DsBinds.hs 47.4 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import IdInfo   ( IdDetails(..) )
53
import VarSet
Simon Marlow's avatar
Simon Marlow committed
54
import Rules
55
import VarEnv
56
import Outputable
57
import Module
Simon Marlow's avatar
Simon Marlow committed
58 59
import SrcLoc
import Maybes
60
import OrdList
Simon Marlow's avatar
Simon Marlow committed
61 62
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
63
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
64
import FastString
65
import Util
66
import MonadUtils
67
import qualified GHC.LanguageExtensions as LangExt
68
import Control.Monad
69

70
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
71
*                                                                      *
72
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
73
*                                                                      *
74
**********************************************************************-}
75

76 77
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
78
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
79
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
80

81 82 83 84 85 86
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
87 88

------------------------
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
115 116
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
117
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
118
                   | otherwise         = var
119
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
120
              force_var = if xopt LangExt.Strict dflags
121 122 123 124 125 126
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
127
                  , fun_co_fn = co_fn, fun_tick = tick })
128
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
129
        ; let body' = mkOptTickBox tick body
130
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
131 132
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
133
                if xopt LangExt.Strict dflags
134 135 136
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
137
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
138
           return (force_var, [core_binds]) }
139

140 141
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
142
                  , pat_ticks = (rhs_tick, var_ticks) })
143
  = do  { body_expr <- dsGuarded grhss ty
144
        ; let body' = mkOptTickBox rhs_tick body_expr
145 146 147
              (is_strict,pat') = getUnBangedLPat dflags pat
        ; (force_var,sel_binds) <-
            mkSelectorBinds is_strict var_ticks pat' body'
148 149
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
150 151 152 153
        ; let force_var' = if is_strict
                           then maybe [] (\v -> [v]) force_var
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
154

155
        -- A common case: one exported variable, only non-strict binds
156 157 158
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
159 160
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
161 162
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
163
  | ABE { abe_inst_wrap = inst_wrap, abe_wrap = wrap, abe_poly = global
164
        , abe_mono = local, abe_prags = prags } <- export
165
  , not (xopt LangExt.Strict dflags)             -- handle strict binds
166
  , not (anyBag (isBangedPatBind . unLoc) binds) -- in the next case
167
  = -- push type constraints deeper for pattern match check
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
168
    -- See Note [AbsBinds wrappers] in HsBinds
169 170
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (_, bind_prs) <- ds_lhs_binds binds
171
        ; let core_bind = Rec bind_prs
172
        ; ds_binds <- dsTcEvBinds_s ev_binds
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
173 174 175
        ; inner_rhs <- dsHsWrapper inst_wrap $
                       Let core_bind $
                       Var local
176
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
177 178
                 mkLams tyvars $ mkLams dicts $
                 mkCoreLets ds_binds $
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
179
                 inner_rhs
180

181 182
        ; (spec_binds, rules) <- dsSpecs rhs prags

183
        ; let   global'  = addIdSpecialisations global rules
184 185 186
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

187
        ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
188

189 190
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
191 192
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
193
         -- See Note [Desugaring AbsBinds]
194 195 196
  = -- push type constraints deeper for pattern match check
    addDictsDs (toTcTypeBag (listToBag dicts)) $
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
197
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
198
                              | (lcl_id, rhs) <- bind_prs ]
199
                -- Monomorphic recursion possible, hence Rec
200
              new_force_vars = get_new_force_vars local_force_vars
201
              locals       = map abe_mono exports
202 203
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
204
              tup_ty       = exprType tup_expr
205
        ; ds_binds <- dsTcEvBinds_s ev_binds
206 207 208 209
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
210

211
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
212

213 214 215 216 217
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
218 219
        ; let mk_bind (ABE { abe_inst_wrap = inst_wrap, abe_wrap = wrap
                           , abe_poly = global
220
                           , abe_mono = local, abe_prags = spec_prags })
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
221
                         -- See Note [AbsBinds wrappers] in HsBinds
222
                = do { tup_id  <- newSysLocalDs tup_ty
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
223 224 225
                     ; inner_rhs <- dsHsWrapper inst_wrap $
                                    mkTupleSelector all_locals local tup_id $
                                    mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
226
                     ; rhs <- dsHsWrapper wrap $
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
227 228
                              mkLams tyvars $ mkLams dicts $
                              inner_rhs
229
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
230 231
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
232 233 234
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
235
                           -- Id is just the selector.  Hmm.
236
                     ; return ((global', rhs) : fromOL spec_binds) }
237

238
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
239

240 241 242
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
243 244 245 246 247
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
248 249 250 251
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
252 253

    add_inline :: Id -> Id    -- tran
254 255
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
287
                     ,abe_inst_wrap = WpHole
288 289 290 291
                     ,abe_prags = SpecPrags []})

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
292

293
------------------------
294 295
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
296
  | is_default_method                 -- Default methods are *always* inlined
297 298
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

299
  | DFunId is_newtype <- idDetails gbl_id
300 301
  = (mk_dfun_w_stuff is_newtype, rhs)

302 303
  | otherwise
  = case inlinePragmaSpec inline_prag of
304 305 306
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
307
          Inline          -> inline_pair
308

309 310
  where
    inline_prag   = idInlinePragma gbl_id
311
    inlinable_unf = mkInlinableUnfolding dflags rhs
312 313
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
314 315
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
316
       , let real_arity = dict_arity + arity
317
        -- NB: The arity in the InlineRule takes account of the dictionaries
318 319 320 321 322 323
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
324

325 326 327
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
328
       | is_newtype
329 330 331 332 333 334 335 336 337 338 339 340
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

341 342 343 344

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
345

Austin Seipp's avatar
Austin Seipp committed
346
{-
347 348
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
349 350 351 352 353 354 355 356
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

357 358 359 360 361
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
362 363
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
364
But we don't want that, because if M.f isn't exported,
365 366
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
367 368 369
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
370 371 372
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
373 374 375 376
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
377
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
378
Although I'm a bit worried about whether full laziness might
379
float the f_lcl binding out and then inline M.f at its call site
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

395
The top-level AbsBinds for $cround has no tyvars or dicts (because the
396 397 398 399 400 401 402
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

403 404 405 406 407
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
408 409 410

and desugar it to

411 412 413
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
414 415

where B is the *non-recursive* binding
416 417 418
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
419 420

Notice (a) g has a different number of type variables to f, so we must
421 422
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
423

424 425 426 427
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
428

429 430 431 432
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
433 434

Why got to this trouble?  It's a common case, and it removes the
435
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
436 437 438 439
compilation, especially in a case where there are a *lot* of
bindings.


440 441 442 443 444 445 446 447
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
448
happen as a result of method sharing), there's a danger that we never
449 450 451 452
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
453
has the arity with which it is declared in the source code.  In this
454
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
455
should mean that (foo d) is a PAP and we don't share it.
456 457 458

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
459 460 461 462 463 464 465 466 467 468 469 470 471 472
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
529
The simplest thing is to return it in the polymorphic
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
547
-}
548

549
------------------------
550
dsSpecs :: CoreExpr     -- Its rhs
551
        -> TcSpecPrags
552 553
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
554
-- See Note [Handling SPECIALISE pragmas] in TcBinds
555 556 557 558 559 560
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

561 562 563
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
564 565 566
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
567
  | isJust (isClassOpId_maybe poly_id)
568 569
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
570 571
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
572 573
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
574

575 576
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
577 578 579
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
580
                            -- See Note [Activation pragmas for SPECIALISE]
581

582
  | otherwise
583
  = putSrcSpanDs loc $
584 585
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
586 587
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
588 589 590
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
591 592 593 594
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
595
           Left msg -> do { warnDs msg; return Nothing } ;
596
           Right (rule_bndrs, _fn, args) -> do
597

598
       { dflags <- getDynFlags
599
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
600 601 602 603
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
604 605 606
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
607
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
608
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
609 610 611
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
612

613
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
614

615 616 617 618
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
619 620 621 622 623

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
624 625 626 627
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
628
             = rhs          -- Local Id; this is its rhs
629 630
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
631 632 633
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
634
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
635
                            -- The type checker has checked that it *has* an unfolding
636

637 638 639 640 641
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
642
                                 -- in OccurAnal
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


660 661 662 663 664 665 666 667 668 669 670
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
671

672 673 674 675 676 677 678 679 680 681 682 683 684
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

685 686 687 688 689 690 691 692
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

693
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
715
SPEC [n] f :: ty            [n]   INLINE [k]
716 717 718 719 720 721 722 723 724 725
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
726 727
************************************************************************
*                                                                      *
728
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
729 730 731
*                                                                      *
************************************************************************
-}
732

733
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
734 735
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
736
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
737
--
738
-- Returns Nothing if the LHS isn't of the expected shape
739 740 741 742 743 744
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

745 746
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
747 748 749
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
750 751
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
752
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
753
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
754

755
  | otherwise
756
  = Left bad_shape_msg
757
 where
758 759 760 761
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

762 763
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
764

765
   orig_bndr_set = mkVarSet orig_bndrs
766

767
        -- Add extra dict binders: Note [Free dictionaries]
768 769 770 771 772 773 774 775 776 777 778 779
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
780 781

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
782 783
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
784
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
785
                             , ptext (sLit "is not bound in RULE lhs")])
786 787 788
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
789
   pp_bndr bndr
790 791 792
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
793 794

   drop_dicts :: CoreExpr -> CoreExpr
795
   drop_dicts e
796 797 798
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
799
       (bnds, body) = split_lets (occurAnalyseExpr e)
800
           -- The occurAnalyseExpr drops dead bindings which is
801 802
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
803 804

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
805 806
   split_lets (Let (NonRec d r) body)
     | isDictId d
807
     = ((d,r):bs, body')
808 809 810 811 812 813 814 815 816
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
817 818 819 820

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
821
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
822 823 824 825
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
826

Austin Seipp's avatar
Austin Seipp committed
827
{-
828
Note [Decomposing the left-hand side of a RULE]
829
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
830
There are several things going on here.
831 832
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
833
* extra_dict_bndrs: see Note [Free dictionaries]
834 835 836

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
837
drop_dicts drops dictionary bindings on the LHS where possible.
838 839
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
840
   Reasoning here is that there is only one d:Eq [Int], and so we can
841 842 843 844
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
845
         one of the orig_bndrs, which we assume occur on RHS.
846 847 848 849 850 851
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
852
         to match, but there is no other way to get d:Eq a
853

854
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
855 856 857 858 859 860
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
861
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
862 863 864 865 866 867
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
868
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
869 870
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

871 872 873
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

874 875 876 877 878 879 880 881 882 883
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
884
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
885 886 887 888 889 890
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


891 892 893 894
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

895
   (a) Inline any remaining dictionary bindings (which hopefully
896 897 898
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
899
       Note that we substitute the function too; we might
900 901
       have this as a LHS:  let f71 = M.f Int in f71

902
   (c) Do eta reduction.  To see why, consider the fold/build rule,
903 904 905 906
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
907
         augment g (build h)
908
       we do not want to get
909
         augment (\a. g a) (build h)
910 911
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
912

913
Note [Matching seqId]
914 915
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
916
and this code turns it back into an application of seq!
917 918
See Note [Rules for seq] in MkId for the details.

919 920 921
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
922
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
923
        ... SPECIALISE f :: Eq a => a -> a ...
924 925
It's true that this *is* a more specialised type, but the rule
we get is something like this:
926 927
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
928 929
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
930 931 932 933
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

934 935
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
936 937
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
938 939 940
over it too.  *Any* dict with that type will do.

So for example when you have
941 942
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
943
        ... SPECIALISE f :: Int -> Int ...
944 945

Then we get the SpecPrag
946
        SpecPrag (f Int dInt)
947 948

And from that we want the rule
949 950 951

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
952 953 954 955 956 957 958

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

Austin Seipp's avatar
Austin Seipp committed
959 960
************************************************************************
*                                                                      *
961
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
962 963
*                                                                      *
************************************************************************
964