Coercion.lhs 40.3 KB
Newer Older
1
%
2
3
% (c) The University of Glasgow 2006
%
4
5

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
6
7
8
9
10
11
12
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

13
14
-- | Module for (a) type kinds and (b) type coercions, 
-- as used in System FC. See 'CoreSyn.Expr' for
batterseapower's avatar
batterseapower committed
15
16
-- more on System FC and how coercions fit into it.
--
17
module Coercion (
batterseapower's avatar
batterseapower committed
18
        -- * Main data type
19
        Coercion(..), Var, CoVar,
20

dreixel's avatar
dreixel committed
21
        -- ** Functions over coercions
22
        coVarKind,
23
        coercionType, coercionKind, coercionKinds, isReflCo,
24
        isReflCo_maybe,
batterseapower's avatar
batterseapower committed
25
        mkCoercionType,
26

27
	-- ** Constructing coercions
28
        mkReflCo, mkCoVarCo, 
29
30
31
32
        mkAxInstCo, mkPiCo, mkPiCos,
        mkSymCo, mkTransCo, mkNthCo,
	mkInstCo, mkAppCo, mkTyConAppCo, mkFunCo,
        mkForAllCo, mkUnsafeCo,
batterseapower's avatar
batterseapower committed
33
        mkNewTypeCo, mkFamInstCo,
TomSchrijvers's avatar
TomSchrijvers committed
34

35
        -- ** Decomposition
36
        splitNewTypeRepCo_maybe, instNewTyCon_maybe, decomposeCo,
37
38
39
40
41
42
43
        getCoVar_maybe,

        splitTyConAppCo_maybe,
        splitAppCo_maybe,
        splitForAllCo_maybe,

	-- ** Coercion variables
44
	mkCoVar, isCoVar, isCoVarType, coVarName, setCoVarName, setCoVarUnique,
45
46
47
48
49
50
51
52
53
54

        -- ** Free variables
        tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo, coercionSize,
	
        -- ** Substitution
        CvSubstEnv, emptyCvSubstEnv, 
 	CvSubst(..), emptyCvSubst, Coercion.lookupTyVar, lookupCoVar,
	isEmptyCvSubst, zapCvSubstEnv, getCvInScope,
        substCo, substCos, substCoVar, substCoVars,
        substCoWithTy, substCoWithTys, 
55
56
	cvTvSubst, tvCvSubst, mkCvSubst, zipOpenCvSubst,
        substTy, extendTvSubst, extendCvSubstAndInScope,
57
58
59
	substTyVarBndr, substCoVarBndr,

	-- ** Lifting
60
	liftCoMatch, liftCoSubstTyVar, liftCoSubstWith, 
61
        
batterseapower's avatar
batterseapower committed
62
        -- ** Comparison
63
        coreEqCoercion, coreEqCoercion2,
64

65
66
67
68
        -- ** Forcing evaluation of coercions
        seqCo,
        
        -- * Pretty-printing
69
        pprCo, pprParendCo, pprCoAxiom, 
TomSchrijvers's avatar
TomSchrijvers committed
70

71
        -- * Other
batterseapower's avatar
batterseapower committed
72
        applyCo
73
74
75
76
       ) where 

#include "HsVersions.h"

77
import Unify	( MatchEnv(..), matchList )
78
import TypeRep
79
80
import qualified Type
import Type hiding( substTy, substTyVarBndr, extendTvSubst )
81
import TyCon
82
import Var
83
import VarEnv
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
84
import VarSet
85
86
import Maybes	( orElse )
import Name	( Name, NamedThing(..), nameUnique )
87
import OccName 	( parenSymOcc )
88
89
import Util
import BasicTypes
90
import Outputable
91
92
import Unique
import Pair
93
import PrelNames	( funTyConKey, eqPrimTyConKey )
94
95
96
import Control.Applicative
import Data.Traversable (traverse, sequenceA)
import Control.Arrow (second)
97
import FastString
98
99

import qualified Data.Data as Data hiding ( TyCon )
100
101
102
103
\end{code}

%************************************************************************
%*									*
104
            Coercions
105
106
%*									*
%************************************************************************
107

108
\begin{code}
109
110
-- | A 'Coercion' is concrete evidence of the equality/convertibility
-- of two types.
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
data Coercion 
  -- These ones mirror the shape of types
  = Refl Type  -- See Note [Refl invariant]
          -- Invariant: applications of (Refl T) to a bunch of identity coercions
          --            always show up as Refl.
          -- For example  (Refl T) (Refl a) (Refl b) shows up as (Refl (T a b)).

          -- Applications of (Refl T) to some coercions, at least one of
          -- which is NOT the identity, show up as TyConAppCo.
          -- (They may not be fully saturated however.)
          -- ConAppCo coercions (like all coercions other than Refl)
          -- are NEVER the identity.

  -- These ones simply lift the correspondingly-named 
  -- Type constructors into Coercions
  | TyConAppCo TyCon [Coercion]    -- lift TyConApp 
    	       -- The TyCon is never a synonym; 
	       -- we expand synonyms eagerly
130
	       -- But it can be a type function
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

  | AppCo Coercion Coercion        -- lift AppTy

  -- See Note [Forall coercions]
  | ForAllCo TyVar Coercion       -- forall a. g

  -- These are special
  | CoVarCo CoVar
  | AxiomInstCo CoAxiom [Coercion]  -- The coercion arguments always *precisely*
                                    -- saturate arity of CoAxiom.
                                    -- See [Coercion axioms applied to coercions]
  | UnsafeCo Type Type
  | SymCo Coercion
  | TransCo Coercion Coercion

  -- These are destructors
  | NthCo Int Coercion          -- Zero-indexed
  | InstCo Coercion Type
  deriving (Data.Data, Data.Typeable)
150
151
\end{code}

batterseapower's avatar
batterseapower committed
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
Note [Refl invariant]
~~~~~~~~~~~~~~~~~~~~~
Coercions have the following invariant 
     Refl is always lifted as far as possible.  

You might think that a consequencs is:
     Every identity coercions has Refl at the root

But that's not quite true because of coercion variables.  Consider
     g         where g :: Int~Int
     Left h    where h :: Maybe Int ~ Maybe Int
etc.  So the consequence is only true of coercions that
have no coercion variables.

Note [Coercion axioms applied to coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The reason coercion axioms can be applied to coercions and not just
types is to allow for better optimization.  There are some cases where
we need to be able to "push transitivity inside" an axiom in order to
expose further opportunities for optimization.  

For example, suppose we have

  C a : t[a] ~ F a
  g   : b ~ c

and we want to optimize

  sym (C b) ; t[g] ; C c

which has the kind

  F b ~ F c

(stopping through t[b] and t[c] along the way).

We'd like to optimize this to just F g -- but how?  The key is
that we need to allow axioms to be instantiated by *coercions*,
not just by types.  Then we can (in certain cases) push
transitivity inside the axiom instantiations, and then react
opposite-polarity instantiations of the same axiom.  In this
case, e.g., we match t[g] against the LHS of (C c)'s kind, to
obtain the substitution  a |-> g  (note this operation is sort
of the dual of lifting!) and hence end up with

  C g : t[b] ~ F c

which indeed has the same kind as  t[g] ; C c.

Now we have

  sym (C b) ; C g

which can be optimized to F g.


Note [Forall coercions]
~~~~~~~~~~~~~~~~~~~~~~~
Constructing coercions between forall-types can be a bit tricky.
Currently, the situation is as follows:

  ForAllCo TyVar Coercion

represents a coercion between polymorphic types, with the rule

           v : k       g : t1 ~ t2
  ----------------------------------------------
  ForAllCo v g : (all v:k . t1) ~ (all v:k . t2)

Note that it's only necessary to coerce between polymorphic types
where the type variables have identical kinds, because equality on
kinds is trivial.

226
227
228
229
230
231
232
233
234
Note [Predicate coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
   g :: a~b
How can we coerce between types
   ([c]~a) => [a] -> c
and
   ([c]~b) => [b] -> c
where the equality predicate *itself* differs?
235

236
237
Answer: we simply treat (~) as an ordinary type constructor, so these
types really look like
238

239
240
   ((~) [c] a) -> [a] -> c
   ((~) [c] b) -> [b] -> c
241

242
So the coercion between the two is obviously
243

244
   ((~) [c] g) -> [g] -> c
245

246
247
Another way to see this to say that we simply collapse predicates to
their representation type (see Type.coreView and Type.predTypeRep).
248

249
250
251
252
253
This collapse is done by mkPredCo; there is no PredCo constructor
in Coercion.  This is important because we need Nth to work on 
predicates too:
    Nth 1 ((~) [c] g) = g
See Simplify.simplCoercionF, which generates such selections.
254

dreixel's avatar
dreixel committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Suppose T :: * -> *, and g :: A ~ B
Then the coercion
   TyConAppCo T [g]      T g : T A ~ T B

Now suppose S :: forall k. k -> *, and g :: A ~ B
Then the coercion
   TyConAppCo S [Refl *, g]   T <*> g : T * A ~ T * B

Notice that the arguments to TyConAppCo are coercions, but the first
represents a *kind* coercion. Now, we don't allow any non-trivial kind
coercions, so it's an invariant that any such kind coercions are Refl.
Lint checks this. 

However it's inconvenient to insist that these kind coercions are always
*structurally* (Refl k), because the key function exprIsConApp_maybe
pushes coercions into constructor arguments, so 
       C k ty e |> g
may turn into
       C (Nth 0 g) ....
Now (Nth 0 g) will optimise to Refl, but perhaps not instantly.


279
280
%************************************************************************
%*									*
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
\subsection{Coercion variables}
%*									*
%************************************************************************

\begin{code}
coVarName :: CoVar -> Name
coVarName = varName

setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique

setCoVarName :: CoVar -> Name -> CoVar
setCoVarName   = setVarName

isCoVar :: Var -> Bool
isCoVar v = isCoVarType (varType v)

isCoVarType :: Type -> Bool
Simon Peyton Jones's avatar
Simon Peyton Jones committed
299
isCoVarType ty 	    -- Tests for t1 ~# t2, the unboxed equality
batterseapower's avatar
batterseapower committed
300
  | Just tc <- tyConAppTyCon_maybe ty = tc `hasKey` eqPrimTyConKey
301
  | otherwise                         = False
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
\end{code}


\begin{code}
tyCoVarsOfCo :: Coercion -> VarSet
-- Extracts type and coercion variables from a coercion
tyCoVarsOfCo (Refl ty)           = tyVarsOfType ty
tyCoVarsOfCo (TyConAppCo _ cos)  = tyCoVarsOfCos cos
tyCoVarsOfCo (AppCo co1 co2)     = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (ForAllCo tv co)    = tyCoVarsOfCo co `delVarSet` tv
tyCoVarsOfCo (CoVarCo v)         = unitVarSet v
tyCoVarsOfCo (AxiomInstCo _ cos) = tyCoVarsOfCos cos
tyCoVarsOfCo (UnsafeCo ty1 ty2)  = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
tyCoVarsOfCo (SymCo co)          = tyCoVarsOfCo co
tyCoVarsOfCo (TransCo co1 co2)   = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (NthCo _ co)        = tyCoVarsOfCo co
tyCoVarsOfCo (InstCo co ty)      = tyCoVarsOfCo co `unionVarSet` tyVarsOfType ty

tyCoVarsOfCos :: [Coercion] -> VarSet
tyCoVarsOfCos cos = foldr (unionVarSet . tyCoVarsOfCo) emptyVarSet cos

coVarsOfCo :: Coercion -> VarSet
-- Extract *coerction* variables only.  Tiresome to repeat the code, but easy.
coVarsOfCo (Refl _)            = emptyVarSet
coVarsOfCo (TyConAppCo _ cos)  = coVarsOfCos cos
coVarsOfCo (AppCo co1 co2)     = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (ForAllCo _ co)     = coVarsOfCo co
coVarsOfCo (CoVarCo v)         = unitVarSet v
coVarsOfCo (AxiomInstCo _ cos) = coVarsOfCos cos
coVarsOfCo (UnsafeCo _ _)      = emptyVarSet
coVarsOfCo (SymCo co)          = coVarsOfCo co
coVarsOfCo (TransCo co1 co2)   = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (NthCo _ co)        = coVarsOfCo co
coVarsOfCo (InstCo co _)       = coVarsOfCo co

coVarsOfCos :: [Coercion] -> VarSet
coVarsOfCos cos = foldr (unionVarSet . coVarsOfCo) emptyVarSet cos

coercionSize :: Coercion -> Int
coercionSize (Refl ty)           = typeSize ty
coercionSize (TyConAppCo _ cos)  = 1 + sum (map coercionSize cos)
coercionSize (AppCo co1 co2)     = coercionSize co1 + coercionSize co2
coercionSize (ForAllCo _ co)     = 1 + coercionSize co
coercionSize (CoVarCo _)         = 1
coercionSize (AxiomInstCo _ cos) = 1 + sum (map coercionSize cos)
coercionSize (UnsafeCo ty1 ty2)  = typeSize ty1 + typeSize ty2
coercionSize (SymCo co)          = 1 + coercionSize co
coercionSize (TransCo co1 co2)   = 1 + coercionSize co1 + coercionSize co2
coercionSize (NthCo _ co)        = 1 + coercionSize co
coercionSize (InstCo co ty)      = 1 + coercionSize co + typeSize ty
\end{code}

%************************************************************************
355
%*									*
356
357
                   Pretty-printing coercions
%*                                                                      *
358
359
%************************************************************************

360
361
362
363
364
@pprCo@ is the standard @Coercion@ printer; the overloaded @ppr@
function is defined to use this.  @pprParendCo@ is the same, except it
puts parens around the type, except for the atomic cases.
@pprParendCo@ works just by setting the initial context precedence
very high.
365
366

\begin{code}
367
368
369
370
371
372
373
374
instance Outputable Coercion where
  ppr = pprCo

pprCo, pprParendCo :: Coercion -> SDoc
pprCo       co = ppr_co TopPrec   co
pprParendCo co = ppr_co TyConPrec co

ppr_co :: Prec -> Coercion -> SDoc
375
ppr_co _ (Refl ty) = angleBrackets (ppr ty)
376

377
ppr_co p co@(TyConAppCo tc [_,_])
378
  | tc `hasKey` funTyConKey = ppr_fun_co p co
379

380
381
382
383
384
ppr_co p (TyConAppCo tc cos)   = pprTcApp   p ppr_co tc cos
ppr_co p (AppCo co1 co2)       = maybeParen p TyConPrec $
                                 pprCo co1 <+> ppr_co TyConPrec co2
ppr_co p co@(ForAllCo {})      = ppr_forall_co p co
ppr_co _ (CoVarCo cv)          = parenSymOcc (getOccName cv) (ppr cv)
385
386
387
388
389
390
391
392
393
ppr_co p (AxiomInstCo con cos) = pprTypeNameApp p ppr_co (getName con) cos

ppr_co p (TransCo co1 co2) = maybeParen p FunPrec $
                             ppr_co FunPrec co1
                             <+> ptext (sLit ";")
                             <+> ppr_co FunPrec co2
ppr_co p (InstCo co ty) = maybeParen p TyConPrec $
                          pprParendCo co <> ptext (sLit "@") <> pprType ty

394
395
ppr_co p (UnsafeCo ty1 ty2) = pprPrefixApp p (ptext (sLit "UnsafeCo")) 
                                           [pprParendType ty1, pprParendType ty2]
396
397
398
399
400
401
402
ppr_co p (SymCo co)         = pprPrefixApp p (ptext (sLit "Sym")) [pprParendCo co]
ppr_co p (NthCo n co)       = pprPrefixApp p (ptext (sLit "Nth:") <+> int n) [pprParendCo co]


ppr_fun_co :: Prec -> Coercion -> SDoc
ppr_fun_co p co = pprArrowChain p (split co)
  where
403
    split :: Coercion -> [SDoc]
404
405
406
407
408
409
410
411
    split (TyConAppCo f [arg,res])
      | f `hasKey` funTyConKey
      = ppr_co FunPrec arg : split res
    split co = [ppr_co TopPrec co]

ppr_forall_co :: Prec -> Coercion -> SDoc
ppr_forall_co p ty
  = maybeParen p FunPrec $
412
    sep [pprForAll tvs, ppr_co TopPrec rho]
413
414
415
416
417
418
  where
    (tvs,  rho) = split1 [] ty
    split1 tvs (ForAllCo tv ty) = split1 (tv:tvs) ty
    split1 tvs ty               = (reverse tvs, ty)
\end{code}

419
420
421
422
423
424
\begin{code}
pprCoAxiom :: CoAxiom -> SDoc
pprCoAxiom ax
  = sep [ ptext (sLit "axiom") <+> ppr ax <+> ppr (co_ax_tvs ax)
        , nest 2 (dcolon <+> pprEqPred (Pair (co_ax_lhs ax) (co_ax_rhs ax))) ]
\end{code}
425
426
427
428
429
430

%************************************************************************
%*									*
	Functions over Kinds		
%*									*
%************************************************************************
batterseapower's avatar
batterseapower committed
431

432
433
\begin{code}
-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into
434
-- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence:
batterseapower's avatar
batterseapower committed
435
--
436
-- > decomposeCo 3 c = [nth 0 c, nth 1 c, nth 2 c]
437
decomposeCo :: Arity -> Coercion -> [Coercion]
438
decomposeCo arity co = [mkNthCo n co | n <- [0..(arity-1)] ]
dreixel's avatar
dreixel committed
439
                       -- Remember, Nth is zero-indexed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

-- | Attempts to obtain the type variable underlying a 'Coercion'
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo cv) = Just cv  
getCoVar_maybe _            = Nothing

-- | Attempts to tease a coercion apart into a type constructor and the application
-- of a number of coercion arguments to that constructor
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
splitTyConAppCo_maybe (Refl ty)           = (fmap . second . map) Refl (splitTyConApp_maybe ty)
splitTyConAppCo_maybe (TyConAppCo tc cos) = Just (tc, cos)
splitTyConAppCo_maybe _                   = Nothing

splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
-- ^ Attempt to take a coercion application apart.
splitAppCo_maybe (AppCo co1 co2) = Just (co1, co2)
splitAppCo_maybe (TyConAppCo tc cos)
457
458
459
  | isDecomposableTyCon tc || cos `lengthExceeds` tyConArity tc 
  , Just (cos', co') <- snocView cos
  = Just (mkTyConAppCo tc cos', co')    -- Never create unsaturated type family apps!
460
461
462
       -- Use mkTyConAppCo to preserve the invariant
       --  that identity coercions are always represented by Refl
splitAppCo_maybe (Refl ty) 
463
464
  | Just (ty1, ty2) <- splitAppTy_maybe ty 
  = Just (Refl ty1, Refl ty2)
465
466
467
468
469
splitAppCo_maybe _ = Nothing

splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion)
splitForAllCo_maybe (ForAllCo tv co) = Just (tv, co)
splitForAllCo_maybe _                = Nothing
470
471
472
473

-------------------------------------------------------
-- and some coercion kind stuff

474
coVarKind :: CoVar -> (Type,Type) 
475
476
477
478
479
480
coVarKind cv
 | Just (tc, [_kind,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
 = ASSERT (tc `hasKey` eqPrimTyConKey)
   (ty1,ty2)
 | otherwise = panic "coVarKind, non coercion variable"

481
-- | Makes a coercion type from two types: the types whose equality 
482
-- is proven by the relevant 'Coercion'
batterseapower's avatar
batterseapower committed
483
484
mkCoercionType :: Type -> Type -> Type
mkCoercionType = curry mkPrimEqType
485

486
487
488
489
490
491
492
isReflCo :: Coercion -> Bool
isReflCo (Refl {}) = True
isReflCo _         = False

isReflCo_maybe :: Coercion -> Maybe Type
isReflCo_maybe (Refl ty) = Just ty
isReflCo_maybe _         = Nothing
493
\end{code}
494

495
496
497
498
499
%************************************************************************
%*									*
            Building coercions
%*									*
%************************************************************************
500

501
\begin{code}
502
mkCoVarCo :: CoVar -> Coercion
503
-- cv :: s ~# t
504
505
506
507
508
mkCoVarCo cv
  | ty1 `eqType` ty2 = Refl ty1
  | otherwise        = CoVarCo cv
  where
    (ty1, ty2) = ASSERT( isCoVar cv ) coVarKind cv
509

510
511
mkReflCo :: Type -> Coercion
mkReflCo = Refl
512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
mkAxInstCo :: CoAxiom -> [Type] -> Coercion
mkAxInstCo ax tys
  | arity == n_tys = AxiomInstCo ax rtys
  | otherwise      = ASSERT( arity < n_tys )
                     foldl AppCo (AxiomInstCo ax (take arity rtys))
                                 (drop arity rtys)
  where
    n_tys = length tys
    arity = coAxiomArity ax
    rtys  = map Refl tys

-- | Apply a 'Coercion' to another 'Coercion'.
mkAppCo :: Coercion -> Coercion -> Coercion
mkAppCo (Refl ty1) (Refl ty2)       = Refl (mkAppTy ty1 ty2)
mkAppCo (Refl (TyConApp tc tys)) co = TyConAppCo tc (map Refl tys ++ [co])
mkAppCo (TyConAppCo tc cos) co      = TyConAppCo tc (cos ++ [co])
mkAppCo co1 co2                     = AppCo co1 co2
-- Note, mkAppCo is careful to maintain invariants regarding
-- where Refl constructors appear; see the comments in the definition
-- of Coercion and the Note [Refl invariant] in types/TypeRep.lhs.
batterseapower's avatar
batterseapower committed
533
534

-- | Applies multiple 'Coercion's to another 'Coercion', from left to right.
535
536
537
-- See also 'mkAppCo'
mkAppCos :: Coercion -> [Coercion] -> Coercion
mkAppCos co1 tys = foldl mkAppCo co1 tys
538
539

-- | Apply a type constructor to a list of coercions.
540
541
542
543
mkTyConAppCo :: TyCon -> [Coercion] -> Coercion
mkTyConAppCo tc cos
	       -- Expand type synonyms
  | Just (tv_co_prs, rhs_ty, leftover_cos) <- tcExpandTyCon_maybe tc cos
544
  = mkAppCos (liftCoSubst tv_co_prs rhs_ty) leftover_cos
545
546
547
548
549

  | Just tys <- traverse isReflCo_maybe cos 
  = Refl (mkTyConApp tc tys)	-- See Note [Refl invariant]

  | otherwise = TyConAppCo tc cos
550
551

-- | Make a function 'Coercion' between two other 'Coercion's
552
553
mkFunCo :: Coercion -> Coercion -> Coercion
mkFunCo co1 co2 = mkTyConAppCo funTyCon [co1, co2]
batterseapower's avatar
batterseapower committed
554
555

-- | Make a 'Coercion' which binds a variable within an inner 'Coercion'
556
mkForAllCo :: Var -> Coercion -> Coercion
557
-- note that a TyVar should be used here, not a CoVar (nor a TcTyVar)
558
559
mkForAllCo tv (Refl ty) = ASSERT( isTyVar tv ) Refl (mkForAllTy tv ty)
mkForAllCo tv  co       = ASSERT ( isTyVar tv ) ForAllCo tv co
batterseapower's avatar
batterseapower committed
560

561
-------------------------------
batterseapower's avatar
batterseapower committed
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
-- | Create a symmetric version of the given 'Coercion' that asserts
--   equality between the same types but in the other "direction", so
--   a kind of @t1 ~ t2@ becomes the kind @t2 ~ t1@.
mkSymCo :: Coercion -> Coercion

-- Do a few simple optimizations, but don't bother pushing occurrences
-- of symmetry to the leaves; the optimizer will take care of that.
mkSymCo co@(Refl {})              = co
mkSymCo    (UnsafeCo ty1 ty2)    = UnsafeCo ty2 ty1
mkSymCo    (SymCo co)            = co
mkSymCo co                       = SymCo co

-- | Create a new 'Coercion' by composing the two given 'Coercion's transitively.
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo (Refl _) co = co
mkTransCo co (Refl _) = co
mkTransCo co1 co2     = TransCo co1 co2

mkNthCo :: Int -> Coercion -> Coercion
582
mkNthCo n (Refl ty) = Refl (tyConAppArgN n ty)
583
584
mkNthCo n co        = NthCo n co

585
-- | Instantiates a 'Coercion' with a 'Type' argument. 
586
mkInstCo :: Coercion -> Type -> Coercion
587
mkInstCo co ty = InstCo co ty
588
589
590
591
592
593
594
595
596

-- | Manufacture a coercion from thin air. Needless to say, this is
--   not usually safe, but it is used when we know we are dealing with
--   bottom, which is one case in which it is safe.  This is also used
--   to implement the @unsafeCoerce#@ primitive.  Optimise by pushing
--   down through type constructors.
mkUnsafeCo :: Type -> Type -> Coercion
mkUnsafeCo ty1 ty2 | ty1 `eqType` ty2 = Refl ty1
mkUnsafeCo (TyConApp tc1 tys1) (TyConApp tc2 tys2)
597
  | tc1 == tc2
598
  = mkTyConAppCo tc1 (zipWith mkUnsafeCo tys1 tys2)
599

600
601
mkUnsafeCo (FunTy a1 r1) (FunTy a2 r2)
  = mkFunCo (mkUnsafeCo a1 a2) (mkUnsafeCo r1 r2)
602

603
mkUnsafeCo ty1 ty2 = UnsafeCo ty1 ty2
604

605
-- See note [Newtype coercions] in TyCon
batterseapower's avatar
batterseapower committed
606

607
608
609
610
611
612
613
614
615
616
617
618
-- | Create a coercion constructor (axiom) suitable for the given
--   newtype 'TyCon'. The 'Name' should be that of a new coercion
--   'CoAxiom', the 'TyVar's the arguments expected by the @newtype@ and
--   the type the appropriate right hand side of the @newtype@, with
--   the free variables a subset of those 'TyVar's.
mkNewTypeCo :: Name -> TyCon -> [TyVar] -> Type -> CoAxiom
mkNewTypeCo name tycon tvs rhs_ty
  = CoAxiom { co_ax_unique = nameUnique name
            , co_ax_name   = name
            , co_ax_tvs    = tvs
            , co_ax_lhs    = mkTyConApp tycon (mkTyVarTys tvs)
            , co_ax_rhs    = rhs_ty }
619

batterseapower's avatar
batterseapower committed
620
-- | Create a coercion identifying a @data@, @newtype@ or @type@ representation type
621
-- and its family instance.  It has the form @Co tvs :: F ts ~ R tvs@, where @Co@ is 
622
-- the coercion constructor built here, @F@ the family tycon and @R@ the (derived)
623
-- representation tycon.
624
mkFamInstCo :: Name	-- ^ Unique name for the coercion tycon
batterseapower's avatar
batterseapower committed
625
626
627
628
		  -> [TyVar]	-- ^ Type parameters of the coercion (@tvs@)
		  -> TyCon	-- ^ Family tycon (@F@)
		  -> [Type]	-- ^ Type instance (@ts@)
		  -> TyCon	-- ^ Representation tycon (@R@)
629
630
631
632
633
634
635
636
637
638
639
640
641
642
		  -> CoAxiom	-- ^ Coercion constructor (@Co@)
mkFamInstCo name tvs family inst_tys rep_tycon
  = CoAxiom { co_ax_unique = nameUnique name
            , co_ax_name   = name
            , co_ax_tvs    = tvs
            , co_ax_lhs    = mkTyConApp family inst_tys 
            , co_ax_rhs    = mkTyConApp rep_tycon (mkTyVarTys tvs) }

mkPiCos :: [Var] -> Coercion -> Coercion
mkPiCos vs co = foldr mkPiCo co vs

mkPiCo  :: Var -> Coercion -> Coercion
mkPiCo v co | isTyVar v = mkForAllCo v co
            | otherwise = mkFunCo (mkReflCo (varType v)) co
643
\end{code}
644

645
646
647
648
649
%************************************************************************
%*									*
            Newtypes
%*									*
%************************************************************************
650

651
\begin{code}
652
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
batterseapower's avatar
batterseapower committed
653
654
655
-- ^ If @co :: T ts ~ rep_ty@ then:
--
-- > instNewTyCon_maybe T ts = Just (rep_ty, co)
656
instNewTyCon_maybe tc tys
657
  | Just (tvs, ty, co_tc) <- unwrapNewTyCon_maybe tc
658
  = ASSERT( tys `lengthIs` tyConArity tc )
659
    Just (substTyWith tvs tys ty, mkAxInstCo co_tc tys)
660
661
662
  | otherwise
  = Nothing

663
664
-- this is here to avoid module loops
splitNewTypeRepCo_maybe :: Type -> Maybe (Type, Coercion)  
batterseapower's avatar
batterseapower committed
665
666
667
668
669
670
671
672
-- ^ Sometimes we want to look through a @newtype@ and get its associated coercion.
-- This function only strips *one layer* of @newtype@ off, so the caller will usually call
-- itself recursively. Furthermore, this function should only be applied to types of kind @*@,
-- hence the newtype is always saturated. If @co : ty ~ ty'@ then:
--
-- > splitNewTypeRepCo_maybe ty = Just (ty', co)
--
-- The function returns @Nothing@ for non-@newtypes@ or fully-transparent @newtype@s.
673
674
675
splitNewTypeRepCo_maybe ty 
  | Just ty' <- coreView ty = splitNewTypeRepCo_maybe ty'
splitNewTypeRepCo_maybe (TyConApp tc tys)
676
677
678
  | Just (ty', co) <- instNewTyCon_maybe tc tys
  = case co of
	Refl _ -> panic "splitNewTypeRepCo_maybe"
679
			-- This case handled by coreView
680
	_      -> Just (ty', co)
681
splitNewTypeRepCo_maybe _
682
  = Nothing
683

batterseapower's avatar
batterseapower committed
684
-- | Determines syntactic equality of coercions
685
coreEqCoercion :: Coercion -> Coercion -> Bool
686
687
coreEqCoercion co1 co2 = coreEqCoercion2 rn_env co1 co2
  where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2))
688
689

coreEqCoercion2 :: RnEnv2 -> Coercion -> Coercion -> Bool
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
coreEqCoercion2 env (Refl ty1) (Refl ty2) = eqTypeX env ty1 ty2
coreEqCoercion2 env (TyConAppCo tc1 cos1) (TyConAppCo tc2 cos2)
  = tc1 == tc2 && all2 (coreEqCoercion2 env) cos1 cos2

coreEqCoercion2 env (AppCo co11 co12) (AppCo co21 co22)
  = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22

coreEqCoercion2 env (ForAllCo v1 co1) (ForAllCo v2 co2)
  = coreEqCoercion2 (rnBndr2 env v1 v2) co1 co2

coreEqCoercion2 env (CoVarCo cv1) (CoVarCo cv2)
  = rnOccL env cv1 == rnOccR env cv2

coreEqCoercion2 env (AxiomInstCo con1 cos1) (AxiomInstCo con2 cos2)
  = con1 == con2
    && all2 (coreEqCoercion2 env) cos1 cos2

coreEqCoercion2 env (UnsafeCo ty11 ty12) (UnsafeCo ty21 ty22)
  = eqTypeX env ty11 ty21 && eqTypeX env ty12 ty22
TomSchrijvers's avatar
TomSchrijvers committed
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
coreEqCoercion2 env (SymCo co1) (SymCo co2)
  = coreEqCoercion2 env co1 co2

coreEqCoercion2 env (TransCo co11 co12) (TransCo co21 co22)
  = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22

coreEqCoercion2 env (NthCo d1 co1) (NthCo d2 co2)
  = d1 == d2 && coreEqCoercion2 env co1 co2

coreEqCoercion2 env (InstCo co1 ty1) (InstCo co2 ty2)
  = coreEqCoercion2 env co1 co2 && eqTypeX env ty1 ty2

coreEqCoercion2 _ _ _ = False
\end{code}
TomSchrijvers's avatar
TomSchrijvers committed
724

725
726
%************************************************************************
%*									*
727
728
                   Substitution of coercions
%*                                                                      *
729
730
%************************************************************************

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
\begin{code}
-- | A substitution of 'Coercion's for 'CoVar's (OR 'TyVar's, when
--   doing a \"lifting\" substitution)
type CvSubstEnv = VarEnv Coercion

emptyCvSubstEnv :: CvSubstEnv
emptyCvSubstEnv = emptyVarEnv

data CvSubst 		
  = CvSubst InScopeSet 	-- The in-scope type variables
	    TvSubstEnv	-- Substitution of types
            CvSubstEnv  -- Substitution of coercions

instance Outputable CvSubst where
  ppr (CvSubst ins tenv cenv)
    = brackets $ sep[ ptext (sLit "CvSubst"),
		      nest 2 (ptext (sLit "In scope:") <+> ppr ins), 
		      nest 2 (ptext (sLit "Type env:") <+> ppr tenv),
		      nest 2 (ptext (sLit "Coercion env:") <+> ppr cenv) ]

emptyCvSubst :: CvSubst
emptyCvSubst = CvSubst emptyInScopeSet emptyVarEnv emptyVarEnv

isEmptyCvSubst :: CvSubst -> Bool
isEmptyCvSubst (CvSubst _ tenv cenv) = isEmptyVarEnv tenv && isEmptyVarEnv cenv

getCvInScope :: CvSubst -> InScopeSet
getCvInScope (CvSubst in_scope _ _) = in_scope

zapCvSubstEnv :: CvSubst -> CvSubst
zapCvSubstEnv (CvSubst in_scope _ _) = CvSubst in_scope emptyVarEnv emptyVarEnv

cvTvSubst :: CvSubst -> TvSubst
cvTvSubst (CvSubst in_scope tvs _) = TvSubst in_scope tvs

tvCvSubst :: TvSubst -> CvSubst
tvCvSubst (TvSubst in_scope tenv) = CvSubst in_scope tenv emptyCvSubstEnv

extendTvSubst :: CvSubst -> TyVar -> Type -> CvSubst
extendTvSubst (CvSubst in_scope tenv cenv) tv ty
  = CvSubst in_scope (extendVarEnv tenv tv ty) cenv

773
774
775
776
777
778
779
extendCvSubstAndInScope :: CvSubst -> CoVar -> Coercion -> CvSubst
-- Also extends the in-scope set
extendCvSubstAndInScope (CvSubst in_scope tenv cenv) cv co
  = CvSubst (in_scope `extendInScopeSetSet` tyCoVarsOfCo co)
            tenv
            (extendVarEnv cenv cv co)

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
substCoVarBndr :: CvSubst -> CoVar -> (CvSubst, CoVar)
substCoVarBndr subst@(CvSubst in_scope tenv cenv) old_var
  = ASSERT( isCoVar old_var )
    (CvSubst (in_scope `extendInScopeSet` new_var) tenv new_cenv, new_var)
  where
    -- When we substitute (co :: t1 ~ t2) we may get the identity (co :: t ~ t)
    -- In that case, mkCoVarCo will return a ReflCoercion, and
    -- we want to substitute that (not new_var) for old_var
    new_co    = mkCoVarCo new_var
    no_change = new_var == old_var && not (isReflCo new_co)

    new_cenv | no_change = delVarEnv cenv old_var
             | otherwise = extendVarEnv cenv old_var new_co

    new_var = uniqAway in_scope subst_old_var
    subst_old_var = mkCoVar (varName old_var) (substTy subst (varType old_var))
		  -- It's important to do the substitution for coercions,
797
		  -- because they can have free type variables
798
799
800
801
802
803

substTyVarBndr :: CvSubst -> TyVar -> (CvSubst, TyVar)
substTyVarBndr (CvSubst in_scope tenv cenv) old_var
  = case Type.substTyVarBndr (TvSubst in_scope tenv) old_var of
      (TvSubst in_scope' tenv', new_var) -> (CvSubst in_scope' tenv' cenv, new_var)

804
805
806
mkCvSubst :: InScopeSet -> [(Var,Coercion)] -> CvSubst
mkCvSubst in_scope prs = CvSubst in_scope Type.emptyTvSubstEnv (mkVarEnv prs)

807
808
809
810
811
812
813
zipOpenCvSubst :: [Var] -> [Coercion] -> CvSubst
zipOpenCvSubst vs cos
  | debugIsOn && (length vs /= length cos)
  = pprTrace "zipOpenCvSubst" (ppr vs $$ ppr cos) emptyCvSubst
  | otherwise 
  = CvSubst (mkInScopeSet (tyCoVarsOfCos cos)) emptyTvSubstEnv (zipVarEnv vs cos)

814
815
substCoWithTy :: InScopeSet -> TyVar -> Type -> Coercion -> Coercion
substCoWithTy in_scope tv ty = substCoWithTys in_scope [tv] [ty]
816

817
818
substCoWithTys :: InScopeSet -> [TyVar] -> [Type] -> Coercion -> Coercion
substCoWithTys in_scope tvs tys co
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
  | debugIsOn && (length tvs /= length tys)
  = pprTrace "substCoWithTys" (ppr tvs $$ ppr tys) co
  | otherwise 
  = ASSERT( length tvs == length tys )
    substCo (CvSubst in_scope (zipVarEnv tvs tys) emptyVarEnv) co

-- | Substitute within a 'Coercion'
substCo :: CvSubst -> Coercion -> Coercion
substCo subst co | isEmptyCvSubst subst = co
                 | otherwise            = subst_co subst co

-- | Substitute within several 'Coercion's
substCos :: CvSubst -> [Coercion] -> [Coercion]
substCos subst cos | isEmptyCvSubst subst = cos
                   | otherwise            = map (substCo subst) cos

substTy :: CvSubst -> Type -> Type
substTy subst = Type.substTy (cvTvSubst subst)

subst_co :: CvSubst -> Coercion -> Coercion
subst_co subst co
  = go co
  where
    go_ty :: Type -> Type
    go_ty = Coercion.substTy subst

    go :: Coercion -> Coercion
    go (Refl ty)             = Refl $! go_ty ty
    go (TyConAppCo tc cos)   = let args = map go cos
                               in  args `seqList` TyConAppCo tc args
    go (AppCo co1 co2)       = mkAppCo (go co1) $! go co2
    go (ForAllCo tv co)      = case substTyVarBndr subst tv of
                                 (subst', tv') ->
                                   ForAllCo tv' $! subst_co subst' co
    go (CoVarCo cv)          = substCoVar subst cv
    go (AxiomInstCo con cos) = AxiomInstCo con $! map go cos
    go (UnsafeCo ty1 ty2)    = (UnsafeCo $! go_ty ty1) $! go_ty ty2
    go (SymCo co)            = mkSymCo (go co)
    go (TransCo co1 co2)     = mkTransCo (go co1) (go co2)
    go (NthCo d co)          = mkNthCo d (go co)
    go (InstCo co ty)        = mkInstCo (go co) $! go_ty ty

substCoVar :: CvSubst -> CoVar -> Coercion
substCoVar (CvSubst in_scope _ cenv) cv
  | Just co  <- lookupVarEnv cenv cv      = co
  | Just cv1 <- lookupInScope in_scope cv = ASSERT( isCoVar cv1 ) CoVarCo cv1
865
  | otherwise = WARN( True, ptext (sLit "substCoVar not in scope") <+> ppr cv $$ ppr in_scope)
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
                ASSERT( isCoVar cv ) CoVarCo cv

substCoVars :: CvSubst -> [CoVar] -> [Coercion]
substCoVars subst cvs = map (substCoVar subst) cvs

lookupTyVar :: CvSubst -> TyVar  -> Maybe Type
lookupTyVar (CvSubst _ tenv _) tv = lookupVarEnv tenv tv

lookupCoVar :: CvSubst -> Var  -> Maybe Coercion
lookupCoVar (CvSubst _ _ cenv) v = lookupVarEnv cenv v
\end{code}

%************************************************************************
%*									*
                   "Lifting" substitution
	   [(TyVar,Coercion)] -> Type -> Coercion
%*                                                                      *
%************************************************************************
TomSchrijvers's avatar
TomSchrijvers committed
884
885

\begin{code}
886
887
888
889
890
891
data LiftCoSubst = LCS InScopeSet LiftCoEnv

type LiftCoEnv = VarEnv Coercion
     -- Maps *type variables* to *coercions*
     -- That's the whole point of this function!

892
liftCoSubstWith :: [TyVar] -> [Coercion] -> Type -> Coercion
893
894
895
896
897
898
899
900
liftCoSubstWith tvs cos ty
  = liftCoSubst (zipEqual "liftCoSubstWith" tvs cos) ty

liftCoSubst :: [(TyVar,Coercion)] -> Type -> Coercion
liftCoSubst prs ty
 | null prs  = Refl ty
 | otherwise = ty_co_subst (LCS (mkInScopeSet (tyCoVarsOfCos (map snd prs)))
                                (mkVarEnv prs)) ty
901
902
903

-- | The \"lifting\" operation which substitutes coercions for type
--   variables in a type to produce a coercion.
batterseapower's avatar
batterseapower committed
904
--
905
--   For the inverse operation, see 'liftCoMatch' 
906
ty_co_subst :: LiftCoSubst -> Type -> Coercion
907
908
909
910
ty_co_subst subst ty
  = go ty
  where
    go (TyVarTy tv)      = liftCoSubstTyVar subst tv `orElse` Refl (TyVarTy tv)
911
912
       			     -- A type variable from a non-cloned forall
			     -- won't be in the substitution
913
914
    go (AppTy ty1 ty2)   = mkAppCo (go ty1) (go ty2)
    go (TyConApp tc tys) = mkTyConAppCo tc (map go tys)
dreixel's avatar
dreixel committed
915
916
917
                           -- IA0_NOTE: Do we need to do anything
                           -- about kind instantiations? I don't think
                           -- so.  see Note [Kind coercions]
918
919
920
921
    go (FunTy ty1 ty2)   = mkFunCo (go ty1) (go ty2)
    go (ForAllTy v ty)   = mkForAllCo v' $! (ty_co_subst subst' ty)
                         where
                           (subst', v') = liftCoSubstTyVarBndr subst v
922
    go ty@(LiteralTy _)  = mkReflCo ty
923

924
925
926
927
928
929
liftCoSubstTyVar :: LiftCoSubst -> TyVar -> Maybe Coercion
liftCoSubstTyVar (LCS _ cenv) tv = lookupVarEnv cenv tv 

liftCoSubstTyVarBndr :: LiftCoSubst -> TyVar -> (LiftCoSubst, TyVar)
liftCoSubstTyVarBndr (LCS in_scope cenv) old_var
  = (LCS (in_scope `extendInScopeSet` new_var) new_cenv, new_var)		
930
  where
931
932
    new_cenv | no_change = delVarEnv cenv old_var
	     | otherwise = extendVarEnv cenv old_var (Refl (TyVarTy new_var))
933
934
935
936
937
938
939
940
941
942
943

    no_change = new_var == old_var
    new_var = uniqAway in_scope old_var
\end{code}

\begin{code}
-- | 'liftCoMatch' is sort of inverse to 'liftCoSubst'.  In particular, if
--   @liftCoMatch vars ty co == Just s@, then @tyCoSubst s ty == co@.
--   That is, it matches a type against a coercion of the same
--   "shape", and returns a lifting substitution which could have been
--   used to produce the given coercion from the given type.
944
liftCoMatch :: TyVarSet -> Type -> Coercion -> Maybe LiftCoSubst
945
liftCoMatch tmpls ty co 
946
947
948
  = case ty_co_match menv emptyVarEnv ty co of
      Just cenv -> Just (LCS in_scope cenv)
      Nothing   -> Nothing
949
950
951
952
953
954
955
  where
    menv     = ME { me_tmpls = tmpls, me_env = mkRnEnv2 in_scope }
    in_scope = mkInScopeSet (tmpls `unionVarSet` tyCoVarsOfCo co)
    -- Like tcMatchTy, assume all the interesting variables 
    -- in ty are in tmpls

-- | 'ty_co_match' does all the actual work for 'liftCoMatch'.
956
957
958
ty_co_match :: MatchEnv -> LiftCoEnv -> Type -> Coercion -> Maybe LiftCoEnv
ty_co_match menv subst ty co 
  | Just ty' <- coreView ty = ty_co_match menv subst ty' co
959
960

  -- Match a type variable against a non-refl coercion
961
ty_co_match menv cenv (TyVarTy tv1) co
962
963
  | Just co1' <- lookupVarEnv cenv tv1'      -- tv1' is already bound to co1
  = if coreEqCoercion2 (nukeRnEnvL rn_env) co1' co
964
    then Just cenv
965
966
967
968
969
    else Nothing       -- no match since tv1 matches two different coercions

  | tv1' `elemVarSet` me_tmpls menv           -- tv1' is a template var
  = if any (inRnEnvR rn_env) (varSetElems (tyCoVarsOfCo co))
    then Nothing      -- occurs check failed
970
    else return (extendVarEnv cenv tv1' co)
971
972
973
974
975
976
977
        -- BAY: I don't think we need to do any kind matching here yet
        -- (compare 'match'), but we probably will when moving to SHE.

  | otherwise    -- tv1 is not a template ty var, so the only thing it
                 -- can match is a reflexivity coercion for itself.
		 -- But that case is dealt with already
  = Nothing
978
979

  where
980
981
982
    rn_env = me_env menv
    tv1' = rnOccL rn_env tv1

983
984
ty_co_match menv subst (AppTy ty1 ty2) co
  | Just (co1, co2) <- splitAppCo_maybe co	-- c.f. Unify.match on AppTy
985
986
  = do { subst' <- ty_co_match menv subst ty1 co1 
       ; ty_co_match menv subst' ty2 co2 }
TomSchrijvers's avatar
TomSchrijvers committed
987

988
989
ty_co_match menv subst (TyConApp tc1 tys) (TyConAppCo tc2 cos)
  | tc1 == tc2 = ty_co_matches menv subst tys cos
TomSchrijvers's avatar
TomSchrijvers committed
990

991
992
ty_co_match menv subst (FunTy ty1 ty2) (TyConAppCo tc cos)
  | tc == funTyCon = ty_co_matches menv subst [ty1,ty2] cos
993

994
995
996
997
ty_co_match menv subst (ForAllTy tv1 ty) (ForAllCo tv2 co) 
  = ty_co_match menv' subst ty co
  where
    menv' = menv { me_env = rnBndr2 (me_env menv) tv1 tv2 }
998

999
1000
1001
ty_co_match menv subst ty co
  | Just co' <- pushRefl co = ty_co_match menv subst ty co'
  | otherwise               = Nothing
1002

1003
ty_co_matches :: MatchEnv -> LiftCoEnv -> [Type] -> [Coercion] -> Maybe LiftCoEnv
1004
ty_co_matches menv = matchList (ty_co_match menv)
1005
1006
1007
1008
1009
1010
1011

pushRefl :: Coercion -> Maybe Coercion
pushRefl (Refl (AppTy ty1 ty2))   = Just (AppCo (Refl ty1) (Refl ty2))
pushRefl (Refl (FunTy ty1 ty2))   = Just (TyConAppCo funTyCon [Refl ty1, Refl ty2])
pushRefl (Refl (TyConApp tc tys)) = Just (TyConAppCo tc (map Refl tys))
pushRefl (Refl (ForAllTy tv ty))  = Just (ForAllCo tv (Refl ty))
pushRefl _                        = Nothing
TomSchrijvers's avatar
TomSchrijvers committed
1012
\end{code}
1013
1014

%************************************************************************
1015
%*									*
1016
            Sequencing on coercions
1017
%*									*
1018
1019
1020
%************************************************************************

\begin{code}
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
seqCo :: Coercion -> ()
seqCo (Refl ty)             = seqType ty
seqCo (TyConAppCo tc cos)   = tc `seq` seqCos cos
seqCo (AppCo co1 co2)       = seqCo co1 `seq` seqCo co2
seqCo (ForAllCo tv co)      = tv `seq` seqCo co
seqCo (CoVarCo cv)          = cv `seq` ()
seqCo (AxiomInstCo con cos) = con `seq` seqCos cos
seqCo (UnsafeCo ty1 ty2)    = seqType ty1 `seq` seqType ty2
seqCo (SymCo co)            = seqCo co
seqCo (TransCo co1 co2)     = seqCo co1 `seq` seqCo co2
seqCo (NthCo _ co)          = seqCo co
seqCo (InstCo co ty)        = seqCo co `seq` seqType ty

seqCos :: [Coercion] -> ()
seqCos []       = ()
seqCos (co:cos) = seqCo co `seq` seqCos cos
\end{code}
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

%************************************************************************
%*									*
	     The kind of a type, and of a coercion
%*									*
%************************************************************************

\begin{code}
coercionType :: Coercion -> Type
coercionType co = case coercionKind co of
batterseapower's avatar
batterseapower committed
1049
                    Pair ty1 ty2 -> mkCoercionType ty1 ty2
1050
1051
1052
1053
1054
1055

------------------
-- | If it is the case that
--
-- > c :: (t1 ~ t2)
--
1056
-- i.e. the kind of @c@ relates @t1@ and @t2@, then @coercionKind c = Pair t1 t2@.
1057
1058

coercionKind :: Coercion -> Pair Type 
1059
coercionKind co = go co
1060
1061
1062
1063
1064
  where 
    go (Refl ty)            = Pair ty ty
    go (TyConAppCo tc cos)  = mkTyConApp tc <$> (sequenceA $ map go cos)
    go (AppCo co1 co2)      = mkAppTy <$> go co1 <*> go co2
    go (ForAllCo tv co)     = mkForAllTy tv <$> go co
1065
    go (CoVarCo cv)         = toPair $ coVarKind cv
1066
1067
1068
1069
1070
1071
    go (AxiomInstCo ax cos) = let Pair tys1 tys2 = sequenceA $ map go cos 
                              in  Pair (substTyWith (co_ax_tvs ax) tys1 (co_ax_lhs ax)) 
                                       (substTyWith (co_ax_tvs ax) tys2 (co_ax_rhs ax))
    go (UnsafeCo ty1 ty2)   = Pair ty1 ty2
    go (SymCo co)           = swap $ go co
    go (TransCo co1 co2)    = Pair (pFst $ go co1) (pSnd $ go co2)
1072
    go (NthCo d co)         = tyConAppArgN d <$> go co
1073
1074
1075
1076
1077
1078
1079
    go (InstCo aco ty)      = go_app aco [ty]

    go_app :: Coercion -> [Type] -> Pair Type
    -- Collect up all the arguments and apply all at once
    -- See Note [Nested InstCos]
    go_app (InstCo co ty) tys = go_app co (ty:tys)
    go_app co             tys = (`applyTys` tys) <$> go co
1080
1081

-- | Apply 'coercionKind' to multiple 'Coercion's
1082
1083
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds tys = sequenceA $ map coercionKind tys
1084
\end{code}
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
Note [Nested InstCos]
~~~~~~~~~~~~~~~~~~~~~
In Trac #5631 we found that 70% of the entire compilation time was
being spent in coercionKind!  The reason was that we had
   (g @ ty1 @ ty2 .. @ ty100)    -- The "@s" are InstCos
where 
   g :: forall a1 a2 .. a100. phi
If we deal with the InstCos one at a time, we'll do this:
   1.  Find the kind of (g @ ty1 .. @ ty99) : forall a100. phi'
   2.  Substitute phi'[ ty100/a100 ], a single tyvar->type subst
But this is a *quadratic* algorithm, and the blew up Trac #5631.
So it's very important to do the substitution simultaneously.

cf Type.applyTys (which in fact we call here)


1102
1103
1104
1105
1106
1107
\begin{code}
applyCo :: Type -> Coercion -> Type
-- Gives the type of (e co) where e :: (a~b) => ty
applyCo ty co | Just ty' <- coreView ty = applyCo ty' co
applyCo (FunTy _ ty) _ = ty
applyCo _            _ = panic "applyCo"
batterseapower's avatar
batterseapower committed
1108
\end{code}
dreixel's avatar
dreixel committed
1109
1110
1111
1112
1113
1114

Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Kind coercions are only of the form: Refl kind. They are only used to
instantiate kind polymorphic type constructors in TyConAppCo. Remember
that kind instantiation only happens with TyConApp, not AppTy.