM (mk_impedence_match_msg mono_info sel_poly_ty poly_ty) $
                       tcSubType_NC sig_ctxt sel_poly_ty poly_ty
730 731 732 733

        ; warn_missing_sigs <- woptM Opt_WarnMissingLocalSigs
        ; when warn_missing_sigs $ localSigWarn poly_id mb_sig

734 735
        ; return (ABE { abe_wrap = wrap
                        -- abe_wrap :: idType poly_id ~ (forall qtvs. theta => mono_ty)
736 737
                      , abe_poly = poly_id
                      , abe_mono = mono_id
738
                      , abe_prags = SpecPrags spec_prags}) }
739
  where
740
    prag_sigs = lookupPragEnv prag_fn poly_name
741
    sig_ctxt  = InfSigCtxt poly_name
742

743 744 745 746
mkInferredPolyId :: [TyVar] -> TcThetaType
                 -> Name -> Maybe TcIdSigInfo -> TcType
                 -> TcM TcId
mkInferredPolyId qtvs inferred_theta poly_name mb_sig mono_ty
747
  = do { fam_envs <- tcGetFamInstEnvs
748
       ; let (_co, mono_ty') = normaliseType fam_envs Nominal mono_ty
749 750
               -- Unification may not have normalised the type,
               -- (see Note [Lazy flattening] in TcFlatten) so do it
751 752 753
               -- here to make it as uncomplicated as possible.
               -- Example: f :: [F Int] -> Bool
               -- should be rewritten to f :: [Char] -> Bool, if possible
754
               --
Gabor Greif's avatar
Gabor Greif committed
755
               -- We can discard the coercion _co, because we'll reconstruct
756
               -- it in the call to tcSubType below
757

758 759
       ; (my_tvs, theta') <- chooseInferredQuantifiers
                                inferred_theta (tyVarsOfType mono_ty') mb_sig
760

761
       ; let qtvs' = filter (`elemVarSet` my_tvs) qtvs   -- Maintain original order
Simon Peyton Jones's avatar
Simon Peyton Jones committed
762
             inferred_poly_ty = mkSigmaTy qtvs' theta' mono_ty'
763

Simon Peyton Jones's avatar
Simon Peyton Jones committed
764 765 766
       ; traceTc "mkInferredPolyId" (vcat [ppr poly_name, ppr qtvs, ppr my_tvs, ppr theta'
                                          , ppr inferred_poly_ty])
       ; addErrCtxtM (mk_inf_msg poly_name inferred_poly_ty) $
767
         checkValidType (InfSigCtxt poly_name) inferred_poly_ty
768
         -- See Note [Validity of inferred types]
769

770
       ; return (mkLocalId poly_name inferred_poly_ty) }
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

chooseInferredQuantifiers :: TcThetaType -> TcTyVarSet -> Maybe TcIdSigInfo
                          -> TcM (TcTyVarSet, TcThetaType)
chooseInferredQuantifiers inferred_theta tau_tvs Nothing
  = do { let free_tvs = closeOverKinds (growThetaTyVars inferred_theta tau_tvs)
                        -- Include kind variables!  Trac #7916

       ; my_theta <- pickQuantifiablePreds free_tvs inferred_theta
       ; return (free_tvs, my_theta) }

chooseInferredQuantifiers inferred_theta tau_tvs
                          (Just (TISI { sig_bndr = bndr_info
                                      , sig_ctxt = ctxt
                                      , sig_theta = annotated_theta }))
  | PartialSig { sig_cts = extra } <- bndr_info
  , Nothing <- extra
  = do { annotated_theta <- zonkTcThetaType annotated_theta
       ; let free_tvs = closeOverKinds (tyVarsOfTypes annotated_theta
                                        `unionVarSet` tau_tvs)
       ; traceTc "ciq" (vcat [ ppr bndr_info, ppr annotated_theta, ppr free_tvs])
       ; return (free_tvs, annotated_theta) }

  | PartialSig { sig_cts = extra } <- bndr_info
  , Just loc <- extra
thomasw's avatar
thomasw committed
796
  = do { annotated_theta <- zonkTcThetaType annotated_theta
797 798 799 800 801 802 803 804 805
       ; let free_tvs = closeOverKinds (tyVarsOfTypes annotated_theta
                                        `unionVarSet` tau_tvs)
       ; my_theta <- pickQuantifiablePreds free_tvs inferred_theta

       -- Report the inferred constraints for an extra-constraints wildcard/hole as
       -- an error message, unless the PartialTypeSignatures flag is enabled. In this
       -- case, the extra inferred constraints are accepted without complaining.
       -- Returns the annotated constraints combined with the inferred constraints.
       ; let inferred_diff = minusList my_theta annotated_theta
thomasw's avatar
thomasw committed
806 807 808 809
             final_theta   = annotated_theta ++ inferred_diff
       ; partial_sigs      <- xoptM Opt_PartialTypeSignatures
       ; warn_partial_sigs <- woptM Opt_WarnPartialTypeSignatures
       ; msg <- mkLongErrAt loc (mk_msg inferred_diff partial_sigs) empty
810 811 812 813
       ; traceTc "completeTheta" $
            vcat [ ppr bndr_info
                 , ppr annotated_theta, ppr inferred_theta
                 , ppr inferred_diff ]
thomasw's avatar
thomasw committed
814
       ; case partial_sigs of
815
           True | warn_partial_sigs -> reportWarning msg
thomasw's avatar
thomasw committed
816 817 818
                | otherwise         -> return ()
           False                    -> reportError msg

819 820 821 822
       ; return (free_tvs, final_theta) }

  | otherwise = pprPanic "chooseInferredQuantifiers" (ppr bndr_info)

thomasw's avatar
thomasw committed
823 824 825
  where
    pts_hint = text "To use the inferred type, enable PartialTypeSignatures"
    mk_msg inferred_diff suppress_hint
826 827
       = vcat [ hang ((text "Found constraint wildcard") <+> quotes (char '_'))
                   2 (text "standing for") <+> quotes (pprTheta inferred_diff)
thomasw's avatar
thomasw committed
828
              , if suppress_hint then empty else pts_hint
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
              , typeSigCtxt ctxt bndr_info ]


mk_impedence_match_msg :: MonoBindInfo
                       -> TcType -> TcType
                       -> TidyEnv -> TcM (TidyEnv, SDoc)
-- This is a rare but rather awkward error messages
mk_impedence_match_msg (name, mb_sig, _) inf_ty sig_ty tidy_env
 = do { (tidy_env1, inf_ty) <- zonkTidyTcType tidy_env  inf_ty
      ; (tidy_env2, sig_ty) <- zonkTidyTcType tidy_env1 sig_ty
      ; let msg = vcat [ ptext (sLit "When checking that the inferred type")
                       , nest 2 $ ppr name <+> dcolon <+> ppr inf_ty
                       , ptext (sLit "is as general as its") <+> what <+> ptext (sLit "signature")
                       , nest 2 $ ppr name <+> dcolon <+> ppr sig_ty ]
      ; return (tidy_env2, msg) }
  where
    what = case mb_sig of
             Nothing                     -> ptext (sLit "inferred")
             Just sig | isPartialSig sig -> ptext (sLit "(partial)")
                      | otherwise        -> empty


mk_inf_msg :: Name -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_inf_msg poly_name poly_ty tidy_env
 = do { (tidy_env1, poly_ty) <- zonkTidyTcType tidy_env poly_ty
      ; let msg = vcat [ ptext (sLit "When checking the inferred type")
                       , nest 2 $ ppr poly_name <+> dcolon <+> ppr poly_ty ]
      ; return (tidy_env1, msg) }
857

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

-- | Warn the user about polymorphic local binders that lack type signatures.
localSigWarn :: Id -> Maybe TcIdSigInfo -> TcM ()
localSigWarn id mb_sig
  | Just _ <- mb_sig               = return ()
  | not (isSigmaTy (idType id))    = return ()
  | otherwise                      = warnMissingSig msg id
  where
    msg = ptext (sLit "Polymorphic local binding with no type signature:")

warnMissingSig :: SDoc -> Id -> TcM ()
warnMissingSig msg id
  = do  { env0 <- tcInitTidyEnv
        ; let (env1, tidy_ty) = tidyOpenType env0 (idType id)
        ; addWarnTcM (env1, mk_msg tidy_ty) }
  where
    mk_msg ty = sep [ msg, nest 2 $ pprPrefixName (idName id) <+> dcolon <+> ppr ty ]

Austin Seipp's avatar
Austin Seipp committed
876
{-
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
Note [Partial type signatures and generalisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have a partial type signature, like
   f :: _ -> Int
then we *always* use the InferGen plan, and hence tcPolyInfer.
We do this even for a local binding with -XMonoLocalBinds.
Reasons:
  * The TcSigInfo for 'f' has a unification variable for the '_',
    whose TcLevel is one level deeper than the current level.
    (See pushTcLevelM in tcTySig.)  But NoGen doesn't increase
    the TcLevel like InferGen, so we lose the level invariant.

  * The signature might be   f :: forall a. _ -> a
    so it really is polymorphic.  It's not clear what it would
    mean to use NoGen on this, and indeed the ASSERT in tcLhs,
    in the (Just sig) case, checks that if there is a signature
    then we are using LetLclBndr, and hence a nested AbsBinds with
    increased TcLevel

It might be possible to fix these difficulties somehow, but there
doesn't seem much point.  Indeed, adding a partial type signature is a
way to get per-binding inferred generalisation.

900 901
Note [Validity of inferred types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
902
We need to check inferred type for validity, in case it uses language
903 904 905 906 907
extensions that are not turned on.  The principle is that if the user
simply adds the inferred type to the program source, it'll compile fine.
See #8883.

Examples that might fail:
908 909
 - the type might be ambiguous

910 911 912 913 914
 - an inferred theta that requires type equalities e.g. (F a ~ G b)
                                or multi-parameter type classes
 - an inferred type that includes unboxed tuples


915 916 917 918 919 920 921 922 923 924
Note [Impedence matching]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   f 0 x = x
   f n x = g [] (not x)

   g [] y = f 10 y
   g _  y = f 9  y

After typechecking we'll get
925 926
  f_mono_ty :: a -> Bool -> Bool
  g_mono_ty :: [b] -> Bool -> Bool
927 928 929 930 931 932 933 934
with constraints
  (Eq a, Num a)

Note that f is polymorphic in 'a' and g in 'b'; and these are not linked.
The types we really want for f and g are
   f :: forall a. (Eq a, Num a) => a -> Bool -> Bool
   g :: forall b. [b] -> Bool -> Bool

Gabor Greif's avatar
Gabor Greif committed
935
We can get these by "impedance matching":
936 937 938 939 940 941 942
   tuple :: forall a b. (Eq a, Num a) => (a -> Bool -> Bool, [b] -> Bool -> Bool)
   tuple a b d1 d1 = let ...bind f_mono, g_mono in (f_mono, g_mono)

   f a d1 d2 = case tuple a Any d1 d2 of (f, g) -> f
   g b = case tuple Integer b dEqInteger dNumInteger of (f,g) -> g

Suppose the shared quantified tyvars are qtvs and constraints theta.
943
Then we want to check that
944 945
   f's final inferred polytype is more polymorphic than
      forall qtvs. theta => f_mono_ty
Gabor Greif's avatar
Gabor Greif committed
946
and the proof is the impedance matcher.
947

Gabor Greif's avatar
Gabor Greif committed
948
Notice that the impedance matcher may do defaulting.  See Trac #7173.
949 950 951 952

It also cleverly does an ambiguity check; for example, rejecting
   f :: F a -> a
where F is a non-injective type function.
Austin Seipp's avatar
Austin Seipp committed
953
-}
954

955 956 957 958
--------------
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise
-- subsequent error messages
959
recoveryCode :: [Name] -> TcSigFun -> TcM (LHsBinds TcId, [Id])
960 961
recoveryCode binder_names sig_fn
  = do  { traceTc "tcBindsWithSigs: error recovery" (ppr binder_names)
thomasw's avatar
thomasw committed
962
        ; let poly_ids = map mk_dummy binder_names
963
        ; return (emptyBag, poly_ids) }
964 965
  where
    mk_dummy name
966 967
      | Just sig <- sig_fn name
      , Just poly_id <- completeSigPolyId_maybe sig
thomasw's avatar
thomasw committed
968 969 970
      = poly_id
      | otherwise
      = mkLocalId name forall_a_a
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

forall_a_a :: TcType
forall_a_a = mkForAllTy openAlphaTyVar (mkTyVarTy openAlphaTyVar)


{- *********************************************************************
*                                                                      *
                   Pragmas, including SPECIALISE
*                                                                      *
************************************************************************

Note [Handling SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea is this:

   f:: Num a => a -> b -> a
   {-# SPECIALISE foo :: Int -> b -> Int #-}

989 990 991
We check that
   (forall a. Num a => a -> a)
      is more polymorphic than
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
   Int -> Int
(for which we could use tcSubType, but see below), generating a HsWrapper
to connect the two, something like
      wrap = /\b. <hole> Int b dNumInt
This wrapper is put in the TcSpecPrag, in the ABExport record of
the AbsBinds.


        f :: (Eq a, Ix b) => a -> b -> Bool
        {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
        f = <poly_rhs>

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

From these we generate:

    Rule:       forall p, q, (dp:Ix p), (dq:Ix q).
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

    Spec bind:  f_spec = wrap_fn <poly_rhs>

Note that

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
    can fully specialise it.



From the TcSpecPrag, in DsBinds we generate a binding for f_spec and a RULE:

   f_spec :: Int -> b -> Int
   f_spec = wrap<f rhs>

   RULE: forall b (d:Num b). f b d = f_spec b

The RULE is generated by taking apart the HsWrapper, which is a little
Matthew Pickering's avatar
Matthew Pickering committed
1037
delicate, but works.
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061