DsBinds.hs 47.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46 47
import Coercion
import TysWiredIn ( mkListTy, mkBoxedTupleTy, charTy
48
                  , typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
49
import Id
50
import MkId(proxyHashId)
51
import Class
52
import DataCon  ( dataConTyCon )
53
import Name
54
import IdInfo   ( IdDetails(..) )
55
import VarSet
Simon Marlow's avatar
Simon Marlow committed
56
import Rules
57
import VarEnv
58
import Outputable
59
import Module
Simon Marlow's avatar
Simon Marlow committed
60 61
import SrcLoc
import Maybes
62
import OrdList
Simon Marlow's avatar
Simon Marlow committed
63 64
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
65
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
66
import FastString
67
import Util
68
import MonadUtils
69
import qualified GHC.LanguageExtensions as LangExt
70
import Control.Monad
71

72
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
73
*                                                                      *
74
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
75
*                                                                      *
76
**********************************************************************-}
77

78 79
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
80
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
81
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
82

83 84 85 86 87 88
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
89 90

------------------------
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
117 118
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
119
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
120
                   | otherwise         = var
121
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
122
              force_var = if xopt LangExt.Strict dflags
123 124 125 126 127 128
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
129
                  , fun_co_fn = co_fn, fun_tick = tick })
130
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
131
        ; let body' = mkOptTickBox tick body
132
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
133 134
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
135
                if xopt LangExt.Strict dflags
136 137 138
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
139
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
140
           return (force_var, [core_binds]) }
141

142 143
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
144
                  , pat_ticks = (rhs_tick, var_ticks) })
145
  = do  { body_expr <- dsGuarded grhss ty
146
        ; let body' = mkOptTickBox rhs_tick body_expr
147 148 149
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
150 151
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
152 153 154 155
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
156

157
        -- A common case: one exported variable, only non-strict binds
158 159 160
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
161 162
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
163 164
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
165 166
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
167
  , not (xopt LangExt.Strict dflags)             -- handle strict binds
168
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
169 170 171
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (_, bind_prs) <- ds_lhs_binds binds
172
        ; let core_bind = Rec bind_prs
173
        ; ds_binds <- dsTcEvBinds_s ev_binds
174
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
175 176 177 178
                 mkLams tyvars $ mkLams dicts $
                 mkCoreLets ds_binds $
                 Let core_bind $
                 Var local
179

180 181
        ; (spec_binds, rules) <- dsSpecs rhs prags

182
        ; let   global'  = addIdSpecialisations global rules
183 184 185
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

186
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
187

188 189
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
190 191
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
192
         -- See Note [Desugaring AbsBinds]
193 194 195
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
196
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
197
                              | (lcl_id, rhs) <- bind_prs ]
198
                -- Monomorphic recursion possible, hence Rec
199
              new_force_vars = get_new_force_vars local_force_vars
200
              locals       = map abe_mono exports
201 202
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
203
              tup_ty       = exprType tup_expr
204
        ; ds_binds <- dsTcEvBinds_s ev_binds
205 206 207 208
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
209

210
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
211

212 213 214 215 216
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

217
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
218
                           , abe_mono = local, abe_prags = spec_prags })
219 220
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
221
                                 mkLams tyvars $ mkLams dicts $
222
                                 mkTupleSelector all_locals local tup_id $
223
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
224
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
225 226
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
227 228 229
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
230
                           -- Id is just the selector.  Hmm.
231
                     ; return ((global', rhs) : fromOL spec_binds) }
232

233
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
234

235 236 237
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
238 239 240 241 242
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
243 244 245 246
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
247 248

    add_inline :: Id -> Id    -- tran
249 250
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
286

287
------------------------
288 289
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
290
  | is_default_method                 -- Default methods are *always* inlined
291 292
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

293
  | DFunId is_newtype <- idDetails gbl_id
294 295
  = (mk_dfun_w_stuff is_newtype, rhs)

296 297
  | otherwise
  = case inlinePragmaSpec inline_prag of
298 299 300
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
301
          Inline          -> inline_pair
302

303 304
  where
    inline_prag   = idInlinePragma gbl_id
305
    inlinable_unf = mkInlinableUnfolding dflags rhs
306 307
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
308 309
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
310
       , let real_arity = dict_arity + arity
311
        -- NB: The arity in the InlineRule takes account of the dictionaries
312 313 314 315 316 317
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
318

319 320 321
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
322
       | is_newtype
323 324 325 326 327 328 329 330 331 332 333 334
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

335 336 337 338

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
339

Austin Seipp's avatar
Austin Seipp committed
340
{-
341 342
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
343 344 345 346 347 348 349 350
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

351 352 353 354 355
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
356 357
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
358
But we don't want that, because if M.f isn't exported,
359 360
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
361 362 363
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
364 365 366
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
367 368 369 370
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
371
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
372
Although I'm a bit worried about whether full laziness might
373
float the f_lcl binding out and then inline M.f at its call site
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

389
The top-level AbsBinds for $cround has no tyvars or dicts (because the
390 391 392 393 394 395 396
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

397 398 399 400 401
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
402 403 404

and desugar it to

405 406 407
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
408 409

where B is the *non-recursive* binding
410 411 412
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
413 414

Notice (a) g has a different number of type variables to f, so we must
415 416
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
417

418 419 420 421
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
422

423 424 425 426
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
427 428

Why got to this trouble?  It's a common case, and it removes the
429
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
430 431 432 433
compilation, especially in a case where there are a *lot* of
bindings.


434 435 436 437 438 439 440 441
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
442
happen as a result of method sharing), there's a danger that we never
443 444 445 446
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
447
has the arity with which it is declared in the source code.  In this
448
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
449
should mean that (foo d) is a PAP and we don't share it.
450 451 452

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
453 454 455 456 457 458 459 460 461 462 463 464 465 466
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
523
The simplest thing is to return it in the polymorphic
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
541
-}
542

543
------------------------
544
dsSpecs :: CoreExpr     -- Its rhs
545
        -> TcSpecPrags
546 547
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
548
-- See Note [Handling SPECIALISE pragmas] in TcBinds
549 550 551 552 553 554
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

555 556 557
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
558 559 560
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
561
  | isJust (isClassOpId_maybe poly_id)
562 563
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
564 565
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
566 567
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
568

569 570
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
571 572 573
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
574
                            -- See Note [Activation pragmas for SPECIALISE]
575

576
  | otherwise
577
  = putSrcSpanDs loc $
578 579
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
580 581
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
582 583 584
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
585 586 587 588
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
589
           Left msg -> do { warnDs msg; return Nothing } ;
590
           Right (rule_bndrs, _fn, args) -> do
591

592
       { dflags <- getDynFlags
593
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
594 595 596 597
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
598 599 600
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
601
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
602
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
603 604 605
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
606

607
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
608

609 610 611 612
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
613 614 615 616 617

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
618 619 620 621
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
622
             = rhs          -- Local Id; this is its rhs
623 624
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
625 626 627
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
628
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
629
                            -- The type checker has checked that it *has* an unfolding
630

631 632 633 634 635
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
636
                                 -- in OccurAnal
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


654 655 656 657 658 659 660 661 662 663 664
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
665

666 667 668 669 670 671 672 673 674 675 676 677 678
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

679 680 681 682 683 684 685 686
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

687
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
709
SPEC [n] f :: ty            [n]   INLINE [k]
710 711 712 713 714 715 716 717 718 719
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
720 721
************************************************************************
*                                                                      *
722
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
723 724 725
*                                                                      *
************************************************************************
-}
726

727
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
728 729
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
730
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
731
--
732
-- Returns Nothing if the LHS isn't of the expected shape
733 734 735 736 737 738
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

739 740
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
741 742 743
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
744 745
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
746
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
747
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
748

749
  | otherwise
750
  = Left bad_shape_msg
751
 where
752 753 754 755
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

756 757
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
758

759
   orig_bndr_set = mkVarSet orig_bndrs
760

761
        -- Add extra dict binders: Note [Free dictionaries]
762 763 764 765 766 767 768 769 770 771 772 773
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
774 775

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
776 777
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
778
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
779
                             , ptext (sLit "is not bound in RULE lhs")])
780 781 782
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
783
   pp_bndr bndr
784 785 786
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
787 788

   drop_dicts :: CoreExpr -> CoreExpr
789
   drop_dicts e
790 791 792
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
793
       (bnds, body) = split_lets (occurAnalyseExpr e)
794
           -- The occurAnalyseExpr drops dead bindings which is
795 796
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
797 798

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
799 800
   split_lets (Let (NonRec d r) body)
     | isDictId d
801
     = ((d,r):bs, body')
802 803 804 805 806 807 808 809 810
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
811 812 813 814

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
815
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
816 817 818 819
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
820

Austin Seipp's avatar
Austin Seipp committed
821
{-
822
Note [Decomposing the left-hand side of a RULE]
823
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
824
There are several things going on here.
825 826
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
827
* extra_dict_bndrs: see Note [Free dictionaries]
828 829 830

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
831
drop_dicts drops dictionary bindings on the LHS where possible.
832 833
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
834
   Reasoning here is that there is only one d:Eq [Int], and so we can
835 836 837 838
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
839
         one of the orig_bndrs, which we assume occur on RHS.
840 841 842 843 844 845
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
846
         to match, but there is no other way to get d:Eq a
847

848
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
849 850 851 852 853 854
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
855
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
856 857 858 859 860 861
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
862
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
863 864
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

865 866 867
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

868 869 870 871 872 873 874 875 876 877
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
878
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
879 880 881 882 883 884
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


885 886 887 888
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

889
   (a) Inline any remaining dictionary bindings (which hopefully
890 891 892
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
893
       Note that we substitute the function too; we might
894 895
       have this as a LHS:  let f71 = M.f Int in f71

896
   (c) Do eta reduction.  To see why, consider the fold/build rule,
897 898 899 900
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
901
         augment g (build h)
902
       we do not want to get
903
         augment (\a. g a) (build h)
904 905
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
906

907
Note [Matching seqId]
908 909
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
910
and this code turns it back into an application of seq!
911 912
See Note [Rules for seq] in MkId for the details.

913 914 915
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
916
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
917
        ... SPECIALISE f :: Eq a => a -> a ...
918 919
It's true that this *is* a more specialised type, but the rule
we get is something like this:
920 921
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
922 923
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
924 925 926 927
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

928 929
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
930 931
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
932 933 934
over it too.  *Any* dict with that type will do.

So for example when you have
935 936
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
937
        ... SPECIALISE f :: Int -> Int ...
938 939

Then we get the SpecPrag
940
        SpecPrag (f Int dInt)
941 942

And from that we want the rule
943 944 945

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
946 947 948 949 950 951 952

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

Austin Seipp's avatar
Austin Seipp committed
953 954
************************************************************************
*                                                                      *
955
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
956 957
*                                                                      *
************************************************************************
958

Austin Seipp's avatar
Austin Seipp committed
959
-}
960

961
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
962
dsHsWrapper WpHole            e = return e
963 964 965
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
966 967 968 969
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2