DsBinds.hs 47.1 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42 43 44
import TysPrim ( mkProxyPrimTy )
import TyCon      ( isTupleTyCon, tyConDataCons_maybe
                  , tyConName, isPromotedTyCon, isPromotedDataCon )
45
import TcEvidence
46
import TcType
47
import Type
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49 50
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon, mkListTy
                  , mkBoxedTupleTy, stringTy )
Simon Marlow's avatar
Simon Marlow committed
51
import Id
52
import MkId(proxyHashId)
53
import Class
54
import DataCon  ( dataConTyCon, dataConWorkId )
55
import Name
56
import MkId     ( seqId )
57
import IdInfo   ( IdDetails(..) )
58
import Var
59
import VarSet
Simon Marlow's avatar
Simon Marlow committed
60
import Rules
61
import VarEnv
62
import Outputable
63
import Module
Simon Marlow's avatar
Simon Marlow committed
64 65
import SrcLoc
import Maybes
66
import OrdList
Simon Marlow's avatar
Simon Marlow committed
67 68
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
69
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
70
import FastString
71
import ErrUtils( MsgDoc )
72
import ListSetOps( getNth )
73
import Util
74
import Control.Monad( when )
75
import MonadUtils
76
import Control.Monad(liftM)
77
import Fingerprint(Fingerprint(..), fingerprintString)
78

Austin Seipp's avatar
Austin Seipp committed
79 80 81
{-
************************************************************************
*                                                                      *
82
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
83 84 85
*                                                                      *
************************************************************************
-}
86

87 88
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
89

90
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
91
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
92
                      ; return (fromOL binds') }
93 94

------------------------
95
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
96

97 98
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
99

100 101
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
102

103
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
104

105
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
106 107
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
108

109 110
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
111
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
112
                   | otherwise         = var
113

114
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
115

116 117 118
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
119
 = do   { dflags <- getDynFlags
120
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
121
        ; let body' = mkOptTickBox tick body
122
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
123
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
124
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
125 126 127

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
128
  = do  { body_expr <- dsGuarded grhss ty
129 130
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
131 132
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
133
    ; return (toOL sel_binds) }
sof's avatar
sof committed
134

135 136 137 138
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
139 140 141
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
142 143
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
144
  = do  { dflags <- getDynFlags
145 146 147
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
148
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
149 150
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
151 152
                            Let core_bind $
                            Var local
153

154 155 156 157 158 159 160
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
161

162 163 164
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
165
         -- See Note [Desugaring AbsBinds]
166 167 168
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
169
                              | (lcl_id, rhs) <- fromOL bind_prs ]
170
                -- Monomorphic recursion possible, hence Rec
171

172 173 174
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
175
        ; ds_binds <- dsTcEvBinds_s ev_binds
176 177 178 179
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
180

181
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
182

183
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
184
                           , abe_mono = local, abe_prags = spec_prags })
185 186
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
187
                                 mkLams tyvars $ mkLams dicts $
188 189
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
190
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
191 192
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
193 194 195
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
196 197
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
198

199
        ; export_binds_s <- mapM mk_bind exports
200

201 202
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
203 204 205 206 207 208 209 210 211 212 213
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
214

cactus's avatar
cactus committed
215 216
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

217
------------------------
218 219
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
220
  | is_default_method                 -- Default methods are *always* inlined
221 222
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

223
  | DFunId is_newtype <- idDetails gbl_id
224 225
  = (mk_dfun_w_stuff is_newtype, rhs)

226 227
  | otherwise
  = case inlinePragmaSpec inline_prag of
228 229 230
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
231
          Inline          -> inline_pair
232

233 234
  where
    inline_prag   = idInlinePragma gbl_id
235
    inlinable_unf = mkInlinableUnfolding dflags rhs
236 237
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
238 239
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
240
       , let real_arity = dict_arity + arity
241
        -- NB: The arity in the InlineRule takes account of the dictionaries
242 243 244 245 246 247
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
248

249 250 251
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
252
       | is_newtype
253 254 255 256 257 258 259 260 261 262 263 264
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

265 266 267 268

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
269

Austin Seipp's avatar
Austin Seipp committed
270
{-
271 272 273 274 275 276 277 278 279 280
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

281 282 283 284 285
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
286 287
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
288
But we don't want that, because if M.f isn't exported,
289 290
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
291 292 293
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
294 295 296
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
297 298 299 300
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
301
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
302
Although I'm a bit worried about whether full laziness might
303
float the f_lcl binding out and then inline M.f at its call site
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

319
The top-level AbsBinds for $cround has no tyvars or dicts (because the
320 321 322 323 324 325 326
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

327 328 329 330 331
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
332 333 334

and desugar it to

335 336 337
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
338 339

where B is the *non-recursive* binding
340 341 342
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
343 344

Notice (a) g has a different number of type variables to f, so we must
345 346
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
347

348 349 350 351
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
352

353 354 355 356
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
357 358

Why got to this trouble?  It's a common case, and it removes the
359
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
360 361 362 363
compilation, especially in a case where there are a *lot* of
bindings.


364 365 366 367 368 369 370 371
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
372
happen as a result of method sharing), there's a danger that we never
373 374 375 376
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
377
has the arity with which it is declared in the source code.  In this
378
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
379
should mean that (foo d) is a PAP and we don't share it.
380 381 382

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
383 384 385 386 387 388 389 390 391 392 393 394 395 396
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
397
-}
398

399
------------------------
400
dsSpecs :: CoreExpr     -- Its rhs
401
        -> TcSpecPrags
402 403
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
404
-- See Note [Handling SPECIALISE pragmas] in TcBinds
405 406 407 408 409 410
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

411 412 413
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
414 415 416
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
417
  | isJust (isClassOpId_maybe poly_id)
418 419
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
420 421
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
422 423
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
424

425 426
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
427 428 429
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
430
                            -- See Note [Activation pragmas for SPECIALISE]
431

432
  | otherwise
433
  = putSrcSpanDs loc $
434 435
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
436 437
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
438 439 440
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
441 442 443 444
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
445
           Left msg -> do { warnDs msg; return Nothing } ;
446
           Right (rule_bndrs, _fn, args) -> do
447

448
       { dflags <- getDynFlags
Simon Peyton Jones's avatar
Simon Peyton Jones committed
449 450 451 452
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
453 454 455
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
456
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
457
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
458 459 460
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
461

462
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
463

Ian Lynagh's avatar
Ian Lynagh committed
464 465
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
466 467 468 469 470

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
471 472 473 474
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
475
             = rhs          -- Local Id; this is its rhs
476 477
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
478 479 480
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
481
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
482
                            -- The type checker has checked that it *has* an unfolding
483

484 485 486 487 488
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
489
                                 -- in OccurAnal
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


specOnInline :: Name -> MsgDoc
508
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
509
                 <+> quotes (ppr f)
510

Austin Seipp's avatar
Austin Seipp committed
511
{-
512 513 514 515 516 517 518 519
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

520
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
542
SPEC [n] f :: ty            [n]   INLINE [k]
543 544 545 546 547 548 549 550 551 552
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
553 554
************************************************************************
*                                                                      *
555
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
556 557 558
*                                                                      *
************************************************************************
-}
559

560
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
561 562
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
563
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
564
--
565
-- Returns Nothing if the LHS isn't of the expected shape
566 567 568 569 570 571 572 573
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

  | Var fn_var <- fun
  , not (fn_var `elemVarSet` orig_bndr_set)
574 575 576 577 578 579 580
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
    --                                  , ptext (sLit "bndrs1:") <+> ppr bndrs1
    --                                  , ptext (sLit "fn_var:") <+> ppr fn_var
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
    Right (bndrs1, fn_var, args)
581 582

  | Case scrut bndr ty [(DEFAULT, _, body)] <- fun
583
  , isDeadBinder bndr   -- Note [Matching seqId]
584 585 586
  , let args' = [Type (idType bndr), Type ty, scrut, body]
  = Right (bndrs1, seqId, args' ++ args)

587
  | otherwise
588
  = Left bad_shape_msg
589
 where
590 591 592 593 594 595
   lhs1       = drop_dicts orig_lhs
   lhs2       = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun,args) = collectArgs lhs2
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
   bndrs1     = orig_bndrs ++ extra_dict_bndrs
596

597
   orig_bndr_set = mkVarSet orig_bndrs
598

599
        -- Add extra dict binders: Note [Free dictionaries]
600 601 602
   extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d)
                      | d <- varSetElems (lhs_fvs `delVarSetList` orig_bndrs)
                      , isDictId d ]
603 604

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
605 606
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
607
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
608
                             , ptext (sLit "is not bound in RULE lhs")])
609 610 611
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
612
   pp_bndr bndr
613 614 615
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
616 617

   drop_dicts :: CoreExpr -> CoreExpr
618
   drop_dicts e
619 620 621
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
622
       (bnds, body) = split_lets (occurAnalyseExpr e)
623
           -- The occurAnalyseExpr drops dead bindings which is
624 625
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
644

Austin Seipp's avatar
Austin Seipp committed
645
{-
646
Note [Decomposing the left-hand side of a RULE]
647
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
648
There are several things going on here.
649 650
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
651
* extra_dict_bndrs: see Note [Free dictionaries]
652 653 654

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
655
drop_dicts drops dictionary bindings on the LHS where possible.
656 657
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
658
   Reasoning here is that there is only one d:Eq [Int], and so we can
659 660 661 662
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
663
         one of the orig_bndrs, which we assume occur on RHS.
664 665 666 667 668 669
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
670
         to match, but there is no other way to get d:Eq a
671

672
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
673 674 675 676 677 678
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
679
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
680 681 682 683 684 685
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
686
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
687 688
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

689 690 691
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

692 693 694 695 696 697 698 699 700 701
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
702
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
703 704 705 706 707 708
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


709 710 711 712
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

713
   (a) Inline any remaining dictionary bindings (which hopefully
714 715 716
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
717
       Note that we substitute the function too; we might
718 719
       have this as a LHS:  let f71 = M.f Int in f71

720
   (c) Do eta reduction.  To see why, consider the fold/build rule,
721 722 723 724
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
725
         augment g (build h)
726
       we do not want to get
727
         augment (\a. g a) (build h)
728 729
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
730

731
Note [Matching seqId]
732 733
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
734
and this code turns it back into an application of seq!
735 736
See Note [Rules for seq] in MkId for the details.

737 738 739
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
740
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
741
        ... SPECIALISE f :: Eq a => a -> a ...
742 743
It's true that this *is* a more specialised type, but the rule
we get is something like this:
744 745
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
746 747
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
748 749 750 751
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

752 753
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
754 755
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
756 757 758
over it too.  *Any* dict with that type will do.

So for example when you have
759 760
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
761
        ... SPECIALISE f :: Int -> Int ...
762 763

Then we get the SpecPrag
764
        SpecPrag (f Int dInt)
765 766

And from that we want the rule
767 768 769

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
770 771 772 773 774 775 776

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

777

Austin Seipp's avatar
Austin Seipp committed
778 779
************************************************************************
*                                                                      *
780
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
781 782
*                                                                      *
************************************************************************
783

Austin Seipp's avatar
Austin Seipp committed
784
-}
785

786
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
787
dsHsWrapper WpHole            e = return e
788 789 790
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
791 792 793 794 795 796
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
797
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
798
                                  dsTcCoercion co (mkCast e)
799 800
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
801
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
802 803

--------------------------------------
804 805 806 807 808
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

809
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
810
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
811 812
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

813
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
814
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
815
  where
816 817 818
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
819

820
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
821 822 823 824 825

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
826
    edges = foldrBag ((:) . mk_node) [] bs
827 828

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
829 830
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
831 832 833


---------------------------------------
834
dsEvTerm :: EvTerm -> DsM CoreExpr
835
dsEvTerm (EvId v) = return (Var v)
836

837
dsEvTerm (EvCast tm co)
838
  = do { tm' <- dsEvTerm tm
839
       ; dsTcCoercion co $ mkCast tm' }
840 841 842 843 844
                        -- 'v' is always a lifted evidence variable so it is
                        -- unnecessary to call varToCoreExpr v here.

dsEvTerm (EvDFunApp df tys tms) = do { tms' <- mapM dsEvTerm tms
                                     ; return (Var df `mkTyApps` tys `mkApps` tms') }
845 846

dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
847
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
848

849
dsEvTerm (EvTupleSel v n)
850 851 852
   = do { tm' <- dsEvTerm v
        ; let scrut_ty = exprType tm'
              (tc, tys) = splitTyConApp scrut_ty
853 854
              Just [dc] = tyConDataCons_maybe tc
              xs = mkTemplateLocals tys
855
              the_x = getNth xs n
856 857 858 859
        ; ASSERT( isTupleTyCon tc )
          return $
          Case tm' (mkWildValBinder scrut_ty) (idType the_x) [(DataAlt dc, xs, Var the_x)] }

860
dsEvTerm (EvTupleMk tms)
861 862 863
  = do { tms' <- mapM dsEvTerm tms
       ; let tys = map exprType tms'
       ; return $ Var (dataConWorkId dc) `mkTyApps` tys `mkApps` tms' }
864
  where
865 866
    dc = tupleCon ConstraintTuple (length tms)

867
dsEvTerm (EvSuperClass d n)
868 869
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
870
             sc_sel_id  = classSCSelId cls n    -- Zero-indexed