ffi-chap.xml 18.2 KB
Newer Older
1
<?xml version="1.0" encoding="iso-8859-1"?>
rrt's avatar
rrt committed
2 3
<!-- FFI docs as a chapter -->

4
<chapter id="ffi">
5 6 7
 <title>
Foreign function interface (FFI)
 </title>
8

chak's avatar
chak committed
9
  <para>GHC (mostly) conforms to the Haskell 98 Foreign Function Interface
10
  Addendum 1.0, whose definition is available from <ulink url="http://www.haskell.org/"><literal>http://www.haskell.org/</literal></ulink>.</para>
11

12 13
  <para>To enable FFI support in GHC, give the <option>-XForeignFunctionInterface</option><indexterm><primary><option>-XForeignFunctionInterface</option></primary>
    </indexterm> flag.</para>
14

Simon Marlow's avatar
Simon Marlow committed
15 16 17 18
  <para>GHC implements a number of GHC-specific extensions to the FFI
    Addendum.  These extensions are described in <xref linkend="ffi-ghcexts" />, but please note that programs using
    these features are not portable.  Hence, these features should be
    avoided where possible.</para>
19

20
  <para>The FFI libraries are documented in the accompanying library
Simon Marlow's avatar
Simon Marlow committed
21 22
  documentation; see for example the
    <ulink url="../libraries/base/Control-Concurrent.html"><literal>Foreign</literal></ulink> module.</para>
chak's avatar
chak committed
23

24
  <sect1 id="ffi-ghcexts">
chak's avatar
chak committed
25 26 27
    <title>GHC extensions to the FFI Addendum</title>

    <para>The FFI features that are described in this section are specific to
Simon Marlow's avatar
Simon Marlow committed
28
    GHC.  Your code will not be portable to other compilers if you use them.</para>
chak's avatar
chak committed
29 30 31 32 33 34 35 36 37 38 39 40 41

    <sect2>
      <title>Unboxed types</title>

      <para>The following unboxed types may be used as basic foreign types
      (see FFI Addendum, Section 3.2): <literal>Int#</literal>,
      <literal>Word#</literal>, <literal>Char#</literal>,
      <literal>Float#</literal>, <literal>Double#</literal>,
      <literal>Addr#</literal>, <literal>StablePtr# a</literal>,
      <literal>MutableByteArray#</literal>, <literal>ForeignObj#</literal>,
      and <literal>ByteArray#</literal>.</para>
    </sect2>

42
    <sect2 id="ffi-newtype-io">
43 44 45 46 47 48 49 50 51 52 53 54
      <title>Newtype wrapping of the IO monad</title>
      <para>The FFI spec requires the IO monad to appear in various  places,
      but it can sometimes be convenient to wrap the IO monad in a
      <literal>newtype</literal>, thus:
<programlisting>
  newtype MyIO a = MIO (IO a)
</programlisting>
     (A reason for doing so might be to prevent the programmer from
	calling arbitrary IO procedures in some part of the program.)
</para>
<para>The Haskell FFI already specifies that arguments and results of
foreign imports and exports will be automatically unwrapped if they are 
55
newtypes (Section 3.2 of the FFI addendum).  GHC extends the FFI by automatically unwrapping any newtypes that
56 57 58 59 60 61 62 63 64 65
wrap the IO monad itself.
More precisely, wherever the FFI specification requires an IO type, GHC will
accept any newtype-wrapping of an IO type.  For example, these declarations are
OK:
<programlisting>
   foreign import foo :: Int -> MyIO Int
   foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int
</programlisting>
</para>
      </sect2>
chak's avatar
chak committed
66
  </sect1>
67

68
  <sect1 id="ffi-ghc">
69 70 71 72 73
    <title>Using the FFI with GHC</title>

    <para>The following sections also give some hints and tips on the
    use of the foreign function interface in GHC.</para>

74
    <sect2 id="foreign-export-ghc">
75
      <title>Using <literal>foreign export</literal> and <literal>foreign import ccall "wrapper"</literal> with GHC</title>
76 77

      <indexterm><primary><literal>foreign export
78
      </literal></primary><secondary>with GHC</secondary>
79 80 81
      </indexterm>

      <para>When GHC compiles a module (say <filename>M.hs</filename>)
82 83
      which uses <literal>foreign export</literal> or 
      <literal>foreign import "wrapper"</literal>, it generates two
84 85 86
      additional files, <filename>M_stub.c</filename> and
      <filename>M_stub.h</filename>.  GHC will automatically compile
      <filename>M_stub.c</filename> to generate
87 88
      <filename>M_stub.o</filename> at the same time.</para>

89 90 91 92 93 94 95 96 97
      <para>For a plain <literal>foreign export</literal>, the file
      <filename>M_stub.h</filename> contains a C prototype for the
      foreign exported function, and <filename>M_stub.c</filename>
      contains its definition.  For example, if we compile the
      following module:</para>

<programlisting>
module Foo where

chak's avatar
chak committed
98
foreign export ccall foo :: Int -> IO Int
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))</programlisting>

      <para>Then <filename>Foo_stub.h</filename> will contain
      something like this:</para>

<programlisting>
#include "HsFFI.h"
extern HsInt foo(HsInt a0);</programlisting>

      <para>and <filename>Foo_stub.c</filename> contains the
      compiler-generated definition of <literal>foo()</literal>.  To
      invoke <literal>foo()</literal> from C, just <literal>#include
      "Foo_stub.h"</literal> and call <literal>foo()</literal>.</para>

119 120 121 122 123
      <para>The <filename>foo_stub.c</filename> and
	<filename>foo_stub.h</filename> files can be redirected using the
	<option>-stubdir</option> option; see <xref linkend="options-output"
	  />.</para>

Simon Marlow's avatar
Simon Marlow committed
124 125 126 127 128 129 130
      <para>When linking the program, remember to include
        <filename>M_stub.o</filename> in the final link command line, or
        you'll get link errors for the missing function(s) (this isn't
        necessary when building your program with <literal>ghc
        &ndash;&ndash;make</literal>, as GHC will automatically link in the
        correct bits).</para>

131
      <sect3 id="using-own-main"> 
132 133 134 135 136 137
	<title>Using your own <literal>main()</literal></title>

	<para>Normally, GHC's runtime system provides a
	<literal>main()</literal>, which arranges to invoke
	<literal>Main.main</literal> in the Haskell program.  However,
	you might want to link some Haskell code into a program which
ross's avatar
ross committed
138
	has a main function written in another language, say C.  In
139 140 141 142 143 144 145 146
	order to do this, you have to initialize the Haskell runtime
	system explicitly.</para>

	<para>Let's take the example from above, and invoke it from a
	standalone C program.  Here's the C code:</para>

<programlisting>
#include &lt;stdio.h&gt;
147
#include "HsFFI.h"
148

149 150 151
#ifdef __GLASGOW_HASKELL__
#include "foo_stub.h"
#endif
152

153
#ifdef __GLASGOW_HASKELL__
154
extern void __stginit_Foo ( void );
155
#endif
156 157 158 159 160

int main(int argc, char *argv[])
{
  int i;

161 162 163 164
  hs_init(&amp;argc, &amp;argv);
#ifdef __GLASGOW_HASKELL__
  hs_add_root(__stginit_Foo);
#endif
165

166
  for (i = 0; i &lt; 5; i++) {
167 168 169
    printf("%d\n", foo(2500));
  }

170
  hs_exit();
171 172 173
  return 0;
}</programlisting>

174 175 176 177 178 179
	<para>We've surrounded the GHC-specific bits with
	<literal>#ifdef __GLASGOW_HASKELL__</literal>; the rest of the
	code should be portable across Haskell implementations that
	support the FFI standard.</para>

	<para>The call to <literal>hs_init()</literal>
180 181
	initializes GHC's runtime system.  Do NOT try to invoke any
	Haskell functions before calling
Simon Marlow's avatar
Simon Marlow committed
182
	<literal>hs_init()</literal>: bad things will
183 184
	undoubtedly happen.</para>

Simon Marlow's avatar
Simon Marlow committed
185
	<para>We pass references to <literal>argc</literal> and
186
	<literal>argv</literal> to <literal>hs_init()</literal>
187 188 189 190
	so that it can separate out any arguments for the RTS
	(i.e. those arguments between
	<literal>+RTS...-RTS</literal>).</para>

191 192 193 194 195 196 197 198 199 200 201 202 203 204
	<para>Next, we call
	<function>hs_add_root</function><indexterm><primary><function>hs_add_root</function></primary>
	</indexterm>, a GHC-specific interface which is required to
	initialise the Haskell modules in the program.  The argument
	to <function>hs_add_root</function> should be the name of the
	initialization function for the "root" module in your program
	- in other words, the module which directly or indirectly
	imports all the other Haskell modules in the program.  In a
	standalone Haskell program the root module is normally
	<literal>Main</literal>, but when you are using Haskell code
	from a library it may not be.  If your program has multiple
	root modules, then you can call
	<function>hs_add_root</function> multiple times, one for each
	root.  The name of the initialization function for module
205 206 207
	<replaceable>M</replaceable> is
	<literal>__stginit_<replaceable>M</replaceable></literal>, and
	it may be declared as an external function symbol as in the
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	code above.  Note that the symbol name should be transformed
	according to the Z-encoding:</para>

      <informaltable>
	<tgroup cols="2" align="left" colsep="1" rowsep="1">
	  <thead>
	    <row>
	      <entry>Character</entry>
	      <entry>Replacement</entry>
	    </row>
	  </thead>
	  <tbody>
	    <row>
	      <entry><literal>.</literal></entry>
	      <entry><literal>zd</literal></entry>
	    </row>
	    <row>
	      <entry><literal>_</literal></entry>
	      <entry><literal>zu</literal></entry>
	    </row>
	    <row>
	      <entry><literal>`</literal></entry>
	      <entry><literal>zq</literal></entry>
	    </row>
	    <row>
	      <entry><literal>Z</literal></entry>
	      <entry><literal>ZZ</literal></entry>
	    </row>
	    <row>
	      <entry><literal>z</literal></entry>
	      <entry><literal>zz</literal></entry>
	    </row>
          </tbody>
        </tgroup>
      </informaltable>
243 244

	<para>After we've finished invoking our Haskell functions, we
Simon Marlow's avatar
Simon Marlow committed
245 246
	can call <literal>hs_exit()</literal>, which terminates the
	RTS.</para>
247

248 249 250 251 252 253 254 255
	<para>There can be multiple calls to
	<literal>hs_init()</literal>, but each one should be matched
	by one (and only one) call to
	<literal>hs_exit()</literal><footnote><para>The outermost
	<literal>hs_exit()</literal> will actually de-initialise the
	system.  NOTE that currently GHC's runtime cannot reliably
	re-initialise after this has happened.</para>
	</footnote>.</para>
256 257 258 259 260 261 262

	<para>NOTE: when linking the final program, it is normally
	easiest to do the link using GHC, although this isn't
	essential.  If you do use GHC, then don't forget the flag
	<option>-no-hs-main</option><indexterm><primary><option>-no-hs-main</option></primary>
	  </indexterm>, otherwise GHC will try to link
	to the <literal>Main</literal> Haskell module.</para>
263 264
      </sect3>

Simon Marlow's avatar
Simon Marlow committed
265 266 267
      <sect3 id="ffi-library">
        <title>Making a Haskell library that can be called from foreign
          code</title>
268

Simon Marlow's avatar
Simon Marlow committed
269 270 271 272
        <para>The scenario here is much like in <xref linkend="using-own-main"
            />, except that the aim is not to link a complete program, but to
          make a library from Haskell code that can be deployed in the same
          way that you would deploy a library of C code.</para>
273

Simon Marlow's avatar
Simon Marlow committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        <para>The main requirement here is that the runtime needs to be
          initialized before any Haskell code can be called, so your library
          should provide initialisation and deinitialisation entry points,
          implemented in C or C++.  For example:</para>

<programlisting>
 HsBool mylib_init(void){
   int argc = ...
   char *argv[] = ...

   // Initialize Haskell runtime
   hs_init(&amp;argc, &amp;argv);

   // Tell Haskell about all root modules
   hs_add_root(__stginit_Foo);

   // do any other initialization here and
   // return false if there was a problem
   return HS_BOOL_TRUE;
 }

 void mylib_end(void){
   hs_exit();
 }
</programlisting>

300
        <para>The initialisation routine, <literal>mylib_init</literal>, calls
Simon Marlow's avatar
Simon Marlow committed
301 302
          <literal>hs_init()</literal> and <literal>hs_add_root()</literal> as
          normal to initialise the Haskell runtime, and the corresponding
303
          deinitialisation function <literal>mylib_end()</literal> calls
Simon Marlow's avatar
Simon Marlow committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
          <literal>hs_exit()</literal> to shut down the runtime.</para>
      </sect3>

      <sect3 id="hs-exit">
        <title>On the use of <literal>hs_exit()</literal></title>

        <para><literal>hs_exit()</literal> normally causes the termination of
          any running Haskell threads in the system, and when
          <literal>hs_exit()</literal> returns, there will be no more Haskell
          threads running.  The runtime will then shut down the system in an
          orderly way, generating profiling
          output and statistics if necessary, and freeing all the memory it
          owns.</para>

        <para>It isn't always possible to terminate a Haskell thread forcibly:
          for example, the thread might be currently executing a foreign call,
          and we have no way to force the foreign call to complete.  What's
          more, the runtime must
          assume that in the worst case the Haskell code and runtime are about
          to be removed from memory (e.g. if this is a <link linkend="win32-dlls">Windows DLL</link>,
          <literal>hs_exit()</literal> is normally called before unloading the
          DLL).  So <literal>hs_exit()</literal> <emphasis>must</emphasis> wait
          until all outstanding foreign calls return before it can return
          itself.</para>

        <para>The upshot of this is that if you have Haskell threads that are
          blocked in foreign calls, then <literal>hs_exit()</literal> may hang
          (or possibly busy-wait) until the calls return.  Therefore it's a
          good idea to make sure you don't have any such threads in the system
          when calling <literal>hs_exit()</literal>.  This includes any threads
          doing I/O, because I/O may (or may not, depending on the
          type of I/O and the platform) be implemented using blocking foreign
          calls.</para>

        <para>The GHC runtime treats program exit as a special case, to avoid
          the need to wait for blocked threads when a standalone
          executable exits.  Since the program and all its threads are about to
          terminate at the same time that the code is removed from memory, it
          isn't necessary to ensure that the threads have exited first.
          (Unofficially, if you want to use this fast and loose version of
          <literal>hs_exit()</literal>, then call
          <literal>shutdownHaskellAndExit()</literal> instead).</para> 
346
      </sect3>
347
    </sect2>
348
    
349 350 351 352 353
    <sect2 id="glasgow-foreign-headers">
      <title>Using function headers</title>

      <indexterm><primary>C calls, function headers</primary></indexterm>

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
      <para>C functions are normally declared using prototypes in a C
        header file.  Earlier versions of GHC (6.8.3 and
        earlier) <literal>&num;include</literal>d the header file in
        the C source file generated from the Haskell code, and the C
        compiler could therefore check that the C function being
        called via the FFI was being called at the right type.</para>

      <para>GHC no longer includes external header files when
        compiling via C, so this checking is not performed.  The
        change was made for compatibility with the native code backend
        (<literal>-fasm</literal>) and to comply strictly with the FFI
        specification, which requires that FFI calls are not subject
        to macro expansion and other CPP conversions that may be
        applied when using C header files.  This approach also
        simplifies the inlining of foreign calls across module and
        package boundaries: there's no need for the header file to be
        available when compiling an inlined version of a foreign call,
        so the compiler is free to inline foreign calls in any
        context.</para>
        
      <para>The <literal>-&num;include</literal> option is now
        deprecated, and the <literal>include-files</literal> field
        in a Cabal package specification is ignored.</para>
377

378
    </sect2>
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    <sect2>
      <title>Memory Allocation</title>

      <para>The FFI libraries provide several ways to allocate memory
      for use with the FFI, and it isn't always clear which way is the
      best.  This decision may be affected by how efficient a
      particular kind of allocation is on a given compiler/platform,
      so this section aims to shed some light on how the different
      kinds of allocation perform with GHC.</para>

      <variablelist>
	<varlistentry>
	  <term><literal>alloca</literal> and friends</term>
	  <listitem>
	    <para>Useful for short-term allocation when the allocation
	    is intended to scope over a given <literal>IO</literal>
ross's avatar
ross committed
396
	    computation.  This kind of allocation is commonly used
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	    when marshalling data to and from FFI functions.</para>

	    <para>In GHC, <literal>alloca</literal> is implemented
	    using <literal>MutableByteArray#</literal>, so allocation
	    and deallocation are fast: much faster than C's
	    <literal>malloc/free</literal>, but not quite as fast as
	    stack allocation in C.  Use <literal>alloca</literal>
	    whenever you can.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><literal>mallocForeignPtr</literal></term>
	  <listitem>
	    <para>Useful for longer-term allocation which requires
	    garbage collection.  If you intend to store the pointer to
	    the memory in a foreign data structure, then
	    <literal>mallocForeignPtr</literal> is
	    <emphasis>not</emphasis> a good choice, however.</para>

	    <para>In GHC, <literal>mallocForeignPtr</literal> is also
	    implemented using <literal>MutableByteArray#</literal>.
	    Although the memory is pointed to by a
	    <literal>ForeignPtr</literal>, there are no actual
	    finalizers involved (unless you add one with
	    <literal>addForeignPtrFinalizer</literal>), and the
	    deallocation is done using GC, so
	    <literal>mallocForeignPtr</literal> is normally very
	    cheap.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><literal>malloc/free</literal></term>
	  <listitem>
	    <para>If all else fails, then you need to resort to
	    <literal>Foreign.malloc</literal> and
	    <literal>Foreign.free</literal>.  These are just wrappers
ross's avatar
ross committed
435
	    around the C functions of the same name, and their
436 437 438 439 440 441 442 443 444
	    efficiency will depend ultimately on the implementations
	    of these functions in your platform's C library.  We
	    usually find <literal>malloc</literal> and
	    <literal>free</literal> to be significantly slower than
	    the other forms of allocation above.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
ross's avatar
ross committed
445
	  <term><literal>Foreign.Marshal.Pool</literal></term>
446 447 448 449 450 451
	  <listitem>
	    <para>Pools are currently implemented using
	    <literal>malloc/free</literal>, so while they might be a
	    more convenient way to structure your memory allocation
	    than using one of the other forms of allocation, they
	    won't be any more efficient.  We do plan to provide an
ross's avatar
ross committed
452
	    improved-performance implementation of Pools in the
453 454 455 456 457
	    future, however.</para>
	  </listitem>
	</varlistentry>
      </variablelist>
    </sect2>
458
  </sect1>
459
</chapter>
460 461 462

<!-- Emacs stuff:
     ;;; Local Variables: ***
463 464
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
465 466
     ;;; End: ***
 -->