TcPat.lhs 38.8 KB
Newer Older
1
%
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
5
6

TcPat: Typechecking patterns
7
8

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
9
10
11
12
13
14
15
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

16
17
18
module TcPat ( tcLetPat, TcSigFun, TcSigInfo(..), TcPragFun 
             , LetBndrSpec(..), addInlinePrags, warnPrags
             , tcPat, tcPats, newNoSigLetBndr, newSigLetBndr
19
	     , addDataConStupidTheta, badFieldCon, polyPatSig ) where
20

21
#include "HsVersions.h"
22

23
import {-# SOURCE #-}	TcExpr( tcSyntaxOp, tcInferRho)
24
25
26

import HsSyn
import TcHsSyn
27
import TcRnMonad
28
29
30
31
32
33
34
35
36
37
import Inst
import Id
import Var
import Name
import TcEnv
import TcMType
import TcType
import TcUnify
import TcHsType
import TysWiredIn
38
import TcEvidence
39
40
41
42
import TyCon
import DataCon
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
43
import DynFlags
44
45
import SrcLoc
import Util
sof's avatar
sof committed
46
import Outputable
47
import FastString
Ian Lynagh's avatar
Ian Lynagh committed
48
import Control.Monad
49
\end{code}
50

51
52
53

%************************************************************************
%*									*
54
		External interface
55
56
57
58
%*									*
%************************************************************************

\begin{code}
59
tcLetPat :: TcSigFun -> LetBndrSpec
60
      	 -> LPat Name -> TcSigmaType 
61
     	 -> TcM a
62
      	 -> TcM (LPat TcId, a)
63
tcLetPat sig_fn no_gen pat pat_ty thing_inside
64
65
  = tc_lpat pat pat_ty penv thing_inside 
  where
66
    penv = PE { pe_lazy = True
67
              , pe_ctxt = LetPat sig_fn no_gen }
68
69

-----------------
70
71
tcPats :: HsMatchContext Name
       -> [LPat Name]		 -- Patterns,
72
73
       -> [TcSigmaType]	         --   and their types
       -> TcM a                  --   and the checker for the body
74
       -> TcM ([LPat TcId], a)
75
76
77
78
79
80
81
82
83

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
-- do the thing inside, use any existentially-bound dictionaries to 
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
84
85
--   3. Check the body
--   4. Check that no existentials escape
86

87
tcPats ctxt pats pat_tys thing_inside
88
89
  = tc_lpats penv pats pat_tys thing_inside
  where
90
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
91

92
tcPat :: HsMatchContext Name
93
94
95
      -> LPat Name -> TcSigmaType 
      -> TcM a                 -- Checker for body, given
                               -- its result type
96
      -> TcM (LPat TcId, a)
97
tcPat ctxt pat pat_ty thing_inside
98
99
  = tc_lpat pat pat_ty penv thing_inside
  where
100
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
101
   
102

103
-----------------
104
data PatEnv
105
  = PE { pe_lazy :: Bool	-- True <=> lazy context, so no existentials allowed
106
       , pe_ctxt :: PatCtxt   	-- Context in which the whole pattern appears
107
       }
108
109
110
111
112
113
114

data PatCtxt
  = LamPat   -- Used for lambdas, case etc
       (HsMatchContext Name) 

  | LetPat   -- Used only for let(rec) bindings
    	     -- See Note [Let binders]
115
116
117
118
119
120
121
122
123
124
       TcSigFun        -- Tells type sig if any
       LetBndrSpec     -- True <=> no generalisation of this let

data LetBndrSpec 
  = LetLclBndr		  -- The binder is just a local one;
    			  -- an AbsBinds will provide the global version

  | LetGblBndr TcPragFun  -- There isn't going to be an AbsBinds;
    	       		  -- here is the inline-pragma information

125
126
127
128
129
130
131
132
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }

patSigCtxt :: PatEnv -> UserTypeCtxt
patSigCtxt (PE { pe_ctxt = LetPat {} }) = BindPatSigCtxt
patSigCtxt (PE { pe_ctxt = LamPat {} }) = LamPatSigCtxt

---------------
133
134
type TcPragFun = Name -> [LSig Name]
type TcSigFun  = Name -> Maybe TcSigInfo
135
136
137
138
139

data TcSigInfo
  = TcSigInfo {
        sig_id     :: TcId,         --  *Polymorphic* binder for this value...

140
141
142
143
144
        sig_tvs    :: [(Maybe Name, TcTyVar)],    
                           -- Instantiated type and kind variables
                           -- Just n <=> this skolem is lexically in scope with name n
                           -- See Note [Kind vars in sig_tvs]
                     	   -- See Note [More instantiated than scoped] in TcBinds
145
146
147
148
149
150
151
152
153
154
155

        sig_theta  :: TcThetaType,  -- Instantiated theta

        sig_tau    :: TcSigmaType,  -- Instantiated tau
		      		    -- See Note [sig_tau may be polymorphic]

        sig_loc    :: SrcSpan       -- The location of the signature
    }

instance Outputable TcSigInfo where
    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
156
157
        = ppr id <+> dcolon <+> vcat [ pprSigmaType (mkSigmaTy (map snd tyvars) theta tau)
                                     , ppr (map fst tyvars) ]
158
\end{code}
159

160
161
162
163
164
165
166
167
168
169
Note [Kind vars in sig_tvs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
With kind polymorphism a signature like
  f :: forall f a. f a -> f a
may actuallly give rise to 
  f :: forall k. forall (f::k -> *) (a:k). f a -> f a
So the sig_tvs will be [k,f,a], but only f,a are scoped.
So the scoped ones are not necessarily the *inital* ones!


170
171
172
173
174
175
176
Note [sig_tau may be polymorphic]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that "sig_tau" might actually be a polymorphic type,
if the original function had a signature like
   forall a. Eq a => forall b. Ord b => ....
But that's ok: tcMatchesFun (called by tcRhs) can deal with that
It happens, too!  See Note [Polymorphic methods] in TcClassDcl.
177

178
179
180
181
182
Note [Let binders]
~~~~~~~~~~~~~~~~~~
eg   x :: Int
     y :: Bool
     (x,y) = e
183

184
...more notes to add here..
185
186


187
188
189
190
191
Note [Existential check]
~~~~~~~~~~~~~~~~~~~~~~~~
Lazy patterns can't bind existentials.  They arise in two ways:
  * Let bindings      let { C a b = e } in b
  * Twiddle patterns  f ~(C a b) = e
192
The pe_lazy field of PatEnv says whether we are inside a lazy
193
pattern (perhaps deeply)
194

195
196
197
198
199
200
201
If we aren't inside a lazy pattern then we can bind existentials,
but we need to be careful about "extra" tyvars. Consider
    (\C x -> d) : pat_ty -> res_ty
When looking for existential escape we must check that the existential
bound by C don't unify with the free variables of pat_ty, OR res_ty
(or of course the environment).   Hence we need to keep track of the 
res_ty free vars.
202

203

204
205
%************************************************************************
%*									*
206
		Binders
207
208
209
%*									*
%************************************************************************

210
\begin{code}
211
tcPatBndr :: PatEnv -> Name -> TcSigmaType -> TcM (TcCoercion, TcId)
212
213
214
215
216
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
tcPatBndr (PE { pe_ctxt = LetPat lookup_sig no_gen}) bndr_name pat_ty
  | Just sig <- lookup_sig bndr_name
217
  = do { bndr_id <- newSigLetBndr no_gen bndr_name sig
batterseapower's avatar
batterseapower committed
218
219
       ; co <- unifyPatType (idType bndr_id) pat_ty
       ; return (co, bndr_id) }
220
      
221
  | otherwise
222
  = do { bndr_id <- newNoSigLetBndr no_gen bndr_name pat_ty
223
       ; return (mkTcReflCo pat_ty, bndr_id) }
224
225
226

tcPatBndr (PE { pe_ctxt = _lam_or_proc }) bndr_name pat_ty
  = do { bndr <- mkLocalBinder bndr_name pat_ty
227
       ; return (mkTcReflCo pat_ty, bndr) }
228

229
230
231
232
233
234
235
236
237
238
------------
newSigLetBndr :: LetBndrSpec -> Name -> TcSigInfo -> TcM TcId
newSigLetBndr LetLclBndr name sig
  = do { mono_name <- newLocalName name
       ; mkLocalBinder mono_name (sig_tau sig) }
newSigLetBndr (LetGblBndr prags) name sig
  = addInlinePrags (sig_id sig) (prags name)

------------
newNoSigLetBndr :: LetBndrSpec -> Name -> TcType -> TcM TcId
239
240
241
242
243
-- In the polymorphic case (no_gen = False), generate a "monomorphic version" 
--    of the Id; the original name will be bound to the polymorphic version
--    by the AbsBinds
-- In the monomorphic case there is no AbsBinds, and we use the original
--    name directly
244
245
246
247
248
249
250
251
252
253
newNoSigLetBndr LetLclBndr name ty 
  =do  { mono_name <- newLocalName name
       ; mkLocalBinder mono_name ty }
newNoSigLetBndr (LetGblBndr prags) name ty 
  = do { id <- mkLocalBinder name ty
       ; addInlinePrags id (prags name) }

----------
addInlinePrags :: TcId -> [LSig Name] -> TcM TcId
addInlinePrags poly_id prags
254
255
  = do { traceTc "addInlinePrags" (ppr poly_id $$ ppr prags) 
       ; tc_inl inl_sigs }
256
257
258
259
260
  where
    inl_sigs = filter isInlineLSig prags
    tc_inl [] = return poly_id
    tc_inl (L loc (InlineSig _ prag) : other_inls)
       = do { unless (null other_inls) (setSrcSpan loc warn_dup_inline)
261
            ; traceTc "addInlinePrag" (ppr poly_id $$ ppr prag) 
262
263
264
265
266
267
268
269
270
271
272
273
            ; return (poly_id `setInlinePragma` prag) }
    tc_inl _ = panic "tc_inl"

    warn_dup_inline = warnPrags poly_id inl_sigs $
                      ptext (sLit "Duplicate INLINE pragmas for")

warnPrags :: Id -> [LSig Name] -> SDoc -> TcM ()
warnPrags id bad_sigs herald
  = addWarnTc (hang (herald <+> quotes (ppr id))
                  2 (ppr_sigs bad_sigs))
  where
    ppr_sigs sigs = vcat (map (ppr . getLoc) sigs)
274

275
276
277
-----------------
mkLocalBinder :: Name -> TcType -> TcM TcId
mkLocalBinder name ty
278
  = return (Id.mkLocalId name ty)
279
280
\end{code}

281
282
283
284
285
286
287
288
289
290
Note [Polymorphism and pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When is_mono holds we are not generalising
But the signature can still be polymoprhic!
     data T = MkT (forall a. a->a)
     x :: forall a. a->a
     MkT x = <rhs>
So the no_gen flag decides whether the pattern-bound variables should
have exactly the type in the type signature (when not generalising) or
the instantiated version (when generalising)
291

292
293
%************************************************************************
%*									*
294
		The main worker functions
295
296
297
%*									*
%************************************************************************

298
299
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
300
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
301
302
303
304
305
306
so that tcPat can extend the environment for the thing_inside, but also 
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
want the error-context for the pattern to scope over the RHS. 
307
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
308

309
\begin{code}
310
--------------------
311
312
type Checker inp out =  forall r.
			  inp
313
314
315
		       -> PatEnv
		       -> TcM r
		       -> TcM (out, r)
316
317

tcMultiple :: Checker inp out -> Checker [inp] [out]
318
tcMultiple tc_pat args penv thing_inside
319
  = do	{ err_ctxt <- getErrCtxt
320
321
322
	; let loop _ []
		= do { res <- thing_inside
		     ; return ([], res) }
323

324
325
326
	      loop penv (arg:args)
		= do { (p', (ps', res)) 
				<- tc_pat arg penv $ 
327
				   setErrCtxt err_ctxt $
328
				   loop penv args
329
330
331
		-- setErrCtxt: restore context before doing the next pattern
		-- See note [Nesting] above
				
332
		     ; return (p':ps', res) }
333

334
	; loop penv args }
335
336

--------------------
337
tc_lpat :: LPat Name 
338
339
340
341
342
	-> TcSigmaType
	-> PatEnv
	-> TcM a
	-> TcM (LPat TcId, a)
tc_lpat (L span pat) pat_ty penv thing_inside
343
344
345
  = setSrcSpan span $
    do	{ (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
                                          thing_inside
346
347
348
349
350
351
352
353
354
355
	; return (L span pat', res) }

tc_lpats :: PatEnv
	 -> [LPat Name] -> [TcSigmaType]
       	 -> TcM a	
       	 -> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside 
  =  tcMultiple (\(p,t) -> tc_lpat p t) 
                (zipEqual "tc_lpats" pats tys)
                penv thing_inside 
356
357

--------------------
358
tc_pat	:: PatEnv
359
        -> Pat Name 
360
361
        -> TcSigmaType	-- Fully refined result type
        -> TcM a		-- Thing inside
362
363
        -> TcM (Pat TcId, 	-- Translated pattern
                a)		-- Result of thing inside
364

365
tc_pat penv (VarPat name) pat_ty thing_inside
batterseapower's avatar
batterseapower committed
366
367
368
  = do	{ (co, id) <- tcPatBndr penv name pat_ty
        ; res <- tcExtendIdEnv1 name id thing_inside
        ; return (mkHsWrapPatCo co (VarPat id) pat_ty, res) }
369
370
371
372
373
374
375
376

tc_pat penv (ParPat pat) pat_ty thing_inside
  = do	{ (pat', res) <- tc_lpat pat pat_ty penv thing_inside
	; return (ParPat pat', res) }

tc_pat penv (BangPat pat) pat_ty thing_inside
  = do	{ (pat', res) <- tc_lpat pat pat_ty penv thing_inside
	; return (BangPat pat', res) }
377

378
379
380
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
  = do	{ (pat', (res, pat_ct)) 
		<- tc_lpat pat pat_ty (makeLazy penv) $ 
381
		   captureConstraints thing_inside
382
		-- Ignore refined penv', revert to penv
383

384
	; emitConstraints pat_ct
385
386
	-- captureConstraints/extendConstraints: 
        --   see Note [Hopping the LIE in lazy patterns]
387

388
389
390
391
	-- Check there are no unlifted types under the lazy pattern
	; when (any (isUnLiftedType . idType) $ collectPatBinders pat') $
               lazyUnliftedPatErr lpat

392
393
394
	-- Check that the expected pattern type is itself lifted
	; pat_ty' <- newFlexiTyVarTy liftedTypeKind
	; _ <- unifyType pat_ty pat_ty'
395

396
	; return (LazyPat pat', res) }
397

398
399
400
tc_pat _ p@(QuasiQuotePat _) _ _
  = pprPanic "Should never see QuasiQuotePat in type checker" (ppr p)

401
tc_pat _ (WildPat _) pat_ty thing_inside
402
  = do	{ res <- thing_inside 
403
	; return (WildPat pat_ty, res) }
404

405
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
batterseapower's avatar
batterseapower committed
406
407
  = do	{ (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
        ; (pat', res) <- tcExtendIdEnv1 name bndr_id $
408
			 tc_lpat pat (idType bndr_id) penv thing_inside
409
410
411
412
413
414
415
	    -- NB: if we do inference on:
	    --		\ (y@(x::forall a. a->a)) = e
	    -- we'll fail.  The as-pattern infers a monotype for 'y', which then
	    -- fails to unify with the polymorphic type for 'x'.  This could 
	    -- perhaps be fixed, but only with a bit more work.
	    --
	    -- If you fix it, don't forget the bindInstsOfPatIds!
batterseapower's avatar
batterseapower committed
416
	; return (mkHsWrapPatCo co (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }
417

418
419
420
tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside 
  = do	{
         -- Morally, expr must have type `forall a1...aN. OPT' -> B` 
421
422
423
424
         -- where overall_pat_ty is an instance of OPT'.
         -- Here, we infer a rho type for it,
         -- which replaces the leading foralls and constraints
         -- with fresh unification variables.
425
426
        ; (expr',expr'_inferred) <- tcInferRho expr

427
428
429
430
431
432
         -- next, we check that expr is coercible to `overall_pat_ty -> pat_ty`
         -- NOTE: this forces pat_ty to be a monotype (because we use a unification 
         -- variable to find it).  this means that in an example like
         -- (view -> f)    where view :: _ -> forall b. b
         -- we will only be able to use view at one instantation in the
         -- rest of the view
batterseapower's avatar
batterseapower committed
433
	; (expr_co, pat_ty) <- tcInfer $ \ pat_ty -> 
434
		unifyType expr'_inferred (mkFunTy overall_pat_ty pat_ty)
batterseapower's avatar
batterseapower committed
435
        
436
         -- pattern must have pat_ty
437
438
        ; (pat', res) <- tc_lpat pat pat_ty penv thing_inside

batterseapower's avatar
batterseapower committed
439
	; return (ViewPat (mkLHsWrapCo expr_co expr') pat' overall_pat_ty, res) }
440

441
442
-- Type signatures in patterns
-- See Note [Pattern coercions] below
443
444
445
446
447
448
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
  = do	{ (inner_ty, tv_binds, wrap) <- tcPatSig (patSigCtxt penv) sig_ty pat_ty
	; (pat', res) <- tcExtendTyVarEnv2 tv_binds $
			 tc_lpat pat inner_ty penv thing_inside

        ; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
449
450
451

------------------------
-- Lists, tuples, arrays
452
453
454
455
456
tc_pat penv (ListPat pats _) pat_ty thing_inside
  = do	{ (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy pat_ty
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
				     pats penv thing_inside
 	; return (mkHsWrapPat coi (ListPat pats' elt_ty) pat_ty, res) 
457
        }
458

459
460
461
462
463
tc_pat penv (PArrPat pats _) pat_ty thing_inside
  = do	{ (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTy pat_ty
	; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
				     pats penv thing_inside 
	; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
464
        }
465

466
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
batterseapower's avatar
batterseapower committed
467
  = do	{ let tc = tupleTyCon (boxityNormalTupleSort boxity) (length pats)
468
469
        ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc) pat_ty
	; (pats', res) <- tc_lpats penv pats arg_tys thing_inside
470

471
472
	; dflags <- getDynFlags

473
474
475
476
	-- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
	-- so that we can experiment with lazy tuple-matching.
	-- This is a pretty odd place to make the switch, but
	-- it was easy to do.
477
478
479
	; let pat_ty'          = mkTyConApp tc arg_tys
                                     -- pat_ty /= pat_ty iff coi /= IdCo
              unmangled_result = TuplePat pats' boxity pat_ty'
480
	      possibly_mangled_result
481
	        | dopt Opt_IrrefutableTuples dflags &&
482
483
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
	        | otherwise		    = unmangled_result
484

485
 	; ASSERT( length arg_tys == length pats )      -- Syntactically enforced
486
	  return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
487
        }
488
489
490

------------------------
-- Data constructors
491
492
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
  = tcConPat penv con pat_ty arg_pats thing_inside
493
494
495

------------------------
-- Literal patterns
496
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
497
  = do	{ let lit_ty = hsLitType simple_lit
batterseapower's avatar
batterseapower committed
498
	; co <- unifyPatType lit_ty pat_ty
499
500
		-- coi is of kind: pat_ty ~ lit_ty
	; res <- thing_inside 
batterseapower's avatar
batterseapower committed
501
	; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty 
502
                 , res) }
503
504
505

------------------------
-- Overloaded patterns: n, and n+k
506
tc_pat _ (NPat over_lit mb_neg eq) pat_ty thing_inside
507
  = do	{ let orig = LiteralOrigin over_lit
508
	; lit'    <- newOverloadedLit orig over_lit pat_ty
509
	; eq'     <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
510
511
	; mb_neg' <- case mb_neg of
			Nothing  -> return Nothing	-- Positive literal
512
513
			Just neg -> 	-- Negative literal
					-- The 'negate' is re-mappable syntax
514
 			    do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
515
			       ; return (Just neg') }
516
517
	; res <- thing_inside 
	; return (NPat lit' mb_neg' eq', res) }
518

519
tc_pat penv (NPlusKPat (L nm_loc name) lit ge minus) pat_ty thing_inside
batterseapower's avatar
batterseapower committed
520
521
  = do	{ (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
        ; let pat_ty' = idType bndr_id
522
	      orig    = LiteralOrigin lit
523
	; lit' <- newOverloadedLit orig lit pat_ty'
524

525
526
527
	-- The '>=' and '-' parts are re-mappable syntax
	; ge'    <- tcSyntaxOp orig ge    (mkFunTys [pat_ty', pat_ty'] boolTy)
	; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
528
        ; let pat' = NPlusKPat (L nm_loc bndr_id) lit' ge' minus'
529

530
531
	-- The Report says that n+k patterns must be in Integral
	-- We may not want this when using re-mappable syntax, though (ToDo?)
532
	; icls <- tcLookupClass integralClassName
533
	; instStupidTheta orig [mkClassPred icls [pat_ty']]	
534
    
535
	; res <- tcExtendIdEnv1 name bndr_id thing_inside
batterseapower's avatar
batterseapower committed
536
	; return (mkHsWrapPatCo co pat' pat_ty, res) }
537

538
tc_pat _ _other_pat _ _ = panic "tc_pat" 	-- ConPatOut, SigPatOut
539
540

----------------
541
unifyPatType :: TcType -> TcType -> TcM TcCoercion
542
543
544
545
546
547
-- In patterns we want a coercion from the
-- context type (expected) to the actual pattern type
-- But we don't want to reverse the args to unifyType because
-- that controls the actual/expected stuff in error messages
unifyPatType actual_ty expected_ty
  = do { coi <- unifyType actual_ty expected_ty
548
       ; return (mkTcSymCo coi) }
549
\end{code}
550

551
552
553
554
555
556
557
558
559
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern.  E.g.
	f ~(C x) = 3
We can't discharge the Num constraint from dictionaries bound by
the pattern C!  

So we have to make the constraints from thing_inside "hop around" 
560
the pattern.  Hence the captureConstraints and emitConstraints.
561
562
563
564
565
566
567
568
569
570
571
572

The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
	data T a where { T1 :: Int -> T Int; ... }
	f :: T a -> Int -> a
	f ~(T1 i) y = y
It's obviously not sound to refine a to Int in the right
hand side, because the arugment might not match T1 at all!

Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring

573

574
575
%************************************************************************
%*									*
576
577
	Most of the work for constructors is here
	(the rest is in the ConPatIn case of tc_pat)
578
579
%*									*
%************************************************************************
580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

As explained by [Wrappers for data instance tycons] in MkIds.lhs, the
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

In other words, boxySplitTyConAppWithFamily implicitly takes the coercion 

610
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
611
612
613
614
615
616

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

617
Now it might appear seem as if we could have used the previous GADT type
618
619
620
621
622
623
624
625
626
627
628
629
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

630
631
632
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
633

634
\begin{code}
635
--	Running example:
636
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
637
638
-- 	 with scrutinee of type (T ty)

639
640
641
642
643
644
645
646
tcConPat :: PatEnv -> Located Name 
	 -> TcRhoType  	       	-- Type of the pattern
	 -> HsConPatDetails Name -> TcM a
	 -> TcM (Pat TcId, a)
tcConPat penv (L con_span con_name) pat_ty arg_pats thing_inside
  = do	{ data_con <- tcLookupDataCon con_name
	; let tycon = dataConTyCon data_con
         	  -- For data families this is the representation tycon
647
	      (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
648
                = dataConFullSig data_con
649
650

	  -- Instantiate the constructor type variables [a->ty]
651
652
653
	  -- This may involve doing a family-instance coercion, 
	  -- and building a wrapper 
	; (wrap, ctxt_res_tys) <- matchExpectedPatTy (matchExpectedConTy tycon) pat_ty
654

655
	  -- Add the stupid theta
656
	; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
657

658
	; checkExistentials ex_tvs penv 
659
660
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
                               (zipTopTvSubst univ_tvs ctxt_res_tys) ex_tvs
661
662
                     -- Get location from monad, not from ex_tvs

663
664
665
666
        ; let pat_ty' = mkTyConApp tycon ctxt_res_tys
	      -- pat_ty' is type of the actual constructor application
              -- pat_ty' /= pat_ty iff coi /= IdCo
              
667
668
	      arg_tys' = substTys tenv arg_tys

669
	; if null ex_tvs && null eq_spec && null theta
670
671
	  then do { -- The common case; no class bindings etc 
                    -- (see Note [Arrows and patterns])
672
673
		    (arg_pats', res) <- tcConArgs data_con arg_tys' 
						  arg_pats penv thing_inside
674
		  ; let res_pat = ConPatOut { pat_con = L con_span data_con, 
675
			            	      pat_tvs = [], pat_dicts = [], 
676
                                              pat_binds = emptyTcEvBinds,
677
678
					      pat_args = arg_pats', 
                                              pat_ty = pat_ty' }
679

680
681
682
683
		  ; return (mkHsWrapPat wrap res_pat pat_ty, res) }

	  else do   -- The general case, with existential, 
                    -- and local equality constraints
Simon Peyton Jones's avatar
Simon Peyton Jones committed
684
	{ let theta'   = substTheta tenv (eqSpecPreds eq_spec ++ theta)
685
686
687
                           -- order is *important* as we generate the list of
                           -- dictionary binders from theta'
	      no_equalities = not (any isEqPred theta')
688
689
690
691
              skol_info = case pe_ctxt penv of
                            LamPat mc -> PatSkol data_con mc
                            LetPat {} -> UnkSkol -- Doesn't matter
 
692
        ; gadts_on <- xoptM Opt_GADTs
693
694
695
696
697
	; checkTc (no_equalities || gadts_on)
	  	  (ptext (sLit "A pattern match on a GADT requires -XGADTs"))
		  -- Trac #2905 decided that a *pattern-match* of a GADT
		  -- should require the GADT language flag

698
        ; given <- newEvVars theta'
699
        ; (ev_binds, (arg_pats', res))
700
	     <- checkConstraints skol_info ex_tvs' given $
701
702
703
704
705
706
707
708
709
710
                tcConArgs data_con arg_tys' arg_pats penv thing_inside

        ; let res_pat = ConPatOut { pat_con   = L con_span data_con, 
			            pat_tvs   = ex_tvs',
			            pat_dicts = given,
			            pat_binds = ev_binds,
			            pat_args  = arg_pats', 
                                    pat_ty    = pat_ty' }
	; return (mkHsWrapPat wrap res_pat pat_ty, res)
	} }
711

712
----------------------------
713
matchExpectedPatTy :: (TcRhoType -> TcM (TcCoercion, a))
714
715
716
717
718
                    -> TcRhoType -> TcM (HsWrapper, a) 
-- See Note [Matching polytyped patterns]
-- Returns a wrapper : pat_ty ~ inner_ty
matchExpectedPatTy inner_match pat_ty
  | null tvs && null theta
batterseapower's avatar
batterseapower committed
719
  = do { (co, res) <- inner_match pat_ty
720
       ; return (coToHsWrapper (mkTcSymCo co), res) }
721
722
       	 -- The Sym is because the inner_match returns a coercion
	 -- that is the other way round to matchExpectedPatTy
723

724
725
726
  | otherwise
  = do { (_, tys, subst) <- tcInstTyVars tvs
       ; wrap1 <- instCall PatOrigin tys (substTheta subst theta)
727
       ; (wrap2, arg_tys) <- matchExpectedPatTy inner_match (TcType.substTy subst tau)
728
       ; return (wrap2 <.> wrap1 , arg_tys) }
729
  where
730
731
732
733
734
735
    (tvs, theta, tau) = tcSplitSigmaTy pat_ty

----------------------------
matchExpectedConTy :: TyCon  	 -- The TyCon that this data 
		    		 -- constructor actually returns
		   -> TcRhoType  -- The type of the pattern
736
		   -> TcM (TcCoercion, [TcSigmaType])
737
738
739
740
741
742
743
744
745
746
747
-- See Note [Matching constructor patterns]
-- Returns a coercion : T ty1 ... tyn ~ pat_ty
-- This is the same way round as matchExpectedListTy etc
-- but the other way round to matchExpectedPatTy
matchExpectedConTy data_tc pat_ty
  | Just (fam_tc, fam_args, co_tc) <- tyConFamInstSig_maybe data_tc
    	 -- Comments refer to Note [Matching constructor patterns]
     	 -- co_tc :: forall a. T [a] ~ T7 a
  = do { (_, tys, subst) <- tcInstTyVars (tyConTyVars data_tc)
       	     -- tys = [ty1,ty2]

748
749
750
       ; traceTc "matchExpectedConTy" (vcat [ppr data_tc, 
                                             ppr (tyConTyVars data_tc),
                                             ppr fam_tc, ppr fam_args])
batterseapower's avatar
batterseapower committed
751
752
       ; co1 <- unifyType (mkTyConApp fam_tc (substTys subst fam_args)) pat_ty
       	     -- co1 : T (ty1,ty2) ~ pat_ty
753

754
       ; let co2 = mkTcAxInstCo co_tc tys
batterseapower's avatar
batterseapower committed
755
       	     -- co2 : T (ty1,ty2) ~ T7 ty1 ty2
756

757
       ; return (mkTcSymCo co2 `mkTcTransCo` co1, tys) }
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

  | otherwise
  = matchExpectedTyConApp data_tc pat_ty
       	     -- coi : T tys ~ pat_ty
\end{code}

Note [Matching constructor patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose (coi, tys) = matchExpectedConType data_tc pat_ty

 * In the simple case, pat_ty = tc tys

 * If pat_ty is a polytype, we want to instantiate it
   This is like part of a subsumption check.  Eg
      f :: (forall a. [a]) -> blah
      f [] = blah

 * In a type family case, suppose we have
          data family T a
          data instance T (p,q) = A p | B q
       Then we'll have internally generated
              data T7 p q = A p | B q
              axiom coT7 p q :: T (p,q) ~ T7 p q
 
       So if pat_ty = T (ty1,ty2), we return (coi, [ty1,ty2]) such that
           coi = coi2 . coi1 : T7 t ~ pat_ty
           coi1 : T (ty1,ty2) ~ pat_ty
           coi2 : T7 ty1 ty2 ~ T (ty1,ty2)

   For families we do all this matching here, not in the unifier,
   because we never want a whisper of the data_tycon to appear in
   error messages; it's a purely internal thing
790

791
\begin{code}
792
tcConArgs :: DataCon -> [TcSigmaType]
793
	  -> Checker (HsConPatDetails Name) (HsConPatDetails Id)
794

795
tcConArgs data_con arg_tys (PrefixCon arg_pats) penv thing_inside
796
797
  = do	{ checkTc (con_arity == no_of_args)	-- Check correct arity
		  (arityErr "Constructor" data_con con_arity no_of_args)
798
	; let pats_w_tys = zipEqual "tcConArgs" arg_pats arg_tys
799
800
801
	; (arg_pats', res) <- tcMultiple tcConArg pats_w_tys
					      penv thing_inside 
	; return (PrefixCon arg_pats', res) }
802
803
804
  where
    con_arity  = dataConSourceArity data_con
    no_of_args = length arg_pats
805

806
tcConArgs data_con arg_tys (InfixCon p1 p2) penv thing_inside
807
808
  = do	{ checkTc (con_arity == 2)	-- Check correct arity
	 	  (arityErr "Constructor" data_con con_arity 2)
809
	; let [arg_ty1,arg_ty2] = arg_tys	-- This can't fail after the arity check
810
811
812
	; ([p1',p2'], res) <- tcMultiple tcConArg [(p1,arg_ty1),(p2,arg_ty2)]
					      penv thing_inside
	; return (InfixCon p1' p2', res) }
813
814
815
  where
    con_arity  = dataConSourceArity data_con

816
817
818
tcConArgs data_con arg_tys (RecCon (HsRecFields rpats dd)) penv thing_inside
  = do	{ (rpats', res) <- tcMultiple tc_field rpats penv thing_inside
	; return (RecCon (HsRecFields rpats' dd), res) }
819
  where
820
    tc_field :: Checker (HsRecField FieldLabel (LPat Name)) (HsRecField TcId (LPat TcId))
821
    tc_field (HsRecField field_lbl pat pun) penv thing_inside
822
      = do { (sel_id, pat_ty) <- wrapLocFstM find_field_ty field_lbl
823
824
	   ; (pat', res) <- tcConArg (pat, pat_ty) penv thing_inside
	   ; return (HsRecField sel_id pat' pun, res) }
825

826
    find_field_ty :: FieldLabel -> TcM (Id, TcType)
827
828
    find_field_ty field_lbl
	= case [ty | (f,ty) <- field_tys, f == field_lbl] of
829
830
831
832
833
834
835
836
837

		-- No matching field; chances are this field label comes from some
		-- other record type (or maybe none).  As well as reporting an
		-- error we still want to typecheck the pattern, principally to
		-- make sure that all the variables it binds are put into the
		-- environment, else the type checker crashes later:
		--	f (R { foo = (a,b) }) = a+b
		-- If foo isn't one of R's fields, we don't want to crash when
		-- typechecking the "a+b".
838
	   [] -> do { addErrTc (badFieldCon data_con field_lbl)
839
		    ; bogus_ty <- newFlexiTyVarTy liftedTypeKind
840
		    ; return (error "Bogus selector Id", bogus_ty) }
841
842
843
844

		-- The normal case, when the field comes from the right constructor
	   (pat_ty : extras) -> 
		ASSERT( null extras )
845
		do { sel_id <- tcLookupField field_lbl
846
		   ; return (sel_id, pat_ty) }
847

848
    field_tys :: [(FieldLabel, TcType)]
849
850
851
852
    field_tys = zip (dataConFieldLabels data_con) arg_tys
	-- Don't use zipEqual! If the constructor isn't really a record, then
	-- dataConFieldLabels will be empty (and each field in the pattern
	-- will generate an error below).
853

854
855
856
tcConArg :: Checker (LPat Name, TcSigmaType) (LPat Id)
tcConArg (arg_pat, arg_ty) penv thing_inside
  = tc_lpat arg_pat arg_ty penv thing_inside
857
858
\end{code}

859
\begin{code}
860
addDataConStupidTheta :: DataCon -> [TcType] -> TcM ()
861
862
-- Instantiate the "stupid theta" of the data con, and throw 
-- the constraints into the constraint set
863
addDataConStupidTheta data_con inst_tys
864
865
866
  | null stupid_theta = return ()
  | otherwise	      = instStupidTheta origin inst_theta
  where
867
868
869
    origin = OccurrenceOf (dataConName data_con)
	-- The origin should always report "occurrence of C"
	-- even when C occurs in a pattern
870
    stupid_theta = dataConStupidTheta data_con
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
871
872
873
    tenv = mkTopTvSubst (dataConUnivTyVars data_con `zip` inst_tys)
    	 -- NB: inst_tys can be longer than the univ tyvars
	 --     because the constructor might have existentials
874
875
876
    inst_theta = substTheta tenv stupid_theta
\end{code}

877
878
Note [Arrows and patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~
879
880
(Oct 07) Arrow noation has the odd property that it involves 
"holes in the scope". For example:
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  expr :: Arrow a => a () Int
  expr = proc (y,z) -> do
          x <- term -< y
          expr' -< x

Here the 'proc (y,z)' binding scopes over the arrow tails but not the
arrow body (e.g 'term').  As things stand (bogusly) all the
constraints from the proc body are gathered together, so constraints
from 'term' will be seen by the tcPat for (y,z).  But we must *not*
bind constraints from 'term' here, becuase the desugarer will not make
these bindings scope over 'term'.

The Right Thing is not to confuse these constraints together. But for
now the Easy Thing is to ensure that we do not have existential or
GADT constraints in a 'proc', and to short-cut the constraint
simplification for such vanilla patterns so that it binds no
constraints. Hence the 'fast path' in tcConPat; but it's also a good
plan for ordinary vanilla patterns to bypass the constraint
simplification step.

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
%************************************************************************
%*									*
		Note [Pattern coercions]
%*									*
%************************************************************************

In principle, these program would be reasonable:
	
	f :: (forall a. a->a) -> Int
	f (x :: Int->Int) = x 3

	g :: (forall a. [a]) -> Bool
	g [] = True

In both cases, the function type signature restricts what arguments can be passed
in a call (to polymorphic ones).  The pattern type signature then instantiates this
type.  For example, in the first case,  (forall a. a->a) <= Int -> Int, and we
generate the translated term
	f = \x' :: (forall a. a->a).  let x = x' Int in x 3

From a type-system point of view, this is perfectly fine, but it's *very* seldom useful.
And it requires a significant amount of code to implement, becuase we need to decorate
the translated pattern with coercion functions (generated from the subsumption check 
by tcSub).  

So for now I'm just insisting on type *equality* in patterns.  No subsumption. 

Old notes about desugaring, at a time when pattern coercions were handled:

A SigPat is a type coercion and must be handled one at at time.  We can't
combine them unless the type of the pattern inside is identical, and we don't
bother to check for that.  For example:

	data T = T1 Int | T2 Bool
	f :: (forall a. a -> a) -> T -> t
	f (g::Int->Int)   (T1 i) = T1 (g i)
	f (g::Bool->Bool) (T2 b) = T2 (g b)

We desugar this as follows:

	f = \ g::(forall a. a->a) t::T ->
	    let gi = g Int
	    in case t of { T1 i -> T1 (gi i)
			   other ->
	    let	gb = g Bool
	    in case t of { T2 b -> T2 (gb b)
			   other -> fail }}

Note that we do not treat the first column of patterns as a
column of variables, because the coerced variables (gi, gb)
would be of different types.  So we get rather grotty code.
But I don't think this is a common case, and if it was we could
doubtless improve it.

Meanwhile, the strategy is:
	* treat each SigPat coercion (always non-identity coercions)
		as a separate block
	* deal with the stuff inside, and then wrap a binding round
		the result to bind the new variable (gi, gb, etc)

961

962
963
964
965
966
967
%************************************************************************
%*									*
\subsection{Errors and contexts}
%*									*
%************************************************************************

968
969
{-   This was used to improve the error message from 
     an existential escape. Need to think how to do this.
970

Ian Lynagh's avatar
Ian Lynagh committed
971
972
sigPatCtxt :: [LPat Var] -> [Var] -> [TcType] -> TcType -> TidyEnv
           -> TcM (TidyEnv, SDoc)
973
sigPatCtxt pats bound_tvs pat_tys body_ty tidy_env 
974
975
976
977
978
979
  = do	{ pat_tys' <- mapM zonkTcType pat_tys
	; body_ty' <- zonkTcType body_ty
	; let (env1,  tidy_tys)    = tidyOpenTypes tidy_env (map idType show_ids)
	      (env2, tidy_pat_tys) = tidyOpenTypes env1 pat_tys'
	      (env3, tidy_body_ty) = tidyOpenType  env2 body_ty'
	; return (env3,
980
		 sep [ptext (sLit "When checking an existential match that binds"),
981
		      nest 2 (vcat (zipWith ppr_id show_ids tidy_tys)),
982
983
		      ptext (sLit "The pattern(s) have type(s):") <+> vcat (map ppr tidy_pat_tys),
		      ptext (sLit "The body has type:") <+> ppr tidy_body_ty
984
		]) }
985
  where
986
    bound_ids = collectPatsBinders pats
987
    show_ids = filter is_interesting bound_ids
988
    is_interesting id = any (`elemVarSet` varTypeTyVars id) bound_tvs
989
990
991

    ppr_id id ty = ppr id <+> dcolon <+> ppr ty
	-- Don't zonk the types so we get the separate, un-unified versions
992
993
994
-}

\begin{code}
995
996
997
998
999
1000
maybeWrapPatCtxt :: Pat Name -> (TcM a -> TcM b) -> TcM a -> TcM b
-- Not all patterns are worth pushing a context
maybeWrapPatCtxt pat tcm thing_inside 
  | not (worth_wrapping pat) = tcm thing_inside
  | otherwise                = addErrCtxt msg $ tcm $ popErrCtxt thing_inside
    			       -- Remember to pop before doing thing_inside
For faster browsing, not all history is shown. View entire blame