DsBinds.hs 46.5 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TysPrim ( mkProxyPrimTy )
43
import TyCon
44
import TcEvidence
45
import TcType
46
import Type
Iavor S. Diatchki's avatar
Iavor S. Diatchki committed
47
import Kind (returnsConstraintKind)
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, mkListTy
50
                  , mkBoxedTupleTy, stringTy )
Simon Marlow's avatar
Simon Marlow committed
51
import Id
52
import MkId(proxyHashId)
53
import Class
54
import DataCon  ( dataConTyCon )
55
import Name
56
import IdInfo   ( IdDetails(..) )
57
import Var
58
import VarSet
Simon Marlow's avatar
Simon Marlow committed
59
import Rules
60
import VarEnv
61
import Outputable
62
import Module
Simon Marlow's avatar
Simon Marlow committed
63 64
import SrcLoc
import Maybes
65
import OrdList
Simon Marlow's avatar
Simon Marlow committed
66 67
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
68
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
69
import FastString
70
import ErrUtils( MsgDoc )
71
import Util
72
import Control.Monad( when )
73
import MonadUtils
74
import Control.Monad(liftM)
75
import Fingerprint(Fingerprint(..), fingerprintString)
76

Austin Seipp's avatar
Austin Seipp committed
77 78 79
{-
************************************************************************
*                                                                      *
80
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
81 82 83
*                                                                      *
************************************************************************
-}
84

85 86
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
87

88
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
89
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
90
                      ; return (fromOL binds') }
91 92

------------------------
93
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
94

95 96
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
97

98 99
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
100

101
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
102

103
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
104 105
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
106

107 108
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
109
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
110
                   | otherwise         = var
111

112
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
113

114 115 116
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
117
 = do   { dflags <- getDynFlags
118
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
119
        ; let body' = mkOptTickBox tick body
120
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
121
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
122
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
123 124 125

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
126
  = do  { body_expr <- dsGuarded grhss ty
127 128
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
129 130
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
131
    ; return (toOL sel_binds) }
sof's avatar
sof committed
132

133 134 135 136
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
137 138 139
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
140 141
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
142
  = do  { dflags <- getDynFlags
143 144 145
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
146
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
147 148
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
149 150
                            Let core_bind $
                            Var local
151

152 153 154 155 156 157 158
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
159

160 161 162
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
163
         -- See Note [Desugaring AbsBinds]
164 165 166
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
167
                              | (lcl_id, rhs) <- fromOL bind_prs ]
168
                -- Monomorphic recursion possible, hence Rec
169

170 171 172
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
173
        ; ds_binds <- dsTcEvBinds_s ev_binds
174 175 176 177
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
178

179
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
180

181
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
182
                           , abe_mono = local, abe_prags = spec_prags })
183 184
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
185
                                 mkLams tyvars $ mkLams dicts $
186 187
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
188
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
189 190
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
191 192 193
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
194 195
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
196

197
        ; export_binds_s <- mapM mk_bind exports
198

199 200
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
201 202 203 204 205 206 207 208 209 210 211
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
212

cactus's avatar
cactus committed
213 214
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

215
------------------------
216 217
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
218
  | is_default_method                 -- Default methods are *always* inlined
219 220
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

221
  | DFunId is_newtype <- idDetails gbl_id
222 223
  = (mk_dfun_w_stuff is_newtype, rhs)

224 225
  | otherwise
  = case inlinePragmaSpec inline_prag of
226 227 228
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
229
          Inline          -> inline_pair
230

231 232
  where
    inline_prag   = idInlinePragma gbl_id
233
    inlinable_unf = mkInlinableUnfolding dflags rhs
234 235
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
236 237
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
238
       , let real_arity = dict_arity + arity
239
        -- NB: The arity in the InlineRule takes account of the dictionaries
240 241 242 243 244 245
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
246

247 248 249
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
250
       | is_newtype
251 252 253 254 255 256 257 258 259 260 261 262
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

263 264 265 266

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
267

Austin Seipp's avatar
Austin Seipp committed
268
{-
269 270 271 272 273 274 275 276 277 278
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

279 280 281 282 283
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
284 285
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
286
But we don't want that, because if M.f isn't exported,
287 288
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
289 290 291
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
292 293 294
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
295 296 297 298
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
299
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
300
Although I'm a bit worried about whether full laziness might
301
float the f_lcl binding out and then inline M.f at its call site
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

317
The top-level AbsBinds for $cround has no tyvars or dicts (because the
318 319 320 321 322 323 324
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

325 326 327 328 329
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
330 331 332

and desugar it to

333 334 335
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
336 337

where B is the *non-recursive* binding
338 339 340
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
341 342

Notice (a) g has a different number of type variables to f, so we must
343 344
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
345

346 347 348 349
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
350

351 352 353 354
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
355 356

Why got to this trouble?  It's a common case, and it removes the
357
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
358 359 360 361
compilation, especially in a case where there are a *lot* of
bindings.


362 363 364 365 366 367 368 369
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
370
happen as a result of method sharing), there's a danger that we never
371 372 373 374
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
375
has the arity with which it is declared in the source code.  In this
376
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
377
should mean that (foo d) is a PAP and we don't share it.
378 379 380

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
381 382 383 384 385 386 387 388 389 390 391 392 393 394
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
395
-}
396

397
------------------------
398
dsSpecs :: CoreExpr     -- Its rhs
399
        -> TcSpecPrags
400 401
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
402
-- See Note [Handling SPECIALISE pragmas] in TcBinds
403 404 405 406 407 408
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

409 410 411
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
412 413 414
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
415
  | isJust (isClassOpId_maybe poly_id)
416 417
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
418 419
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
420 421
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
422

423 424
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
425 426 427
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
428
                            -- See Note [Activation pragmas for SPECIALISE]
429

430
  | otherwise
431
  = putSrcSpanDs loc $
432 433
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
434 435
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
436 437 438
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
439 440 441 442
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
443
           Left msg -> do { warnDs msg; return Nothing } ;
444
           Right (rule_bndrs, _fn, args) -> do
445

446
       { dflags <- getDynFlags
Simon Peyton Jones's avatar
Simon Peyton Jones committed
447 448 449 450
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
451 452 453
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
454
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
455
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
456 457 458
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
459

460
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
461

Ian Lynagh's avatar
Ian Lynagh committed
462 463
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
464 465 466 467 468

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
469 470 471 472
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
473
             = rhs          -- Local Id; this is its rhs
474 475
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
476 477 478
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
479
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
480
                            -- The type checker has checked that it *has* an unfolding
481

482 483 484 485 486
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
487
                                 -- in OccurAnal
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


specOnInline :: Name -> MsgDoc
506
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
507
                 <+> quotes (ppr f)
508

Austin Seipp's avatar
Austin Seipp committed
509
{-
510 511 512 513 514 515 516 517
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

518
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
540
SPEC [n] f :: ty            [n]   INLINE [k]
541 542 543 544 545 546 547 548 549 550
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
551 552
************************************************************************
*                                                                      *
553
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
554 555 556
*                                                                      *
************************************************************************
-}
557

558
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
559 560
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
561
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
562
--
563
-- Returns Nothing if the LHS isn't of the expected shape
564 565 566 567 568 569
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

570 571
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
572 573 574
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
575 576
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
577
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
578
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
579

580
  | otherwise
581
  = Left bad_shape_msg
582
 where
583 584 585 586
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

587 588
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
589

590
   orig_bndr_set = mkVarSet orig_bndrs
591

592
        -- Add extra dict binders: Note [Free dictionaries]
593 594 595 596 597 598 599 600 601 602 603 604
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
605 606

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
607 608
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
609
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
610
                             , ptext (sLit "is not bound in RULE lhs")])
611 612 613
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
614
   pp_bndr bndr
615 616 617
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
618 619

   drop_dicts :: CoreExpr -> CoreExpr
620
   drop_dicts e
621 622 623
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
624
       (bnds, body) = split_lets (occurAnalyseExpr e)
625
           -- The occurAnalyseExpr drops dead bindings which is
626 627
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
646

Austin Seipp's avatar
Austin Seipp committed
647
{-
648
Note [Decomposing the left-hand side of a RULE]
649
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
650
There are several things going on here.
651 652
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
653
* extra_dict_bndrs: see Note [Free dictionaries]
654 655 656

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
657
drop_dicts drops dictionary bindings on the LHS where possible.
658 659
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
660
   Reasoning here is that there is only one d:Eq [Int], and so we can
661 662 663 664
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
665
         one of the orig_bndrs, which we assume occur on RHS.
666 667 668 669 670 671
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
672
         to match, but there is no other way to get d:Eq a
673

674
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
675 676 677 678 679 680
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
681
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
682 683 684 685 686 687
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
688
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
689 690
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

691 692 693
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

694 695 696 697 698 699 700 701 702 703
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
704
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
705 706 707 708 709 710
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


711 712 713 714
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

715
   (a) Inline any remaining dictionary bindings (which hopefully
716 717 718
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
719
       Note that we substitute the function too; we might
720 721
       have this as a LHS:  let f71 = M.f Int in f71

722
   (c) Do eta reduction.  To see why, consider the fold/build rule,
723 724 725 726
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
727
         augment g (build h)
728
       we do not want to get
729
         augment (\a. g a) (build h)
730 731
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
732

733
Note [Matching seqId]
734 735
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
736
and this code turns it back into an application of seq!
737 738
See Note [Rules for seq] in MkId for the details.

739 740 741
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
742
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
743
        ... SPECIALISE f :: Eq a => a -> a ...
744 745
It's true that this *is* a more specialised type, but the rule
we get is something like this:
746 747
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
748 749
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
750 751 752 753
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

754 755
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
756 757
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
758 759 760
over it too.  *Any* dict with that type will do.

So for example when you have
761 762
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
763
        ... SPECIALISE f :: Int -> Int ...
764 765

Then we get the SpecPrag
766
        SpecPrag (f Int dInt)
767 768

And from that we want the rule
769 770 771

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
772 773 774 775 776 777 778

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

779

Austin Seipp's avatar
Austin Seipp committed
780 781
************************************************************************
*                                                                      *
782
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
783 784
*                                                                      *
************************************************************************
785

Austin Seipp's avatar
Austin Seipp committed
786
-}
787

788
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
789
dsHsWrapper WpHole            e = return e
790 791 792
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
793 794 795 796 797 798
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
799
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
800
                                  dsTcCoercion co (mkCast e)
801 802
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
803
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
804 805

--------------------------------------
806 807 808 809 810
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

811
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
812
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
813 814
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

815
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
816
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
817
  where
818 819 820
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
821

822
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
823 824 825 826 827

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
828
    edges = foldrBag ((:) . mk_node) [] bs
829 830

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
831 832
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
833 834 835


---------------------------------------
836
dsEvTerm :: EvTerm -> DsM CoreExpr
837
dsEvTerm (EvId v) = return (Var v)
838

839
dsEvTerm (EvCast tm co)
840
  = do { tm' <- dsEvTerm tm
841
       ; dsTcCoercion co $ mkCast tm' }
842 843 844
                        -- 'v' is always a lifted evidence variable so it is
                        -- unnecessary to call varToCoreExpr v here.

845
dsEvTerm (EvDFunApp df tys tms)     = return (Var df `mkTyApps` tys `mkApps` (map Var tms))
846
dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
847
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
848
dsEvTerm (EvSuperClass d n)
849 850
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
851
             sc_sel_id  = classSCSelId cls n    -- Zero-indexed
852 853
       ; return $ Var sc_sel_id `mkTyApps` tys `App` d' }

854
dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg]
855
  where
856
    errorId = rUNTIME_ERROR_ID
857
    litMsg  = Lit (MachStr (fastStringToByteString msg))
858

859 860 861 862
dsEvTerm (EvLit l) =
  case l of
    EvNum n -> mkIntegerExpr n
    EvStr s -> mkStringExprFS s
863