TcBinds.lhs 36.9 KB
Newer Older
1
%
2
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3
4
5
6
%
\section[TcBinds]{TcBinds}

\begin{code}
7
8
9
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun,
10
		 badBootDeclErr ) where
11

12
#include "HsVersions.h"
13

ross's avatar
ross committed
14
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
15
import {-# SOURCE #-} TcExpr  ( tcCheckRho )
16

17
import DynFlags		( DynFlag(Opt_MonomorphismRestriction, Opt_GlasgowExts) )
18
19
20
21
22
import HsSyn		( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
			  HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
			  LSig, Match(..), IPBind(..), Prag(..),
			  HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
			  isVanillaLSig, sigName, placeHolderNames, isPragLSig,
23
			  LPat, GRHSs, MatchGroup(..), pprLHsBinds,
24
			  collectHsBindBinders, collectPatBinders, pprPatBind
25
			)
26
import TcHsSyn		( zonkId, (<$>) )
27

28
import TcRnMonad
29
import Inst		( newDictsAtLoc, newIPDict, instToId )
30
import TcEnv		( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
31
			  tcLookupLocalIds, pprBinders,
32
			  tcGetGlobalTyVars )
33
import TcUnify		( Expected(..), tcInfer, unifyTheta, tcSub,
34
			  bleatEscapedTvs, sigCtxt )
35
36
import TcSimplify	( tcSimplifyInfer, tcSimplifyInferCheck, 
			  tcSimplifyRestricted, tcSimplifyIPs )
37
import TcHsType		( tcHsSigType, UserTypeCtxt(..), tcAddLetBoundTyVars,
38
			  TcSigInfo(..), TcSigFun, lookupSig
39
			)
40
import TcPat		( tcPat, PatCtxt(..) )
41
import TcSimplify	( bindInstsOfLocalFuns )
42
import TcMType		( newTyFlexiVarTy, zonkQuantifiedTyVar, 
43
			  tcInstSigType, zonkTcType, zonkTcTypes, zonkTcTyVar )
44
import TcType		( TcType, TcTyVar, SkolemInfo(SigSkol), 
45
			  TcTauType, TcSigmaType, isUnboxedTupleType,
46
			  mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, 
47
			  mkForAllTy, isUnLiftedType, tcGetTyVar, 
48
			  mkTyVarTys, tidyOpenTyVar )
49
import Kind		( argTypeKind )
50
import VarEnv		( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv, emptyTidyEnv ) 
51
import TysPrim		( alphaTyVar )
52
import Id		( Id, mkLocalId, mkVanillaGlobal )
53
import IdInfo		( vanillaIdInfo )
54
import Var		( TyVar, idType, idName )
55
import Name		( Name )
56
import NameSet
57
import NameEnv
58
import VarSet
59
import SrcLoc		( Located(..), unLoc, getLoc )
60
import Bag
61
import ErrUtils		( Message )
62
63
import Digraph		( SCC(..), stronglyConnComp )
import Maybes		( fromJust, isJust, isNothing, orElse, catMaybes )
64
65
66
import Util		( singleton )
import BasicTypes	( TopLevelFlag(..), isTopLevel, isNotTopLevel,
			  RecFlag(..), isNonRec )
67
import Outputable
68
\end{code}
69

70

71
72
73
74
75
76
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

77
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
78
79
80
81
82
83
84
85
86
87
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

88
The real work is done by @tcBindWithSigsAndThen@.
89
90
91
92
93
94
95
96
97
98

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

99
100
101
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

102
\begin{code}
103
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
104
105
106
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
107
tcTopBinds binds
108
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
109
	; return (foldr (unionBags . snd) emptyBag prs, env) }
110
	-- The top level bindings are flattened into a giant 
111
	-- implicitly-mutually-recursive LHsBinds
112

113
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
114
115
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
116
117
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
118
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
119
  where
120
    tc_boot_sig (Sig (L _ name) ty)
121
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
122
123
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
124
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
125

126
127
128
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

129
130
131
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
132

133
134
135
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
136

137
138
139
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
140

141
142
143
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
144
145
146

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
147
148
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
149
150
151
152
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
153
    tc_ip_bind (IPBind ip expr)
154
      = newTyFlexiVarTy argTypeKind		`thenM` \ ty ->
155
156
157
158
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
  	tcCheckRho expr ty			`thenM` \ expr' ->
  	returnM (ip_inst, (IPBind ip' expr'))

159
160
161
162
163
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

164
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
165
166
  = tcAddLetBoundTyVars binds  $
      -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE
167
168
169
170
          -- Notice that they scope over 
          --       a) the type signatures in the binding group
          --       b) the bindings in the group
          --       c) the scope of the binding group (the "in" part)
171
 
172
173
    do 	{   	-- Typecheck the signature
	  tc_ty_sigs <- recoverM (returnM []) (tcTySigs sigs)
174
	; let { prag_fn = mkPragFun sigs
175
176
	      ; sig_fn  = lookupSig tc_ty_sigs
	      ; sig_ids = map sig_id tc_ty_sigs }
177

178
179
180
181
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
  	; (binds', thing) <- tcExtendIdEnv sig_ids $
			     tc_val_binds top_lvl sig_fn prag_fn 
182
					  binds thing_inside
183

184
	; return (ValBindsOut binds' sigs, thing) }
185

186
187
------------------------
tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
188
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
189
190
191
192
193
194
195
196
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
  = do	{ thing <- thing_inside
	; return ([], thing) }

197
tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
198
  = do	{ (group', (groups', thing))
199
200
		<- tc_group top_lvl sig_fn prag_fn group $ 
		   tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
201
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
202

203
204
------------------------
tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
205
	 -> (RecFlag, LHsBinds Name) -> TcM thing
206
207
208
209
210
211
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

212
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
213
214
215
  =  	-- A single non-recursive binding
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
216
217
    do	{ (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
					sig_fn prag_fn binds thing_inside
218
219
	; return ([(NonRecursive, b) | b <- binds], thing) }

220
tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
221
  =	-- A recursive strongly-connected component
222
223
224
 	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
	-- strongly-connected  component analysis, this time omitting 
	-- any references to variables with type signatures.
225
226
	--
	-- Then we bring into scope all the variables with type signatures
227
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
228
229
230
	; gla_exts     <- doptM Opt_GlasgowExts
	; (binds,thing) <- if gla_exts 
			   then go new_sccs
231
			   else tc_binds Recursive binds thing_inside
232
233
234
	; return ([(Recursive, unionManyBags binds)], thing) }
		-- Rec them all together
  where
235
    new_sccs :: [SCC (LHsBind Name)]
236
    new_sccs = stronglyConnComp (mkEdges sig_fn binds)
237

238
239
240
241
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
    go (scc:sccs) = do	{ (binds1, (binds2, thing)) <- go1 scc (go sccs)
			; return (binds1 ++ binds2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], thing) }
sof's avatar
sof committed
242

243
244
    go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
    go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
sof's avatar
sof committed
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
  = [ (bind, key, [fromJust mb_key | n <- nameSetToList (bind_fvs (unLoc bind)),
				     let mb_key = lookupNameEnv key_map n,
				     isJust mb_key,
				     no_sig n ])
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    bind_fvs (FunBind _ _ _ fvs) = fvs
    bind_fvs (PatBind _ _ _ fvs) = fvs
    bind_fvs bind = pprPanic "mkEdges" (ppr bind)

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
bindersOfHsBind (PatBind pat _ _ _)     = collectPatBinders pat
bindersOfHsBind (FunBind (L _ f) _ _ _) = [f]
278

279
------------------------
280
281
282
tcPolyBinds :: TopLevelFlag 
	    -> RecFlag			-- Whether the group is really recursive
	    -> RecFlag			-- Whether it's recursive for typechecking purposes
283
	    -> TcSigFun -> TcPragFun
284
	    -> LHsBinds Name
285
286
287
288
289
290
291
292
 	    -> TcM thing
	    -> TcM ([LHsBinds TcId], thing)

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
-- Deals with the bindInstsOfLocalFuns thing too
293
294
295
296
--
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
297

298
tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
299
300
301
  =	-- NB: polymorphic recursion means that a function
	-- may use an instance of itself, we must look at the LIE arising
	-- from the function's own right hand side.  Hence the getLIE
302
303
	-- encloses the tc_poly_binds. 
    do	{ traceTc (text "tcPolyBinds" <+> ppr scc)
304
	; ((binds1, poly_ids, thing), lie) <- getLIE $ 
305
		do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
							 sig_fn prag_fn scc
		   ; thing <- tcExtendIdEnv poly_ids thing_inside
		   ; return (binds1, poly_ids, thing) }

	; if isTopLevel top_lvl 
	  then		-- For the top level don't bother will all this
			-- bindInstsOfLocalFuns stuff. All the top level 
			-- things are rec'd together anyway, so it's fine to
		        -- leave them to the tcSimplifyTop, 
			-- and quite a bit faster too
		do { extendLIEs lie; return (binds1, thing) }

	  else do	-- Nested case
		{ lie_binds <- bindInstsOfLocalFuns lie poly_ids
	 	; return (binds1 ++ [lie_binds], thing) }}
321

322
------------------------
323
324
tc_poly_binds :: TopLevelFlag		-- See comments on tcPolyBinds
	      -> RecFlag -> RecFlag
325
	      -> TcSigFun -> TcPragFun
326
	      -> LHsBinds Name
327
328
329
330
	      -> TcM ([LHsBinds TcId], [TcId])
-- Typechecks the bindings themselves
-- Knows nothing about the scope of the bindings

331
tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
332
  = let 
333
334
        binder_names = collectHsBindBinders binds
	bind_list    = bagToList binds
335

336
	loc = getLoc (head bind_list)
337
338
339
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
340
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
341
342
    setSrcSpan loc				$
    recoverM (recoveryCode binder_names sig_fn)	$ do 
343

344
345
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
346
347

   	-- TYPECHECK THE BINDINGS
348
  ; ((binds', mono_bind_infos), lie_req) 
349
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
350

351
352
353
354
355
356
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
  ; if any isUnLiftedType zonked_mono_tys then
    do	{ 	-- Unlifted bindings
357
	  checkUnliftedBinds top_lvl rec_group binds' mono_bind_infos
358
359
	; extendLIEs lie_req
	; let exports  = zipWith mk_export mono_bind_infos zonked_mono_tys
360
361
362
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
			-- ToDo: prags
363

364
365
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
366
367

    else do	-- The normal lifted case: GENERALISE
368
  { is_unres <- isUnRestrictedGroup bind_list sig_fn
369
  ; (tyvars_to_gen, dict_binds, dict_ids)
370
371
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
	   generalise top_lvl is_unres mono_bind_infos lie_req
372
373
374
375
376
377

	-- FINALISE THE QUANTIFIED TYPE VARIABLES
	-- The quantified type variables often include meta type variables
	-- we want to freeze them into ordinary type variables, and
	-- default their kind (e.g. from OpenTypeKind to TypeKind)
  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
378
379

	-- BUILD THE POLYMORPHIC RESULT IDs
380
381
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
		    mono_bind_infos
sof's avatar
sof committed
382

383
384
	-- ZONK THE poly_ids, because they are used to extend the type 
	-- environment; see the invariant on TcEnv.tcExtendIdEnv 
385
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
386
387
388
  ; zonked_poly_ids <- mappM zonkId poly_ids

  ; traceTc (text "binding:" <+> ppr ((dict_ids, dict_binds),
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
				      map idType zonked_poly_ids))

  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

  ; return ([unitBag abs_bind], zonked_poly_ids)
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ prags <- tcPrags poly_id (prag_fn poly_name)
	; return (tvs, poly_id, mono_id, prags) }
  where
    (tvs, poly_id) = case mb_sig of
			Just sig -> (sig_tvs sig,  sig_id sig)
			Nothing  -> (inferred_tvs, mkLocalId poly_name poly_ty)
		   where
		     poly_ty = mkForAllTys inferred_tvs
			       $ mkFunTys dict_tys 
			       $ idType mono_id

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
	  prs = [(fromJust (sigName sig), sig) | sig <- sigs, isPragLSig sig]
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
tcPrag poly_id (SpecSig orig_name hs_ty) = tcSpecPrag poly_id hs_ty
tcPrag poly_id (SpecInstSig hs_ty)	 = tcSpecPrag poly_id hs_ty
tcPrag poly_id (InlineSig inl _ act)     = return (InlinePrag inl act)

438

439
440
441
442
443
444
445
446
447
tcSpecPrag :: TcId -> LHsType Name -> TcM Prag
tcSpecPrag poly_id hs_ty
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
	; (co_fn, lie)   <- getLIE (tcSub spec_ty (idType poly_id))
	; extendLIEs lie
	; let const_dicts = map instToId lie
	; return (SpecPrag (co_fn <$> (HsVar poly_id)) spec_ty const_dicts) }
  
--------------
448
449
450
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
451
recoveryCode binder_names sig_fn
452
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
453
	; return ([], poly_ids) }
454
455
456
  where
    forall_a_a    = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)
    poly_ids      = map mk_dummy binder_names
457
    mk_dummy name = case sig_fn name of
458
459
    		      Just sig -> sig_id sig			-- Signature
    		      Nothing  -> mkLocalId name forall_a_a     -- No signature
460

461
462
463
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
464
465
--	c) not a multiple-binding group (more or less implied by (a))

466
467
checkUnliftedBinds :: TopLevelFlag -> RecFlag
		   -> LHsBinds TcId -> [MonoBindInfo] -> TcM ()
468
checkUnliftedBinds top_lvl rec_group mbind infos
469
470
  = do 	{ checkTc (isNotTopLevel top_lvl)
	  	  (unliftedBindErr "Top-level" mbind)
471
	; checkTc (isNonRec rec_group)
472
473
474
475
476
477
478
479
	  	  (unliftedBindErr "Recursive" mbind)
	; checkTc (isSingletonBag mbind)
	    	  (unliftedBindErr "Multiple" mbind) 
	; mapM_ check_sig infos }
  where
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
					 (badUnliftedSig sig)
    check_sig other	       = return ()
480
481
\end{code}

482

483
484
%************************************************************************
%*									*
485
\subsection{tcMonoBind}
486
487
488
%*									*
%************************************************************************

489
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
490
491
The signatures have been dealt with already.

492
\begin{code}
493
494
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
495
496
497
	    -> RecFlag	-- True <=> the binding is recursive for typechecking purposes
			-- 	    i.e. the binders are mentioned in their RHSs, and
			--		 we are not resuced by a type signature
498
499
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

500
501
tcMonoBinds [L b_loc (FunBind (L nm_loc name) inf matches fvs)]
	    sig_fn 		-- Single function binding,
502
	    NonRecursive	-- binder isn't mentioned in RHS,
503
  | Nothing <- sig_fn name	-- ...with no type signature
504
505
506
507
508
509
510
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
    do	{ (matches', rhs_ty) <- tcInfer (tcMatchesFun name matches)
511

512
513
514
515
516
517
518
519
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
520

521
	; mono_name <- newLocalName name
522
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
523
	; return (unitBag (L b_loc (FunBind (L nm_loc mono_id) inf matches' fvs)),
524
525
		  [(name, Nothing, mono_id)]) }

526
527
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
528
529
530
531
532
533

	-- Bring (a) the scoped type variables, and (b) the Ids, into scope for the RHSs
	-- For (a) it's ok to bring them all into scope at once, even
	-- though each type sig should scope only over its own RHS,
	-- because the renamer has sorted all that out.
	; let mono_info  = getMonoBindInfo tc_binds
534
535
536
	      rhs_tvs    = [ (name, mkTyVarTy tv)
			   | (_, Just sig, _) <- mono_info, 
			     (name, tv) <- sig_scoped sig `zip` sig_tvs sig ]
537
538
	      rhs_id_env = map mk mono_info 	-- A binding for each term variable

539
	; binds' <- tcExtendTyVarEnv2 rhs_tvs   $
540
		    tcExtendIdEnv2   rhs_id_env $
541
542
543
544
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
545
546
547
   where
    mk (name, Just sig, _)       = (name, sig_id sig)	-- Use the type sig if there is one
    mk (name, Nothing,  mono_id) = (name, mono_id)	-- otherwise use a monomorphic version
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

569
570
571
572
573
574
575
576
577
578
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

579
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
580
581
tcLhs sig_fn (FunBind (L nm_loc name) inf matches _)
  = do	{ let mb_sig = sig_fn name
582
583
584
585
586
587
588
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
    mk_mono_ty Nothing    = newTyFlexiVarTy argTypeKind
589

590
591
tcLhs sig_fn bind@(PatBind pat grhss _ _)
  = do	{ let tc_pat exp_ty = tcPat (LetPat sig_fn) pat exp_ty lookup_infos
592
593
594
595
596
597
	; ((pat', ex_tvs, infos), pat_ty) 
		<- addErrCtxt (patMonoBindsCtxt pat grhss)
			      (tcInfer tc_pat)

	-- Don't know how to deal with pattern-bound existentials yet
	; checkTc (null ex_tvs) (existentialExplode bind)
598

599
600
601
602
603
604
605
606
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat

	-- After typechecking the pattern, look up the binder
	-- names, which the pattern has brought into scope.
    lookup_infos :: TcM [MonoBindInfo]
    lookup_infos = do { mono_ids <- tcLookupLocalIds names
607
		      ; return [ (name, sig_fn name, mono_id)
608
609
			       | (name, mono_id) <- names `zip` mono_ids] }

610
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
611
612
	-- AbsBind, VarBind impossible

613
614
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
615
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
616
617
  = do	{ matches' <- tcMatchesFun (idName mono_id) matches 
				   (Check (idType mono_id))
618
	; return (FunBind fun' inf matches' placeHolderNames) }
619
620
621
622

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
		    tcGRHSsPat grhss (Check pat_ty)
623
	; return (PatBind pat' grhss' pat_ty placeHolderNames) }
624
625
626


---------------------
627
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
628
getMonoBindInfo tc_binds
629
  = foldr (get_info . unLoc) [] tc_binds
630
631
632
633
634
635
636
637
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
638
		Generalisation
639
640
641
642
%*									*
%************************************************************************

\begin{code}
643
644
generalise :: TopLevelFlag -> Bool 
	   -> [MonoBindInfo] -> [Inst]
645
	   -> TcM ([TcTyVar], TcDictBinds, [TcId])
646
generalise top_lvl is_unrestricted mono_infos lie_req
647
648
649
  | not is_unrestricted	-- RESTRICTED CASE
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
650
	  	  (restrictedBindCtxtErr bndrs)
651

652
653
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
654
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
655
						tau_tvs lie_req
656

657
   	-- Check that signature type variables are OK
658
	; final_qtvs <- checkSigsTyVars qtvs sigs
659

660
	; return (final_qtvs, binds, []) }
661

662
663
664
665
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
666
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty
667
668
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
669
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
670
671
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
672

673
674
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
675
	; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
676
677
	
   	-- Check that signature type variables are OK
678
	; final_qtvs <- checkSigsTyVars forall_tvs sigs
679

680
	; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
681
  where
682
683
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
684
    tau_tvs = foldr (unionVarSet . tyVarsOfType . getMonoType) emptyVarSet mono_infos
685
    is_mono_sig sig = null (sig_theta sig)
686
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
687

688
689
690
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
		            sig_theta = theta, sig_tau = tau, sig_loc = loc }) mono_id
      = Method mono_id poly_id (mkTyVarTys tvs) theta tau loc
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

-- Check that all the signature contexts are the same
-- The type signatures on a mutually-recursive group of definitions
-- must all have the same context (or none).
--
-- The trick here is that all the signatures should have the same
-- context, and we want to share type variables for that context, so that
-- all the right hand sides agree a common vocabulary for their type
-- constraints
--
-- We unify them because, with polymorphic recursion, their types
-- might not otherwise be related.  This is a rather subtle issue.
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
	; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
	= setSrcSpan (instLocSrcSpan (sig_loc sig)) 	$
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

716
717
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
718
719
720
721
722
723
724
725
726
727
728
729
730
731
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
732
  where
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
  = do	{ zonked_tvs <- mapM zonk_one sig_tvs
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    zonk_one sig_tv = do { ty <- zonkTcTyVar sig_tv
758
759
760
		         ; return (tcGetTyVar "checkDistinctTyVars" ty) }
	-- 'ty' is bound to be a type variable, because SigSkolTvs
	-- can only be unified with type variables
761
762
763
764
765
766

    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
767
		Just sig_tv' -> bomb_out sig_tv sig_tv'
768
769
770

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

771
772
773
    bomb_out sig_tv1 sig_tv2
       = failWithTc (ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		     <+> ptext SLIT("is unified with another quantified type variable") 
774
		     <+> quotes (ppr tidy_tv2))
775
       where
776
777
	 (env1,  tidy_tv1) = tidyOpenTyVar emptyTidyEnv sig_tv1
	 (_env2, tidy_tv2) = tidyOpenTyVar env1	        sig_tv2
778
779
\end{code}    

780

781
@getTyVarsToGen@ decides what type variables to generalise over.
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

797
798
799
800
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

801
802
803
804
805
806
807
808
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
809
810
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
811

812
813
814
815
816
817
818
819
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

820
821
822
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
823

824
825
826
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
827

828
829
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
830

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
We'd prefer

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm

This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
874

875
876
877

%************************************************************************
%*									*
878
		Signatures
879
880
881
%*									*
%************************************************************************

882
Type signatures are tricky.  See Note [Signature skolems] in TcType
883

884
\begin{code}
885
tcTySigs :: [LSig Name] -> TcM [TcSigInfo]
886
887
tcTySigs sigs = do { mb_sigs <- mappM tcTySig (filter isVanillaLSig sigs)
		   ; return (catMaybes mb_sigs) }
888

889
tcTySig :: LSig Name -> TcM (Maybe TcSigInfo)
890
tcTySig (L span (Sig (L _ name) ty))
891
892
  = recoverM (return Nothing)	$
    setSrcSpan span		$
893
894
895
    do	{ sigma_ty <- tcHsSigType (FunSigCtxt name) ty
	; (tvs, theta, tau) <- tcInstSigType name scoped_names sigma_ty
	; loc <- getInstLoc (SigOrigin (SigSkol name))
896
897
898
	; return (Just (TcSigInfo { sig_id = mkLocalId name sigma_ty, 
				    sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
				    sig_scoped = scoped_names, sig_loc = loc })) }
899
900
901
902
903
904
905
  where
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
    scoped_names = case ty of
			L _ (HsForAllTy Explicit tvs _ _) -> hsLTyVarNames tvs
			other 		    		  -> []
906

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
isUnRestrictedGroup :: [LHsBind Name] -> TcSigFun -> TcM Bool
isUnRestrictedGroup binds sig_fn
  = do	{ mono_restriction <- doptM Opt_MonomorphismRestriction
	; return (not mono_restriction || all_unrestricted) }
  where 
    all_unrestricted = all (unrestricted . unLoc) binds
    has_sig n = isJust (sig_fn n)

    unrestricted (PatBind other _ _ _)   = False
    unrestricted (VarBind v _)	         = has_sig v
    unrestricted (FunBind v _ matches _) = unrestricted_match matches 
					 || has_sig (unLoc v)

    unrestricted_match (MatchGroup (L _ (Match [] _ _) : _) _) = False
	-- No args => like a pattern binding
    unrestricted_match other	          = True
	-- Some args => a function binding
924
925
\end{code}

926

927
928
%************************************************************************
%*									*
929
\subsection[TcBinds-errors]{Error contexts and messages}
930
931
932
933
934
%*									*
%************************************************************************


\begin{code}
935
936
937
938
-- This one is called on LHS, when pat and grhss are both Name 
-- and on RHS, when pat is TcId and grhss is still Name
patMonoBindsCtxt pat grhss
  = hang (ptext SLIT("In a pattern binding:")) 4 (pprPatBind pat grhss)
939

940
-----------------------------------------------
941
942
sigContextsCtxt sig1 sig2
  = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
943
	  nest 2 (vcat [ppr id1 <+> dcolon <+> ppr (idType id1),
944
			ppr id2 <+> dcolon <+> ppr (idType id2)]),
945
	  ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
946
947
948
  where
    id1 = sig_id sig1
    id2 = sig_id sig2
949

950

951
-----------------------------------------------
952
unliftedBindErr flavour mbind
953
  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
954
955
	 4 (ppr mbind)

956
957
958
959
badUnliftedSig sig
  = hang (ptext SLIT("Illegal polymorphic signature in an unlifted binding"))
	 4 (ppr sig)

960
961
962
963
964
-----------------------------------------------
unboxedTupleErr name ty
  = hang (ptext SLIT("Illegal binding of unboxed tuple"))
	 4 (ppr name <+> dcolon <+> ppr ty)

965
-----------------------------------------------
966
967
968
969
970
existentialExplode mbinds
  = hang (vcat [text "My brain just exploded.",
	        text "I can't handle pattern bindings for existentially-quantified constructors.",
		text "In the binding group"])
	4 (ppr mbinds)
971
972
973
974
975
976
977

-----------------------------------------------
restrictedBindCtxtErr binder_names
  = hang (ptext SLIT("Illegal overloaded type signature(s)"))
       4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
		ptext SLIT("that falls under the monomorphism restriction")])

978
979
genCtxt binder_names
  = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
980
\end{code}