TcCanonical.hs 99.5 KB
Newer Older
1 2
{-# LANGUAGE CPP #-}

3
module TcCanonical(
4 5
     canonicalize,
     unifyDerived,
6
     makeSuperClasses, maybeSym,
7 8
     StopOrContinue(..), stopWith, continueWith,
     solveCallStack    -- For TcSimplify
9
  ) where
10 11 12

#include "HsVersions.h"

13 14
import GhcPrelude

15
import TcRnTypes
16
import TcUnify( swapOverTyVars, metaTyVarUpdateOK )
17
import TcType
18
import Type
19 20
import TcFlatten
import TcSMonad
21
import TcEvidence
22
import TcEvTerm
23 24
import Class
import TyCon
25
import TyCoRep   -- cleverly decomposes types, good for completeness checking
26
import Coercion
27 28
import CoreSyn
import Id( idType, mkTemplateLocals )
29 30
import FamInstEnv ( FamInstEnvs )
import FamInst ( tcTopNormaliseNewTypeTF_maybe )
31
import Var
32
import VarEnv( mkInScopeSet )
33
import VarSet( delVarSetList )
34
import Outputable
35
import DynFlags( DynFlags )
36
import NameSet
37
import RdrName
38
import HsTypes( HsIPName(..) )
39

40
import Pair
41
import Util
42
import Bag
43 44
import MonadUtils
import Control.Monad
45
import Data.Maybe ( isJust )
David Eichmann's avatar
David Eichmann committed
46
import Data.List  ( zip4 )
47
import BasicTypes
48

49 50
import Data.Bifunctor ( bimap )

Austin Seipp's avatar
Austin Seipp committed
51 52 53 54 55 56
{-
************************************************************************
*                                                                      *
*                      The Canonicaliser                               *
*                                                                      *
************************************************************************
57

58 59
Note [Canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~
60

61
Canonicalization converts a simple constraint to a canonical form. It is
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
unary (i.e. treats individual constraints one at a time).

Constraints originating from user-written code come into being as
CNonCanonicals (except for CHoleCans, arising from holes). We know nothing
about these constraints. So, first:

     Classify CNonCanoncal constraints, depending on whether they
     are equalities, class predicates, or other.

Then proceed depending on the shape of the constraint. Generally speaking,
each constraint gets flattened and then decomposed into one of several forms
(see type Ct in TcRnTypes).

When an already-canonicalized constraint gets kicked out of the inert set,
it must be recanonicalized. But we know a bit about its shape from the
last time through, so we can skip the classification step.

Austin Seipp's avatar
Austin Seipp committed
79
-}
80

81 82 83
-- Top-level canonicalization
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

84
canonicalize :: Ct -> TcS (StopOrContinue Ct)
85 86
canonicalize (CNonCanonical { cc_ev = ev })
  = {-# SCC "canNC" #-}
87
    case classifyPredType pred of
88 89 90 91
      ClassPred cls tys     -> do traceTcS "canEvNC:cls" (ppr cls <+> ppr tys)
                                  canClassNC ev cls tys
      EqPred eq_rel ty1 ty2 -> do traceTcS "canEvNC:eq" (ppr ty1 $$ ppr ty2)
                                  canEqNC    ev eq_rel ty1 ty2
92
      IrredPred {}          -> do traceTcS "canEvNC:irred" (ppr pred)
93
                                  canIrred ev
94 95 96 97 98 99 100
      ForAllPred _ _ pred   -> do traceTcS "canEvNC:forall" (ppr pred)
                                  canForAll ev (isClassPred pred)
  where
    pred = ctEvPred ev

canonicalize (CQuantCan (QCI { qci_ev = ev, qci_pend_sc = pend_sc }))
  = canForAll ev pend_sc
101 102

canonicalize (CIrredCan { cc_ev = ev })
103 104 105 106 107 108 109 110 111
  | EqPred eq_rel ty1 ty2 <- classifyPredType (ctEvPred ev)
  = -- For insolubles (all of which are equalities, do /not/ flatten the arguments
    -- In Trac #14350 doing so led entire-unnecessary and ridiculously large
    -- type function expansion.  Instead, canEqNC just applies
    -- the substitution to the predicate, and may do decomposition;
    --    e.g. a ~ [a], where [G] a ~ [Int], can decompose
    canEqNC ev eq_rel ty1 ty2

  | otherwise
112
  = canIrred ev
113

114 115
canonicalize (CDictCan { cc_ev = ev, cc_class  = cls
                       , cc_tyargs = xis, cc_pend_sc = pend_sc })
116
  = {-# SCC "canClass" #-}
117 118
    canClass ev cls xis pend_sc

119
canonicalize (CTyEqCan { cc_ev = ev
120
                       , cc_tyvar  = tv
121 122
                       , cc_rhs    = xi
                       , cc_eq_rel = eq_rel })
123
  = {-# SCC "canEqLeafTyVarEq" #-}
124 125 126
    canEqNC ev eq_rel (mkTyVarTy tv) xi
      -- NB: Don't use canEqTyVar because that expects flattened types,
      -- and tv and xi may not be flat w.r.t. an updated inert set
127

128
canonicalize (CFunEqCan { cc_ev = ev
129 130
                        , cc_fun    = fn
                        , cc_tyargs = xis1
131
                        , cc_fsk    = fsk })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
132
  = {-# SCC "canEqLeafFunEq" #-}
133
    canCFunEqCan ev fn xis1 fsk
134

135 136
canonicalize (CHoleCan { cc_ev = ev, cc_hole = hole })
  = canHole ev hole
137

Austin Seipp's avatar
Austin Seipp committed
138 139 140 141 142 143 144
{-
************************************************************************
*                                                                      *
*                      Class Canonicalization
*                                                                      *
************************************************************************
-}
145

146
canClassNC :: CtEvidence -> Class -> [Type] -> TcS (StopOrContinue Ct)
147
-- "NC" means "non-canonical"; that is, we have got here
Gabor Greif's avatar
Gabor Greif committed
148
-- from a NonCanonical constraint, not from a CDictCan
Simon Peyton Jones's avatar
Simon Peyton Jones committed
149
-- Precondition: EvVar is class evidence
150 151
canClassNC ev cls tys
  | isGiven ev  -- See Note [Eagerly expand given superclasses]
152
  = do { sc_cts <- mkStrictSuperClasses ev [] [] cls tys
153 154
       ; emitWork sc_cts
       ; canClass ev cls tys False }
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

  | isWanted ev
  , Just ip_name <- isCallStackPred cls tys
  , OccurrenceOf func <- ctLocOrigin loc
  -- If we're given a CallStack constraint that arose from a function
  -- call, we need to push the current call-site onto the stack instead
  -- of solving it directly from a given.
  -- See Note [Overview of implicit CallStacks] in TcEvidence
  -- and Note [Solving CallStack constraints] in TcSMonad
  = do { -- First we emit a new constraint that will capture the
         -- given CallStack.
       ; let new_loc = setCtLocOrigin loc (IPOccOrigin (HsIPName ip_name))
                            -- We change the origin to IPOccOrigin so
                            -- this rule does not fire again.
                            -- See Note [Overview of implicit CallStacks]

       ; new_ev <- newWantedEvVarNC new_loc pred

         -- Then we solve the wanted by pushing the call-site
         -- onto the newly emitted CallStack
175
       ; let ev_cs = EvCsPushCall func (ctLocSpan loc) (ctEvExpr new_ev)
176 177 178 179
       ; solveCallStack ev ev_cs

       ; canClass new_ev cls tys False }

180 181
  | otherwise
  = canClass ev cls tys (has_scs cls)
182

183 184
  where
    has_scs cls = not (null (classSCTheta cls))
185 186 187 188 189 190 191 192 193
    loc  = ctEvLoc ev
    pred = ctEvPred ev

solveCallStack :: CtEvidence -> EvCallStack -> TcS ()
-- Also called from TcSimplify when defaulting call stacks
solveCallStack ev ev_cs = do
  -- We're given ev_cs :: CallStack, but the evidence term should be a
  -- dictionary, so we have to coerce ev_cs to a dictionary for
  -- `IP ip CallStack`. See Note [Overview of implicit CallStacks]
194 195
  cs_tm <- evCallStack ev_cs
  let ev_tm = mkEvCast cs_tm (wrapIP (ctEvPred ev))
196
  setEvBindIfWanted ev ev_tm
197

198 199 200 201
canClass :: CtEvidence
         -> Class -> [Type]
         -> Bool            -- True <=> un-explored superclasses
         -> TcS (StopOrContinue Ct)
202
-- Precondition: EvVar is class evidence
203

204
canClass ev cls tys pend_sc
205 206
  =   -- all classes do *nominal* matching
    ASSERT2( ctEvRole ev == Nominal, ppr ev $$ ppr cls $$ ppr tys )
207 208 209
    do { (xis, cos, _kind_co) <- flattenArgsNom ev cls_tc tys
       ; MASSERT( isTcReflCo _kind_co )
       ; let co = mkTcTyConAppCo Nominal cls_tc cos
210
             xi = mkClassPred cls xis
211
             mk_ct new_ev = CDictCan { cc_ev = new_ev
212 213 214
                                     , cc_tyargs = xis
                                     , cc_class = cls
                                     , cc_pend_sc = pend_sc }
215
       ; mb <- rewriteEvidence ev xi co
216
       ; traceTcS "canClass" (vcat [ ppr ev
Simon Peyton Jones's avatar
Simon Peyton Jones committed
217
                                   , ppr xi, ppr mb ])
218
       ; return (fmap mk_ct mb) }
219 220
  where
    cls_tc = classTyCon cls
dimitris's avatar
dimitris committed
221

222 223 224 225
{- Note [The superclass story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to add superclass constraints for two reasons:

226
* For givens [G], they give us a route to proof.  E.g.
227 228 229 230 231
    f :: Ord a => a -> Bool
    f x = x == x
  We get a Wanted (Eq a), which can only be solved from the superclass
  of the Given (Ord a).

232 233
* For wanteds [W], and deriveds [WD], [D], they may give useful
  functional dependencies.  E.g.
234 235
     class C a b | a -> b where ...
     class C a b => D a b where ...
236
  Now a [W] constraint (D Int beta) has (C Int beta) as a superclass
237
  and that might tell us about beta, via C's fundeps.  We can get this
238
  by generating a [D] (C Int beta) constraint.  It's derived because
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  we don't actually have to cough up any evidence for it; it's only there
  to generate fundep equalities.

See Note [Why adding superclasses can help].

For these reasons we want to generate superclass constraints for both
Givens and Wanteds. But:

* (Minor) they are often not needed, so generating them aggressively
  is a waste of time.

* (Major) if we want recursive superclasses, there would be an infinite
  number of them.  Here is a real-life example (Trac #10318);

     class (Frac (Frac a) ~ Frac a,
            Fractional (Frac a),
            IntegralDomain (Frac a))
         => IntegralDomain a where
      type Frac a :: *

  Notice that IntegralDomain has an associated type Frac, and one
  of IntegralDomain's superclasses is another IntegralDomain constraint.

So here's the plan:

264 265
1. Eagerly generate superclasses for given (but not wanted)
   constraints; see Note [Eagerly expand given superclasses].
266 267
   This is done using mkStrictSuperClasses in canClassNC, when
   we take a non-canonical Given constraint and cannonicalise it.
268 269

   However stop if you encounter the same class twice.  That is,
270 271
   mkStrictSuperClasses expands eagerly, but has a conservative
   termination condition: see Note [Expanding superclasses] in TcType.
272

273 274 275 276
2. Solve the wanteds as usual, but do no further expansion of
   superclasses for canonical CDictCans in solveSimpleGivens or
   solveSimpleWanteds; Note [Danger of adding superclasses during solving]

277 278
   However, /do/ continue to eagerly expand superlasses for new /given/
   /non-canonical/ constraints (canClassNC does this).  As Trac #12175
279 280 281
   showed, a type-family application can expand to a class constraint,
   and we want to see its superclasses for just the same reason as
   Note [Eagerly expand given superclasses].
282

283 284 285
3. If we have any remaining unsolved wanteds
        (see Note [When superclasses help] in TcRnTypes)
   try harder: take both the Givens and Wanteds, and expand
286 287 288 289 290
   superclasses again.  See the calls to expandSuperClasses in
   TcSimplify.simpl_loop and solveWanteds.

   This may succeed in generating (a finite number of) extra Givens,
   and extra Deriveds. Both may help the proof.
291

292 293 294 295 296 297 298 299 300
3a An important wrinkle: only expand Givens from the current level.
   Two reasons:
      - We only want to expand it once, and that is best done at
        the level it is bound, rather than repeatedly at the leaves
        of the implication tree
      - We may be inside a type where we can't create term-level
        evidence anyway, so we can't superclass-expand, say,
        (a ~ b) to get (a ~# b).  This happened in Trac #15290.

301 302 303
4. Go round to (2) again.  This loop (2,3,4) is implemented
   in TcSimplify.simpl_loop.

304 305 306
The cc_pend_sc flag in a CDictCan records whether the superclasses of
this constraint have been expanded.  Specifically, in Step 3 we only
expand superclasses for constraints with cc_pend_sc set to true (i.e.
307 308
isPendingScDict holds).

309 310 311 312 313 314 315 316 317
Why do we do this?  Two reasons:

* To avoid repeated work, by repeatedly expanding the superclasses of
  same constraint,

* To terminate the above loop, at least in the -XNoRecursiveSuperClasses
  case.  If there are recursive superclasses we could, in principle,
  expand forever, always encountering new constraints.

318 319 320
When we take a CNonCanonical or CIrredCan, but end up classifying it
as a CDictCan, we set the cc_pend_sc flag to False.

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
Note [Superclass loops]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  class C a => D a
  class D a => C a

Then, when we expand superclasses, we'll get back to the self-same
predicate, so we have reached a fixpoint in expansion and there is no
point in fruitlessly expanding further.  This case just falls out from
our strategy.  Consider
  f :: C a => a -> Bool
  f x = x==x
Then canClassNC gets the [G] d1: C a constraint, and eager emits superclasses
G] d2: D a, [G] d3: C a (psc).  (The "psc" means it has its sc_pend flag set.)
When processing d3 we find a match with d1 in the inert set, and we always
keep the inert item (d1) if possible: see Note [Replacement vs keeping] in
TcInteract.  So d3 dies a quick, happy death.

339 340 341
Note [Eagerly expand given superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In step (1) of Note [The superclass story], why do we eagerly expand
342 343 344 345
Given superclasses by one layer?  (By "one layer" we mean expand transitively
until you meet the same class again -- the conservative criterion embodied
in expandSuperClasses.  So a "layer" might be a whole stack of superclasses.)
We do this eagerly for Givens mainly because of some very obscure
346
cases like this:
347 348 349 350 351 352 353 354 355 356 357

   instance Bad a => Eq (T a)

   f :: (Ord (T a)) => blah
   f x = ....needs Eq (T a), Ord (T a)....

Here if we can't satisfy (Eq (T a)) from the givens we'll use the
instance declaration; but then we are stuck with (Bad a).  Sigh.
This is really a case of non-confluent proofs, but to stop our users
complaining we expand one layer in advance.

358 359 360 361 362 363 364 365 366 367 368 369 370
Note [Instance and Given overlap] in TcInteract.

We also want to do this if we have

   f :: F (T a) => blah

where
   type instance F (T a) = Ord (T a)

So we may need to do a little work on the givens to expose the
class that has the superclasses.  That's why the superclass
expansion for Givens happens in canClassNC.

371 372 373
Note [Why adding superclasses can help]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Examples of how adding superclasses can help:
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

    --- Example 1
        class C a b | a -> b
    Suppose we want to solve
         [G] C a b
         [W] C a beta
    Then adding [D] beta~b will let us solve it.

    -- Example 2 (similar but using a type-equality superclass)
        class (F a ~ b) => C a b
    And try to sllve:
         [G] C a b
         [W] C a beta
    Follow the superclass rules to add
         [G] F a ~ b
         [D] F a ~ beta
390
    Now we get [D] beta ~ b, and can solve that.
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    -- Example (tcfail138)
      class L a b | a -> b
      class (G a, L a b) => C a b

      instance C a b' => G (Maybe a)
      instance C a b  => C (Maybe a) a
      instance L (Maybe a) a

    When solving the superclasses of the (C (Maybe a) a) instance, we get
      [G] C a b, and hance by superclasses, [G] G a, [G] L a b
      [W] G (Maybe a)
    Use the instance decl to get
      [W] C a beta
    Generate its derived superclass
      [D] L a beta.  Now using fundeps, combine with [G] L a b to get
      [D] beta ~ b
    which is what we want.

410 411
Note [Danger of adding superclasses during solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
412
Here's a serious, but now out-dated example, from Trac #4497:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
413

414 415 416
   class Num (RealOf t) => Normed t
   type family RealOf x

Simon Peyton Jones's avatar
Simon Peyton Jones committed
417
Assume the generated wanted constraint is:
418 419 420
   [W] RealOf e ~ e
   [W] Normed e

Simon Peyton Jones's avatar
Simon Peyton Jones committed
421
If we were to be adding the superclasses during simplification we'd get:
422 423 424 425
   [W] RealOf e ~ e
   [W] Normed e
   [D] RealOf e ~ fuv
   [D] Num fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
426
==>
427
   e := fuv, Num fuv, Normed fuv, RealOf fuv ~ fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
428

429 430 431
While looks exactly like our original constraint. If we add the
superclass of (Normed fuv) again we'd loop.  By adding superclasses
definitely only once, during canonicalisation, this situation can't
432
happen.
433 434 435 436

Mind you, now that Wanteds cannot rewrite Derived, I think this particular
situation can't happen.
  -}
437

438 439 440 441
makeSuperClasses :: [Ct] -> TcS [Ct]
-- Returns strict superclasses, transitively, see Note [The superclasses story]
-- See Note [The superclass story]
-- The loop-breaking here follows Note [Expanding superclasses] in TcType
442 443 444 445 446 447 448 449 450 451
-- Specifically, for an incoming (C t) constraint, we return all of (C t)'s
--    superclasses, up to /and including/ the first repetition of C
--
-- Example:  class D a => C a
--           class C [a] => D a
-- makeSuperClasses (C x) will return (D x, C [x])
--
-- NB: the incoming constraints have had their cc_pend_sc flag already
--     flipped to False, by isPendingScDict, so we are /obliged/ to at
--     least produce the immediate superclasses
452 453 454
makeSuperClasses cts = concatMapM go cts
  where
    go (CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
455 456 457 458 459 460 461
      = mkStrictSuperClasses ev [] [] cls tys
    go (CQuantCan (QCI { qci_pred = pred, qci_ev = ev }))
      = ASSERT2( isClassPred pred, ppr pred )  -- The cts should all have
                                               -- class pred heads
        mkStrictSuperClasses ev tvs theta cls tys
      where
        (tvs, theta, cls, tys) = tcSplitDFunTy (ctEvPred ev)
462 463
    go ct = pprPanic "makeSuperClasses" (ppr ct)

464 465 466 467 468 469 470 471 472 473 474 475 476 477
mkStrictSuperClasses
    :: CtEvidence
    -> [TyVar] -> ThetaType  -- These two args are non-empty only when taking
                             -- superclasses of a /quantified/ constraint
    -> Class -> [Type] -> TcS [Ct]
-- Return constraints for the strict superclasses of
--   ev :: forall as. theta => cls tys
mkStrictSuperClasses ev tvs theta cls tys
  = mk_strict_superclasses (unitNameSet (className cls))
                           ev tvs theta cls tys

mk_strict_superclasses :: NameSet -> CtEvidence
                       -> [TyVar] -> ThetaType
                       -> Class -> [Type] -> TcS [Ct]
478 479 480
-- Always return the immediate superclasses of (cls tys);
-- and expand their superclasses, provided none of them are in rec_clss
-- nor are repeated
481
mk_strict_superclasses rec_clss ev tvs theta cls tys
482
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
483 484 485 486 487
  = concatMapM (do_one_given evar (mk_given_loc loc)) $
    classSCSelIds cls
  where
    dict_ids  = mkTemplateLocals theta
    size      = sizeTypes tys
dimitris's avatar
dimitris committed
488

489
    do_one_given evar given_loc sel_id
490 491 492 493 494 495 496
      | isUnliftedType sc_pred
      , not (null tvs && null theta)
      = -- See Note [Equality superclasses in quantified constraints]
        return []
      | otherwise
      = do { given_ev <- newGivenEvVar given_loc $
                         (given_ty, mk_sc_sel evar sel_id)
497
           ; mk_superclasses rec_clss given_ev tvs theta sc_pred }
498
      where
499 500
        sc_pred  = funResultTy (piResultTys (idType sel_id) tys)
        given_ty = mkInfSigmaTy tvs theta sc_pred
501

502 503 504 505
    mk_sc_sel evar sel_id
      = EvExpr $ mkLams tvs $ mkLams dict_ids $
        Var sel_id `mkTyApps` tys `App`
        (evId evar `mkTyApps` mkTyVarTys tvs `mkVarApps` dict_ids)
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    mk_given_loc loc
       | isCTupleClass cls
       = loc   -- For tuple predicates, just take them apart, without
               -- adding their (large) size into the chain.  When we
               -- get down to a base predicate, we'll include its size.
               -- Trac #10335

       | GivenOrigin skol_info <- ctLocOrigin loc
         -- See Note [Solving superclass constraints] in TcInstDcls
         -- for explantation of this transformation for givens
       = case skol_info of
            InstSkol -> loc { ctl_origin = GivenOrigin (InstSC size) }
            InstSC n -> loc { ctl_origin = GivenOrigin (InstSC (n `max` size)) }
            _        -> loc

       | otherwise  -- Probably doesn't happen, since this function
       = loc        -- is only used for Givens, but does no harm
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
mk_strict_superclasses rec_clss ev tvs theta cls tys
  | all noFreeVarsOfType tys
  = return [] -- Wanteds with no variables yield no deriveds.
              -- See Note [Improvement from Ground Wanteds]

  | otherwise -- Wanted/Derived case, just add Derived superclasses
              -- that can lead to improvement.
  = ASSERT2( null tvs && null theta, ppr tvs $$ ppr theta )
    concatMapM do_one_derived (immSuperClasses cls tys)
  where
    loc = ctEvLoc ev

    do_one_derived sc_pred
      = do { sc_ev <- newDerivedNC loc sc_pred
           ; mk_superclasses rec_clss sc_ev [] [] sc_pred }

mk_superclasses :: NameSet -> CtEvidence
                -> [TyVar] -> ThetaType -> PredType -> TcS [Ct]
-- Return this constraint, plus its superclasses, if any
mk_superclasses rec_clss ev tvs theta pred
  | ClassPred cls tys <- classifyPredType pred
  = mk_superclasses_of rec_clss ev tvs theta cls tys

  | otherwise   -- Superclass is not a class predicate
  = return [mkNonCanonical ev]

mk_superclasses_of :: NameSet -> CtEvidence
                   -> [TyVar] -> ThetaType -> Class -> [Type]
                   -> TcS [Ct]
-- Always return this class constraint,
-- and expand its superclasses
mk_superclasses_of rec_clss ev tvs theta cls tys
  | loop_found = do { traceTcS "mk_superclasses_of: loop" (ppr cls <+> ppr tys)
                    ; return [this_ct] }  -- cc_pend_sc of this_ct = True
  | otherwise  = do { traceTcS "mk_superclasses_of" (vcat [ ppr cls <+> ppr tys
                                                          , ppr (isCTupleClass cls)
                                                          , ppr rec_clss
                                                          ])
                    ; sc_cts <- mk_strict_superclasses rec_clss' ev tvs theta cls tys
                    ; return (this_ct : sc_cts) }
                                   -- cc_pend_sc of this_ct = False
  where
    cls_nm     = className cls
    loop_found = not (isCTupleClass cls) && cls_nm `elemNameSet` rec_clss
                 -- Tuples never contribute to recursion, and can be nested
    rec_clss'  = rec_clss `extendNameSet` cls_nm

    this_ct | null tvs, null theta
            = CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys
                       , cc_pend_sc = loop_found }
                 -- NB: If there is a loop, we cut off, so we have not
                 --     added the superclasses, hence cc_pend_sc = True
            | otherwise
            = CQuantCan (QCI { qci_tvs = tvs, qci_pred = mkClassPred cls tys
                             , qci_ev = ev
                             , qci_pend_sc = loop_found })

582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
{- Note [Equality superclasses in quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (Trac #15359, #15593, #15625)
  f :: (forall a. theta => a ~ b) => stuff

It's a bit odd to have a local, quantified constraint for `(a~b)`,
but some people want such a thing (see the tickets). And for
Coercible it is definitely useful
  f :: forall m. (forall p q. Coercible p q => Coercible (m p) (m q)))
                 => stuff

Moreover it's not hard to arrange; we just need to look up /equality/
constraints in the quantified-constraint environment, which we do in
TcInteract.doTopReactOther.

There is a wrinkle though, in the case where 'theta' is empty, so
we have
  f :: (forall a. a~b) => stuff

602 603
Now, potentially, the superclass machinery kicks in, in
makeSuperClasses, giving us a a second quantified constrait
604 605 606 607 608
       (forall a. a ~# b)
BUT this is an unboxed value!  And nothing has prepared us for
dictionary "functions" that are unboxed.  Actually it does just
about work, but the simplier ends up with stuff like
   case (/\a. eq_sel d) of df -> ...(df @Int)...
609 610
and fails to simplify that any further.  And it doesn't satisfy
isPredTy any more.
611

612 613 614 615
So for now we simply decline to take superclasses in the quantified
case.  Instead we have a special case in TcInteract.doTopReactOther,
which looks for primitive equalities specially in the quantified
constraints.
616

617
See also Note [Evidence for quantified constraints] in Type.
618 619


Austin Seipp's avatar
Austin Seipp committed
620 621 622 623 624 625
************************************************************************
*                                                                      *
*                      Irreducibles canonicalization
*                                                                      *
************************************************************************
-}
626

627
canIrred :: CtEvidence -> TcS (StopOrContinue Ct)
628
-- Precondition: ty not a tuple and no other evidence form
629
canIrred ev
630 631
  = do { let pred = ctEvPred ev
       ; traceTcS "can_pred" (text "IrredPred = " <+> ppr pred)
632 633
       ; (xi,co) <- flatten FM_FlattenAll ev pred -- co :: xi ~ pred
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
634 635
    do { -- Re-classify, in case flattening has improved its shape
       ; case classifyPredType (ctEvPred new_ev) of
636 637 638
           ClassPred cls tys     -> canClassNC new_ev cls tys
           EqPred eq_rel ty1 ty2 -> canEqNC new_ev eq_rel ty1 ty2
           _                     -> continueWith $
639
                                    mkIrredCt new_ev } }
640

641 642
canHole :: CtEvidence -> Hole -> TcS (StopOrContinue Ct)
canHole ev hole
643 644
  = do { let pred = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev pred -- co :: xi ~ pred
645
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
646 647
    do { updInertIrreds (`snocCts` (CHoleCan { cc_ev = new_ev
                                             , cc_hole = hole }))
648
       ; stopWith new_ev "Emit insoluble hole" } }
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

{- *********************************************************************
*                                                                      *
*                      Quantified predicates
*                                                                      *
********************************************************************* -}

{- Note [Quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The -XQuantifiedConstraints extension allows type-class contexts like this:

  data Rose f x = Rose x (f (Rose f x))

  instance (Eq a, forall b. Eq b => Eq (f b))
        => Eq (Rose f a)  where
    (Rose x1 rs1) == (Rose x2 rs2) = x1==x2 && rs1 == rs2

Note the (forall b. Eq b => Eq (f b)) in the instance contexts.
This quantified constraint is needed to solve the
 [W] (Eq (f (Rose f x)))
constraint which arises form the (==) definition.

The wiki page is
  https://ghc.haskell.org/trac/ghc/wiki/QuantifiedConstraints
which in turn contains a link to the GHC Proposal where the change
is specified, and a Haskell Symposium paper about it.

We implement two main extensions to the design in the paper:

 1. We allow a variable in the instance head, e.g.
      f :: forall m a. (forall b. m b) => D (m a)
    Notice the 'm' in the head of the quantified constraint, not
    a class.

 2. We suport superclasses to quantified constraints.
    For example (contrived):
      f :: (Ord b, forall b. Ord b => Ord (m b)) => m a -> m a -> Bool
      f x y = x==y
    Here we need (Eq (m a)); but the quantifed constraint deals only
    with Ord.  But we can make it work by using its superclass.

Here are the moving parts
  * Language extension {-# LANGUAGE QuantifiedConstraints #-}
    and add it to ghc-boot-th:GHC.LanguageExtensions.Type.Extension

  * A new form of evidence, EvDFun, that is used to discharge
    such wanted constraints

  * checkValidType gets some changes to accept forall-constraints
    only in the right places.

  * Type.PredTree gets a new constructor ForAllPred, and
    and classifyPredType analyses a PredType to decompose
    the new forall-constraints

  * TcSMonad.InertCans gets an extra field, inert_insts,
    which holds all the Given forall-constraints.  In effect,
    such Given constraints are like local instance decls.

  * When trying to solve a class constraint, via
    TcInteract.matchInstEnv, use the InstEnv from inert_insts
    so that we include the local Given forall-constraints
    in the lookup.  (See TcSMonad.getInstEnvs.)

  * TcCanonical.canForAll deals with solving a
    forall-constraint.  See
       Note [Solving a Wanted forall-constraint]

  * We augment the kick-out code to kick out an inert
    forall constraint if it can be rewritten by a new
    type equality; see TcSMonad.kick_out_rewritable

Note that a quantified constraint is never /inferred/
(by TcSimplify.simplifyInfer).  A function can only have a
quantified constraint in its type if it is given an explicit
type signature.

Note that we implement
-}

canForAll :: CtEvidence -> Bool -> TcS (StopOrContinue Ct)
-- We have a constraint (forall as. blah => C tys)
canForAll ev pend_sc
  = do { -- First rewrite it to apply the current substitution
         -- Do not bother with type-family reductions; we can't
         -- do them under a forall anyway (c.f. Flatten.flatten_one
         -- on a forall type)
         let pred = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev pred -- co :: xi ~ pred
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->

    do { -- Now decompose into its pieces and solve it
         -- (It takes a lot less code to flatten before decomposing.)
       ; case classifyPredType (ctEvPred new_ev) of
           ForAllPred tv_bndrs theta pred
              -> solveForAll new_ev tv_bndrs theta pred pend_sc
           _  -> pprPanic "canForAll" (ppr new_ev)
    } }

solveForAll :: CtEvidence -> [TyVarBinder] -> TcThetaType -> PredType -> Bool
            -> TcS (StopOrContinue Ct)
solveForAll ev tv_bndrs theta pred pend_sc
  | CtWanted { ctev_dest = dest } <- ev
  = -- See Note [Solving a Wanted forall-constraint]
    do { let skol_info = QuantCtxtSkol
             empty_subst = mkEmptyTCvSubst $ mkInScopeSet $
                           tyCoVarsOfTypes (pred:theta) `delVarSetList` tvs
       ; (subst, skol_tvs) <- tcInstSkolTyVarsX empty_subst tvs
       ; given_ev_vars <- mapM newEvVar (substTheta subst theta)

       ; (w_id, ev_binds)
             <- checkConstraintsTcS skol_info skol_tvs given_ev_vars $
                do { wanted_ev <- newWantedEvVarNC loc $
                                  substTy subst pred
                   ; return ( ctEvEvId wanted_ev
                            , unitBag (mkNonCanonical wanted_ev)) }

      ; setWantedEvTerm dest $
        EvFun { et_tvs = skol_tvs, et_given = given_ev_vars
              , et_binds = ev_binds, et_body = w_id }

      ; stopWith ev "Wanted forall-constraint" }

  | isGiven ev   -- See Note [Solving a Given forall-constraint]
  = do { addInertForAll qci
       ; stopWith ev "Given forall-constraint" }

  | otherwise
  = stopWith ev "Derived forall-constraint"
  where
    loc = ctEvLoc ev
    tvs = binderVars tv_bndrs
    qci = QCI { qci_ev = ev, qci_tvs = tvs
              , qci_pred = pred, qci_pend_sc = pend_sc }

{- Note [Solving a Wanted forall-constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solving a wanted forall (quantified) constraint
  [W] df :: forall ab. (Eq a, Ord b) => C x a b
is delightfully easy.   Just build an implication constraint
    forall ab. (g1::Eq a, g2::Ord b) => [W] d :: C x a
and discharge df thus:
    df = /\ab. \g1 g2. let <binds> in d
where <binds> is filled in by solving the implication constraint.
All the machinery is to hand; there is little to do.

Note [Solving a Given forall-constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a Given constraint
  [G] df :: forall ab. (Eq a, Ord b) => C x a b
we just add it to TcS's local InstEnv of known instances,
via addInertForall.  Then, if we look up (C x Int Bool), say,
we'll find a match in the InstEnv.


Austin Seipp's avatar
Austin Seipp committed
805 806 807 808 809
************************************************************************
*                                                                      *
*        Equalities
*                                                                      *
************************************************************************
810 811 812 813 814 815 816 817 818 819 820 821 822

Note [Canonicalising equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to canonicalise an equality, we look at the structure of the
two types at hand, looking for similarities. A difficulty is that the
types may look dissimilar before flattening but similar after flattening.
However, we don't just want to jump in and flatten right away, because
this might be wasted effort. So, after looking for similarities and failing,
we flatten and then try again. Of course, we don't want to loop, so we
track whether or not we've already flattened.

It is conceivable to do a better job at tracking whether or not a type
is flattened, but this is left as future work. (Mar '15)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841


Note [FunTy and decomposing tycon applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When can_eq_nc' attempts to decompose a tycon application we haven't yet zonked.
This means that we may very well have a FunTy containing a type of some unknown
kind. For instance, we may have,

    FunTy (a :: k) Int

Where k is a unification variable. tcRepSplitTyConApp_maybe panics in the event
that it sees such a type as it cannot determine the RuntimeReps which the (->)
is applied to. Consequently, it is vital that we instead use
tcRepSplitTyConApp_maybe', which simply returns Nothing in such a case.

When this happens can_eq_nc' will fail to decompose, zonk, and try again.
Zonking should fill the variable k, meaning that decomposition will succeed the
second time around.
Austin Seipp's avatar
Austin Seipp committed
842
-}
843

844 845
canEqNC :: CtEvidence -> EqRel -> Type -> Type -> TcS (StopOrContinue Ct)
canEqNC ev eq_rel ty1 ty2
846 847 848 849
  = do { result <- zonk_eq_types ty1 ty2
       ; case result of
           Left (Pair ty1' ty2') -> can_eq_nc False ev eq_rel ty1' ty1 ty2' ty2
           Right ty              -> canEqReflexive ev eq_rel ty }
850

851
can_eq_nc
852 853
   :: Bool            -- True => both types are flat
   -> CtEvidence
854
   -> EqRel
Austin Seipp's avatar
Austin Seipp committed
855 856
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
857
   -> TcS (StopOrContinue Ct)
858
can_eq_nc flat ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Austin Seipp's avatar
Austin Seipp committed
859
  = do { traceTcS "can_eq_nc" $
860
         vcat [ ppr flat, ppr ev, ppr eq_rel, ppr ty1, ppr ps_ty1, ppr ty2, ppr ps_ty2 ]
861 862
       ; rdr_env <- getGlobalRdrEnvTcS
       ; fam_insts <- getFamInstEnvs
863
       ; can_eq_nc' flat rdr_env fam_insts ev eq_rel ty1 ps_ty1 ty2 ps_ty2 }
864 865

can_eq_nc'
866 867
   :: Bool           -- True => both input types are flattened
   -> GlobalRdrEnv   -- needed to see which newtypes are in scope
868 869 870 871 872 873
   -> FamInstEnvs    -- needed to unwrap data instances
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)
874 875

-- Expand synonyms first; see Note [Type synonyms and canonicalization]
876
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Ben Gamari's avatar
Ben Gamari committed
877 878
  | Just ty1' <- tcView ty1 = can_eq_nc flat ev eq_rel ty1' ps_ty1 ty2  ps_ty2
  | Just ty2' <- tcView ty2 = can_eq_nc flat ev eq_rel ty1  ps_ty1 ty2' ps_ty2
879 880

-- need to check for reflexivity in the ReprEq case.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
881
-- See Note [Eager reflexivity check]
882 883 884
-- Check only when flat because the zonk_eq_types check in canEqNC takes
-- care of the non-flat case.
can_eq_nc' True _rdr_env _envs ev ReprEq ty1 _ ty2 _
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
885
  | ty1 `tcEqType` ty2
886 887 888
  = canEqReflexive ev ReprEq ty1

-- When working with ReprEq, unwrap newtypes.
889 890 891 892
-- See Note [Unwrap newtypes first]
can_eq_nc' _flat rdr_env envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
  | ReprEq <- eq_rel
  , Just stuff1 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty1
893
  = can_eq_newtype_nc ev NotSwapped ty1 stuff1 ty2 ps_ty2
894 895 896

  | ReprEq <- eq_rel
  , Just stuff2 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty2
897
  = can_eq_newtype_nc ev IsSwapped  ty2 stuff2 ty1 ps_ty1
898

899 900 901 902 903 904
-- Then, get rid of casts
can_eq_nc' flat _rdr_env _envs ev eq_rel (CastTy ty1 co1) _ ty2 ps_ty2
  = canEqCast flat ev eq_rel NotSwapped ty1 co1 ty2 ps_ty2
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 (CastTy ty2 co2) _
  = canEqCast flat ev eq_rel IsSwapped ty2 co2 ty1 ps_ty1

905 906 907 908 909 910 911
-- NB: pattern match on True: we want only flat types sent to canEqTyVar.
-- See also Note [No top-level newtypes on RHS of representational equalities]
can_eq_nc' True _rdr_env _envs ev eq_rel (TyVarTy tv1) ps_ty1 ty2 ps_ty2
  = canEqTyVar ev eq_rel NotSwapped tv1 ps_ty1 ty2 ps_ty2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 ps_ty1 (TyVarTy tv2) ps_ty2
  = canEqTyVar ev eq_rel IsSwapped tv2 ps_ty2 ty1 ps_ty1

912 913 914 915 916
----------------------
-- Otherwise try to decompose
----------------------

-- Literals
917
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1@(LitTy l1) _ (LitTy l2) _
918
 | l1 == l2
919
  = do { setEvBindIfWanted ev (evCoercion $ mkReflCo (eqRelRole eq_rel) ty1)
920
       ; stopWith ev "Equal LitTy" }
921

Simon Peyton Jones's avatar
Simon Peyton Jones committed
922 923
-- Try to decompose type constructor applications
-- Including FunTy (s -> t)
924
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1 _ ty2 _
925 926 927
    --- See Note [FunTy and decomposing type constructor applications].
  | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe' ty1
  , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe' ty2
928 929
  , not (isTypeFamilyTyCon tc1)
  , not (isTypeFamilyTyCon tc2)
930
  = canTyConApp ev eq_rel tc1 tys1 tc2 tys2
931

932
can_eq_nc' _flat _rdr_env _envs ev eq_rel
933
           s1@(ForAllTy {}) _ s2@(ForAllTy {}) _
934
  = can_eq_nc_forall ev eq_rel s1 s2
935

936
-- See Note [Canonicalising type applications] about why we require flat types
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
937
can_eq_nc' True _rdr_env _envs ev eq_rel (AppTy t1 s1) _ ty2 _
938 939 940
  | NomEq <- eq_rel
  , Just (t2, s2) <- tcSplitAppTy_maybe ty2
  = can_eq_app ev t1 s1 t2 s2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
941
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 _ (AppTy t2 s2) _
942 943 944
  | NomEq <- eq_rel
  , Just (t1, s1) <- tcSplitAppTy_maybe ty1
  = can_eq_app ev t1 s1 t2 s2
945

946
-- No similarity in type structure detected. Flatten and try again.
947 948 949
can_eq_nc' False rdr_env envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ps_ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ps_ty2
950 951
       ; new_ev <- rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
       ; can_eq_nc' True rdr_env envs new_ev eq_rel xi1 xi1 xi2 xi2 }
952 953

-- We've flattened and the types don't match. Give up.
954
can_eq_nc' True _rdr_env _envs ev eq_rel _ ps_ty1 _ ps_ty2
955
  = do { traceTcS "can_eq_nc' catch-all case" (ppr ps_ty1 $$ ppr ps_ty2)
956 957 958 959 960 961 962 963 964 965 966 967 968 969
       ; case eq_rel of -- See Note [Unsolved equalities]
            ReprEq -> continueWith (mkIrredCt ev)
            NomEq  -> continueWith (mkInsolubleCt ev) }
          -- No need to call canEqFailure/canEqHardFailure because they
          -- flatten, and the types involved here are already flat

{- Note [Unsolved equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an unsolved equality like
  (a b ~R# Int)
that is not necessarily insoluble!  Maybe 'a' will turn out to be a newtype.
So we want to make it a potentially-soluble Irred not an insoluble one.
Missing this point is what caused Trac #15431
-}
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984
---------------------------------
can_eq_nc_forall :: CtEvidence -> EqRel
                 -> Type -> Type    -- LHS and RHS
                 -> TcS (StopOrContinue Ct)
-- (forall as. phi1) ~ (forall bs. phi2)
-- Check for length match of as, bs
-- Then build an implication constraint: forall as. phi1 ~ phi2[as/bs]
-- But remember also to unify the kinds of as and bs
--  (this is the 'go' loop), and actually substitute phi2[as |> cos / bs]
-- Remember also that we might have forall z (a:z). blah
--  so we must proceed one binder at a time (Trac #13879)

can_eq_nc_forall ev eq_rel s1 s2
 | CtWanted { ctev_loc = loc, ctev_dest = orig_dest } <- ev
985
 = do { let free_tvs       = tyCoVarsOfTypes [s1,s2]
Ningning Xie's avatar
Ningning Xie committed
986 987
            (bndrs1, phi1) = tcSplitForAllVarBndrs s1
            (bndrs2, phi2) = tcSplitForAllVarBndrs s2
988 989 990 991 992 993 994 995
      ; if not (equalLength bndrs1 bndrs2)
        then do { traceTcS "Forall failure" $
                     vcat [ ppr s1, ppr s2, ppr bndrs1, ppr bndrs2
                          , ppr (map binderArgFlag bndrs1)
                          , ppr (map binderArgFlag bndrs2) ]
                ; canEqHardFailure ev s1 s2 }
        else
   do { traceTcS "Creating implication for polytype equality" $ ppr ev
996
      ; let empty_subst1 = mkEmptyTCvSubst $ mkInScopeSet free_tvs
997 998 999 1000 1001 1002 1003
      ; (subst1, skol_tvs) <- tcInstSkolTyVarsX empty_subst1 $
                              binderVars bndrs1

      ; let skol_info = UnifyForAllSkol phi1
            phi1' = substTy subst1 phi1

            -- Unify the kinds, extend the substitution
1004 1005
            go :: [TcTyVar] -> TCvSubst -> [TyVarBinder]
               -> TcS (TcCoercion, Cts)
1006 1007
            go (skol_tv:skol_tvs) subst (bndr2:bndrs2)
              = do { let tv2 = binderVar bndr2
1008 1009
                   ; (kind_co, wanteds1) <- unify loc Nominal (tyVarKind skol_tv)
                                                  (substTy subst (tyVarKind tv2))
1010 1011
                   ; let subst' = extendTvSubst subst tv2
                                       (mkCastTy (mkTyVarTy skol_tv) kind_co)
1012 1013 1014
                   ; (co, wanteds2) <- go skol_tvs subst' bndrs2
                   ; return ( mkTcForAllCo skol_tv kind_co co
                            , wanteds1 `unionBags` wanteds2 ) }
1015 1016 1017 1018

            -- Done: unify phi1 ~ phi2
            go [] subst bndrs2
              = ASSERT( null bndrs2 )
1019
                unify loc (eqRelRole eq_rel) phi1' (substTy subst phi2)
1020 1021 1022

            go _ _ _ = panic "cna_eq_nc_forall"  -- case (s:ss) []

1023
            empty_subst2 = mkEmptyTCvSubst (getTCvInScope subst1)
1024

1025
      ; all_co <- checkTvConstraintsTcS skol_info skol_tvs $
1026 1027
                  go skol_tvs empty_subst2 bndrs2

1028 1029 1030 1031 1032 1033 1034 1035
      ; setWantedEq orig_dest all_co
      ; stopWith ev "Deferred polytype equality" } }

 | otherwise
 = do { traceTcS "Omitting decomposition of given polytype equality" $
        pprEq s1 s2    -- See Note [Do not decompose given polytype equalities]
      ; stopWith ev "Discard given polytype equality" }

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 where
    unify :: CtLoc -> Role -> TcType -> TcType -> TcS (TcCoercion, Cts)
    -- This version returns the wanted constraint rather
    -- than putting it in the work list
    unify loc role ty1 ty2
      | ty1 `tcEqType` ty2
      = return (mkTcReflCo role ty1, emptyBag)
      | otherwise
      = do { (wanted, co) <- newWantedEq loc role ty1 ty2
           ; return (co, unitBag (mkNonCanonical wanted)) }

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
---------------------------------
-- | Compare types for equality, while zonking as necessary. Gives up
-- as soon as it finds that two types are not equal.
-- This is quite handy when some unification has made two
-- types in an inert wanted to be equal. We can discover the equality without
-- flattening, which is sometimes very expensive (in the case of type functions).
-- In particular, this function makes a ~20% improvement in test case
-- perf/compiler/T5030.
--
-- Returns either the (partially zonked) types in the case of
-- inequality, or the one type in the case of equality. canEqReflexive is
-- a good next step in the 'Right' case. Returning 'Left' is always safe.
--
-- NB: This does *not* look through type synonyms. In fact, it treats type
-- synonyms as rigid constructors. In the future, it might be convenient
-- to look at only those arguments of type synonyms that actually appear
-- in the synonym RHS. But we're not there yet.
zonk_eq_types :: TcType -> TcType -> TcS (Either (Pair TcType) TcType)
zonk_eq_types = go
  where
    go (TyVarTy tv1) (TyVarTy tv2) = tyvar_tyvar tv1 tv2
    go (TyVarTy tv1) ty2           = tyvar NotSwapped tv1 ty2
    go ty1 (TyVarTy tv2)           = tyvar IsSwapped  tv2 ty1

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    -- We handle FunTys explicitly here despite the fact that they could also be
    -- treated as an application. Why? Well, for one it's cheaper to just look
    -- at two types (the argument and result types) than four (the argument,
    -- result, and their RuntimeReps). Also, we haven't completely zonked yet,
    -- so we may run into an unzonked type variable while trying to compute the
    -- RuntimeReps of the argument and result types. This can be observed in
    -- testcase tc269.
    go ty1 ty2
      | Just (arg1, res1) <- split1
      , Just (arg2, res2) <- split2
      = do { res_a <- go arg1 arg2
           ; res_b <- go res1 res2
           ; return $ combine_rev mkFunTy res_b res_a
           }
      | isJust split1 || isJust split2
      = bale_out ty1 ty2
      where
        split1 = tcSplitFunTy_maybe ty1
        split2 = tcSplitFunTy_maybe ty2

1091 1092 1093
    go ty1 ty2
      | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe ty1
      , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe ty2
1094 1095 1096 1097 1098 1099 1100 1101 1102
      = if tc1 == tc2 && tys1 `equalLength` tys2
          -- Crucial to check for equal-length args, because
          -- we cannot assume that the two args to 'go' have
          -- the same kind.  E.g go (Proxy *      (Maybe Int))
          --                        (Proxy (*->*) Maybe)
          -- We'll call (go (Maybe Int) Maybe)
          -- See Trac #13083
        then tycon tc1 tys1 tys2
        else bale_out ty1 ty2
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

    go ty1 ty2
      | Just (ty1a, ty1b) <- tcRepSplitAppTy_maybe ty1
      , Just (ty2a, ty2b) <- tcRepSplitAppTy_maybe ty2
      = do { res_a <- go ty1a ty2a
           ; res_b <- go ty1b ty2b
           ; return $ combine_rev mkAppTy res_b res_a }

    go ty1@(LitTy lit1) (LitTy lit2)
      | lit1 == lit2
      = return (Right ty1)

1115 1116 1117 1118
    go ty1 ty2 = bale_out ty1 ty2
      -- We don't handle more complex forms here

    bale_out ty1 ty2 = return $ Left (Pair ty1 ty2)
1119 1120 1121

    tyvar :: SwapFlag -> TcTyVar -> TcType
          -> TcS (Either (Pair TcType) TcType)
1122
      -- Try to do as little as possible, as anything we do here is redundant
1123 1124 1125 1126 1127 1128 1129 1130
      -- with flattening. In particular, no need to zonk kinds. That's why
      -- we don't use the already-defined zonking functions
    tyvar swapped tv ty
      = case tcTyVarDetails tv of
          MetaTv { mtv_ref = ref }
            -> do { cts <- readTcRef ref
                  ; case cts of
                      Flexi        -> give_up
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1131 1132
                      Indirect ty' -> do { trace_indirect tv ty'
                                         ; unSwap swapped go ty' ty } }
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
          _ -> give_up
      where
        give_up = return $ Left $ unSwap swapped Pair (mkTyVarTy tv) ty

    tyvar_tyvar tv1 tv2
      | tv1 == tv2 = return (Right (mkTyVarTy tv1))
      | otherwise  = do { (ty1', progress1) <- quick_zonk tv1
                        ; (ty2', progress2) <- quick_zonk tv2
                        ; if progress1 || progress2
                          then go ty1' ty2'
                          else return $ Left (Pair (TyVarTy tv1) (TyVarTy tv2)) }

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1145 1146 1147 1148
    trace_indirect tv ty
       = traceTcS "Following filled tyvar (zonk_eq_types)"
                  (ppr tv <+> equals <+> ppr ty)

1149 1150 1151 1152 1153
    quick_zonk tv = case tcTyVarDetails tv of
      MetaTv { mtv_ref = ref }
        -> do { cts <- readTcRef ref
              ; case cts of
                  Flexi        -> return (TyVarTy tv, False)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1154 1155
                  Indirect ty' -> do { trace_indirect tv ty'
                                     ; return (ty', True) } }
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
      _ -> return (TyVarTy tv, False)

      -- This happens for type families, too. But recall that failure
      -- here just means to try harder, so it's OK if the type function
      -- isn't injective.
    tycon :: TyCon -> [TcType] -> [TcType]
          -> TcS (Either (Pair TcType) TcType)
    tycon tc tys1 tys2
      = do { results <- zipWithM go tys1 tys2
           ; return $ case combine_results results of
               Left tys  -> Left (mkTyConApp tc <$> tys)
               Right tys -> Right (mkTyConApp tc tys) }

    combine_results :: [Either (Pair TcType) TcType]
                    -> Either (Pair [TcType]) [TcType]
    combine_results = bimap (fmap reverse) reverse .
                      foldl' (combine_rev (:)) (Right [])

      -- combine (in reverse) a new result onto an already-combined result
    combine_rev :: (a -> b -> c)
                -> Either (Pair b) b
                -> Either (Pair a) a
                -> Either (Pair c) c
    combine_rev f (Left list) (Left elt) = Left (f <$> elt     <*> list)
    combine_rev f (Left list) (Right ty) = Left (f <$> pure ty <*> list)
    combine_rev f (Right tys) (Left elt) = Left (f <$> elt     <*> pure tys)
    combine_rev f (Right tys) (Right ty) = Right (f ty tys)
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
{- See Note [Unwrap newtypes first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  newtype N m a = MkN (m a)
Then N will get a conservative, Nominal role for its second paramter 'a',
because it appears as an argument to the unknown 'm'. Now consider
  [W] N Maybe a  ~R#  N Maybe b

If we decompose, we'll get
  [W] a ~N# b

But if instead we unwrap we'll get
  [W] Maybe a ~R# Maybe b
which in turn gives us
  [W] a ~R# b
which is easier to satisfy.

Bottom line: unwrap newtypes before decomposing them!
c.f. Trac #9123 comment:52,53 for a compelling example.

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
Note [Newtypes can blow the stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)
  newtype Y = MkY (Int -> Y)

and now wish to prove

  [W] X ~R Y

This Wanted will loop, expanding out the newtypes ever deeper looking
for a solid match or a solid discrepancy. Indeed, there is something
appropriate to this looping, because X and Y *do* have the same representation,
in the limit -- they're both (Fix ((->) Int)). However, no finitely-sized
coercion will ever witness it. This loop won't actually cause GHC to hang,
though, because we check our depth when unwrapping newtypes.

1222 1223 1224 1225 1226 1227 1228 1229 1230
Note [Eager reflexivity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)

and

  [W] X ~R X
1231

1232 1233 1234 1235 1236
Naively, we would start unwrapping X and end up in a loop. Instead,
we do this eager reflexivity check. This is necessary only for representational
equality because the flattener technology deals with the similar case
(recursive type families) for nominal equality.

1237 1238
Note that this check does not catch all cases, but it will catch the cases
we're most worried about, types like X above that are actually inhabited.
1239

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1240
Here's another place where this reflexivity check is key:
1241 1242 1243
Consider trying to prove (f a) ~R (f a). The AppTys in there can't
be decomposed, because representational equality isn't congruent with respect
to AppTy. So, when canonicalising the equality above, we get stuck and
1244
would normally produce a CIrredCan. However, we really do want to
1245 1246 1247 1248 1249 1250 1251 1252 1253
be able to solve (f a) ~R (f a). So, in the representational case only,
we do a reflexivity check.

(This would be sound in the nominal case, but unnecessary, and I [Richard
E.] am worried that it would slow down the common case.)
-}

------------------------
-- | We're able to unwrap a newtype. Update the bits accordingly.
1254
can_eq_newtype_nc :: CtEvidence           -- ^ :: ty1 ~ ty2
1255
                  -> SwapFlag
1256 1257
                  -> TcType                                    -- ^ ty1
                  -> ((Bag GlobalRdrElt, TcCoercion), TcType)  -- ^ :: ty1 ~ ty1'
1258 1259 1260
                  -> TcType               -- ^ ty2
                  -> TcType               -- ^ ty2, with type synonyms
                  -> TcS (StopOrContinue Ct)
1261
can_eq_newtype_nc ev swapped ty1 ((gres, co), ty1') ty2 ps_ty2
1262
  = do { traceTcS "can_eq_newtype_nc" $
1263
         vcat [ ppr ev, ppr swapped, ppr co, ppr gres, ppr ty1', ppr ty2 ]
1264 1265

         -- check for blowing our stack:
1266 1267
         -- See Note [Newtypes can blow the stack]
       ; checkReductionDepth (ctEvLoc ev) ty1
1268
       ; addUsedGREs (bagToList gres)
1269 1270 1271
           -- we have actually used the newtype constructor here, so
           -- make sure we don't warn about importing it!

1272 1273 1274
       ; new_ev <- rewriteEqEvidence ev swapped ty1' ps_ty2
                                     (mkTcSymCo co) (mkTcReflCo Representational ps_ty2)
       ; can_eq_nc False new_ev ReprEq ty1' ty1' ty2 ps_ty2 }
1275

1276
---------
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1277
-- ^ Decompose a type application.
1278
-- All input types must be flat. See Note [Canonicalising type applications]
1279 1280
-- Nominal equality only!
can_eq_app :: CtEvidence       -- :: s1 t1 ~N s2 t2
1281 1282 1283
           -> Xi -> Xi         -- s1 t1
           -> Xi -> Xi         -- s2 t2
           -> TcS (StopOrContinue Ct)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1284 1285

-- AppTys only decompose for nominal equality, so this case just leads
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1286
-- to an irreducible constraint; see typecheck/should_compile/T10494
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1287
-- See Note [Decomposing equality], note {4}
1288
can_eq_app ev s1 t1 s2 t2
1289
  | CtDerived { ctev_loc = loc } <- ev
1290 1291 1292 1293
  = do { unifyDeriveds loc [Nominal, Nominal] [s1, t1] [s2, t2]
       ; stopWith ev "Decomposed [D] AppTy" }
  | CtWanted { ctev_dest = dest, ctev_loc = loc } <- ev
  = do { co_s <- unifyWanted loc Nominal s1 s2
1294 1295 1296 1297
       ; let arg_loc
               | isNextArgVisible s1 = loc
               | otherwise           = updateCtLocOrigin loc toInvisibleOrigin
       ; co_t <- unifyWanted arg_loc Nominal t1 t2
1298 1299 1300
       ; let co = mkAppCo co_s co_t
       ; setWantedEq dest co
       ; stopWith ev "Decomposed [W] AppTy" }
1301 1302 1303 1304 1305 1306 1307 1308 1309

    -- If there is a ForAll/(->) mismatch, the use of the Left coercion
    -- below is ill-typed, potentially leading to a panic in splitTyConApp
    -- Test case: typecheck/should_run/Typeable1
    -- We could also include this mismatch check above (for W and D), but it's slow
    -- and we'll get a better error message not doing it
  | s1k `mismatches` s2k
  = canEqHardFailure ev (s1 `mkAppTy` t1) (s2 `mkAppTy` t2)

1310 1311
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { let co   = mkTcCoVarCo evar
1312 1313
             co_s = mkTcLRCo CLeft  co
             co_t = mkTcLRCo CRight co
1314
       ; evar_s <- newGivenEvVar loc ( mkTcEqPredLikeEv ev s1 s2
1315
                                     , evCoercion co_s )
1316
       ; evar_t <- newGivenEvVar loc ( mkTcEqPredLikeEv ev t1 t2
1317
                                     , evCoercion co_t )
1318 1319
       ; emitWorkNC [evar_t]
       ; canEqNC evar_s NomEq s1 s2 }
1320 1321 1322 1323 1324 1325 1326 1327

  where
    s1k = typeKind s1
    s2k = typeKind s2

    k1 `mismatches` k2
      =  isForAllTy k1 && not (isForAllTy k2)
      || not (isForAllTy k1) && isForAllTy k2
1328

1329 1330
-----------------------
-- | Break apart an equality over a casted type
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1331
-- looking like   (ty1 |> co1) ~ ty2   (modulo a swap-flag)
1332 1333 1334 1335
canEqCast :: Bool         -- are both types flat?
          -> CtEvidence
          -> EqRel
          -> SwapFlag
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1336 1337
          -> TcType -> Coercion   -- LHS (res. RHS), ty1 |> co1
          -> TcType -> TcType     -- RHS (res. LHS), ty2 both normal and pretty
1338 1339 1340 1341 1342
          -> TcS (StopOrContinue Ct)
canEqCast flat ev eq_rel swapped ty1 co1 ty2 ps_ty2
  = do { traceTcS "Decomposing cast" (vcat [ ppr ev
                                           , ppr ty1 <+> text "|>" <+> ppr co1
                                           , ppr ps_ty2 ])
1343
       ; new_ev <- rewriteEqEvidence ev swapped ty1 ps_ty2
Ningning Xie's avatar
Ningning Xie committed
1344
                                     (mkTcGReflRightCo role ty1 co1)
1345 1346
                                     (mkTcReflCo role ps_ty2)
       ; can_eq_nc flat new_ev eq_rel ty1 ty1 ty2 ps_ty2 }
1347 1348 1349
  where
    role = eqRelRole eq_rel

1350
------------------------
1351 1352 1353 1354
canTyConApp :: CtEvidence -> EqRel
            -> TyCon -> [TcType]
            -> TyCon -> [TcType]
            -> TcS (StopOrContinue Ct)
1355
-- See Note [Decomposing TyConApps]
1356
canTyConApp ev eq_rel tc1 tys1 tc2 tys2
1357
  | tc1 == tc2
1358
  , tys1 `equalLength` tys2
1359
  = do { inerts <- getTcSInerts
1360 1361
       ; if can_decompose inerts
         then do { traceTcS "canTyConApp"
1362 1363 1364 1365
                       (ppr ev $$ ppr eq_rel $$ ppr tc1 $$ ppr tys1 $$ ppr tys2)
                 ; canDecomposableTyConAppOK ev eq_rel tc1 tys1 tys2
                 ; stopWith ev "Decomposed TyConApp" }
         else canEqFailure ev eq_rel ty1 ty2 }
1366

1367 1368
  -- See Note [Skolem abstract data] (at tyConSkolem)
  | tyConSkolem tc1 || tyConSkolem tc2
1369
  = do { traceTcS "canTyConApp: skolem abstract" (ppr tc1 $$ ppr tc2)
1370
       ; continueWith (mkIrredCt ev) }
1371

1372 1373
  -- Fail straight away for better error messages
  -- See Note [Use canEqFailure in canDecomposableTyConApp]
1374 1375
  | eq_rel == ReprEq && not (isGenerativeTyCon tc1 Representational &&
                             isGenerativeTyCon tc2 Representational)
1376 1377
  = canEqFailure ev eq_rel ty1 ty2
  | otherwise
1378
  = canEqHardFailure ev ty1 ty2
1379 1380 1381 1382
  where
    ty1 = mkTyConApp tc1 tys1
    ty2 = mkTyConApp tc2 tys2

1383 1384 1385
    loc  = ctEvLoc ev
    pred = ctEvPred ev

1386 1387 1388 1389 1390
     -- See Note [Decomposing equality]
    can_decompose inerts
      =  isInjectiveTyCon tc1 (eqRelRole eq_rel)
      || (ctEvFlavour ev /= Given && isEmptyBag (matchableGivens loc pred inerts))

1391 1392 1393 1394 1395
{-
Note [Use canEqFailure in canDecomposableTyConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must use canEqFailure, not canEqHardFailure here, because there is
the possibility of success if working with a representational equality.