DsBinds.hs 48.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import Digraph
39

40
import PrelNames
41
import TysPrim ( mkProxyPrimTy )
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import VarSet
Simon Marlow's avatar
Simon Marlow committed
53
import Rules
54
import VarEnv
55
import Outputable
56
import Module
Simon Marlow's avatar
Simon Marlow committed
57 58
import SrcLoc
import Maybes
59
import OrdList
Simon Marlow's avatar
Simon Marlow committed
60 61
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
62
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
63
import FastString
64
import Util
65
import MonadUtils
66
import qualified GHC.LanguageExtensions as LangExt
67
import Control.Monad
68

69
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
70
*                                                                      *
71
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
72
*                                                                      *
73
**********************************************************************-}
74

75 76
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
77
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
78
dsTopLHsBinds binds = fmap (toOL . snd) (ds_lhs_binds binds)
79

80 81 82 83 84 85
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
-- later be forced in the binding gorup body, see Note [Desugar Strict binds]
dsLHsBinds :: LHsBinds Id
           -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBinds binds = do { (force_vars, binds') <- ds_lhs_binds binds
                      ; return (force_vars, binds') }
86 87

------------------------
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
ds_lhs_binds :: LHsBinds Id -> DsM ([Id], [(Id,CoreExpr)])

ds_lhs_binds binds
  = do { ds_bs <- mapBagM dsLHsBind binds
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

dsLHsBind :: LHsBind Id
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
         -> HsBind Id
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
114 115
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
116
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
117
                   | otherwise         = var
118
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
119
              force_var = if xopt LangExt.Strict dflags
120 121 122 123 124 125
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
126
                  , fun_co_fn = co_fn, fun_tick = tick })
127
 = do   { (args, body) <- matchWrapper (FunRhs (idName fun)) Nothing matches
128
        ; let body' = mkOptTickBox tick body
129
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
130 131
        ; let core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
              force_var =
132
                if xopt LangExt.Strict dflags
133 134 135
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
136
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
137
           return (force_var, [core_binds]) }
138

139 140
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
141
                  , pat_ticks = (rhs_tick, var_ticks) })
142
  = do  { body_expr <- dsGuarded grhss ty
143
        ; let body' = mkOptTickBox rhs_tick body_expr
144
              pat'  = decideBangHood dflags pat
145
        ; (force_var,sel_binds) <-
146
            mkSelectorBinds var_ticks pat body'
147 148
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
149 150
        ; let force_var' = if isBangedLPat pat'
                           then [force_var]
151 152
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
153

154
        -- A common case: one exported variable, only non-strict binds
155
        -- Non-recursive bindings come through this way
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
156 157
        -- So do self-recursive bindings
        -- Bindings with complete signatures are AbsBindsSigs, below
158 159
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
160 161
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
162
  | ABE { abe_wrap = wrap, abe_poly = global
163
        , abe_mono = local, abe_prags = prags } <- export
164 165 166
  , not (xopt LangExt.Strict dflags)             -- Handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) --        in the next case
  = -- See Note [AbsBinds wrappers] in HsBinds
167
    addDictsDs (toTcTypeBag (listToBag dicts)) $
168 169 170 171 172 173 174 175 176
         -- addDictsDs: push type constraints deeper for pattern match check
    do { (_, bind_prs) <- ds_lhs_binds binds
       ; let core_bind = Rec bind_prs
       ; ds_binds <- dsTcEvBinds_s ev_binds
       ; rhs <- dsHsWrapper wrap $  -- Usually the identity
                mkLams tyvars $ mkLams dicts $
                mkCoreLets ds_binds $
                Let core_bind $
                Var local
177

178
       ; (spec_binds, rules) <- dsSpecs rhs prags
179

180 181 182
       ; let   global'  = addIdSpecialisations global rules
               main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                        (dictArity dicts) rhs
183

184
       ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        -- Another common case: no tyvars, no dicts
        -- In this case we can have a much simpler desugaring
dsHsBind dflags
         (AbsBinds { abs_tvs = [], abs_ev_vars = []
                   , abs_exports = exports
                   , abs_ev_binds = ev_binds, abs_binds = binds })
  = do { (force_vars, bind_prs) <- ds_lhs_binds binds
       ; let mk_bind (ABE { abe_wrap = wrap
                          , abe_poly = global
                          , abe_mono = local
                          , abe_prags = prags })
              = do { rhs <- dsHsWrapper wrap (Var local)
                   ; return (makeCorePair dflags global
                                          (isDefaultMethod prags)
                                          0 rhs) }
       ; main_binds <- mapM mk_bind exports

       ; ds_binds <- dsTcEvBinds_s ev_binds
       ; return (force_vars, flattenBinds ds_binds ++ bind_prs ++ main_binds) }

206 207
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
208 209
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
210
         -- See Note [Desugaring AbsBinds]
211 212
  = addDictsDs (toTcTypeBag (listToBag dicts)) $
         -- addDictsDs: push type constraints deeper for pattern match check
213
     do { (local_force_vars, bind_prs) <- ds_lhs_binds binds
214
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
215
                              | (lcl_id, rhs) <- bind_prs ]
216
                -- Monomorphic recursion possible, hence Rec
217
              new_force_vars = get_new_force_vars local_force_vars
218
              locals       = map abe_mono exports
219 220
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
221
              tup_ty       = exprType tup_expr
222
        ; ds_binds <- dsTcEvBinds_s ev_binds
223 224 225 226
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
227

228
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
229

230 231 232 233 234
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

235
        ; let mk_bind (ABE { abe_wrap = wrap
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
236
                           , abe_poly = global
237
                           , abe_mono = local, abe_prags = spec_prags })
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
238
                         -- See Note [AbsBinds wrappers] in HsBinds
239 240
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
241
                              mkLams tyvars $ mkLams dicts $
242 243
                              mkTupleSelector all_locals local tup_id $
                              mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
244
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
245 246
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
247 248 249
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
250
                           -- Id is just the selector.  Hmm.
251
                     ; return ((global', rhs) : fromOL spec_binds) }
252

253
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
254

255 256 257
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
258 259 260 261 262
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
263 264 265 266
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
267 268

    add_inline :: Id -> Id    -- tran
269 270
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
    get_exports :: [Id] -> DsM ([Id], [ABExport Id])
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

304
-- AbsBindsSig is a combination of AbsBinds and FunBind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
305 306 307 308 309 310 311 312 313 314
dsHsBind dflags (AbsBindsSig { abs_tvs = tyvars, abs_ev_vars = dicts
                             , abs_sig_export  = global
                             , abs_sig_prags   = prags
                             , abs_sig_ev_bind = ev_bind
                             , abs_sig_bind    = bind })
  | L bind_loc FunBind { fun_matches = matches
                       , fun_co_fn   = co_fn
                       , fun_tick    = tick } <- bind
  = putSrcSpanDs bind_loc $
    addDictsDs (toTcTypeBag (listToBag dicts)) $
315
             -- addDictsDs: push type constraints deeper for pattern match check
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    do { (args, body) <- matchWrapper (FunRhs (idName global)) Nothing matches
       ; let body' = mkOptTickBox tick body
       ; fun_rhs <- dsHsWrapper co_fn $
                    mkLams args body'
       ; let force_vars
               | xopt LangExt.Strict dflags
               , matchGroupArity matches == 0 -- no need to force lambdas
               = [global]
               | otherwise
               = []

       ; ds_binds <- dsTcEvBinds ev_bind
       ; let rhs = mkLams tyvars $
                   mkLams dicts $
                   mkCoreLets ds_binds $
                   fun_rhs

       ; (spec_binds, rules) <- dsSpecs rhs prags
       ; let global' = addIdSpecialisations global rules
             main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                      (dictArity dicts) rhs

       ; return (force_vars, main_bind : fromOL spec_binds) }

  | otherwise
  = pprPanic "dsHsBind: AbsBindsSig" (ppr bind)

343 344
dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

cactus's avatar
cactus committed
345

346
------------------------
347 348
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
349
  | is_default_method                 -- Default methods are *always* inlined
350 351
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

352 353
  | otherwise
  = case inlinePragmaSpec inline_prag of
354 355 356
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
357
          Inline          -> inline_pair
358

359 360
  where
    inline_prag   = idInlinePragma gbl_id
361
    inlinable_unf = mkInlinableUnfolding dflags rhs
362 363
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
364 365
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
366
       , let real_arity = dict_arity + arity
367
        -- NB: The arity in the InlineRule takes account of the dictionaries
368 369 370 371 372 373
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
374 375 376 377

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
378

Austin Seipp's avatar
Austin Seipp committed
379
{-
380 381
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
382 383 384 385 386 387 388 389
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

390 391 392 393 394
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
395 396
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
397
But we don't want that, because if M.f isn't exported,
398 399
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
400 401 402
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
403 404 405
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
406 407 408 409
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
410
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
411
Although I'm a bit worried about whether full laziness might
412
float the f_lcl binding out and then inline M.f at its call site
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

428
The top-level AbsBinds for $cround has no tyvars or dicts (because the
429 430 431 432 433 434 435
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

436 437 438 439 440
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
441 442 443

and desugar it to

444 445 446
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
447 448

where B is the *non-recursive* binding
449 450 451
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
452 453

Notice (a) g has a different number of type variables to f, so we must
454 455
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
456

457 458 459 460
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
461

462 463 464 465
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
466 467

Why got to this trouble?  It's a common case, and it removes the
468
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
469 470 471 472
compilation, especially in a case where there are a *lot* of
bindings.


473 474 475 476 477 478 479 480
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
481
happen as a result of method sharing), there's a danger that we never
482 483 484 485
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
486
has the arity with which it is declared in the source code.  In this
487
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
488
should mean that (foo d) is a PAP and we don't share it.
489 490 491

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
492 493 494 495 496 497 498 499 500 501 502 503 504 505
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
562
The simplest thing is to return it in the polymorphic
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Austin Seipp's avatar
Austin Seipp committed
580
-}
581

582
------------------------
583
dsSpecs :: CoreExpr     -- Its rhs
584
        -> TcSpecPrags
585 586
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
587
-- See Note [Handling SPECIALISE pragmas] in TcBinds
588 589 590 591 592 593
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

594 595 596
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
597 598 599
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
600
  | isJust (isClassOpId_maybe poly_id)
601
  = putSrcSpanDs loc $
602 603
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for class method selector"
                          <+> quotes (ppr poly_id))
604
       ; return Nothing  }  -- There is no point in trying to specialise a class op
605 606
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
607

608 609
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
610 611
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for NOINLINE function:"
                          <+> quotes (ppr poly_id))
612
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
613
                            -- See Note [Activation pragmas for SPECIALISE]
614

615
  | otherwise
616
  = putSrcSpanDs loc $
617 618
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
619 620
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
621 622 623
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
624 625 626
       ; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
         --                         , text "spec_co:" <+> ppr spec_co
         --                         , text "ds_rhs:" <+> ppr ds_lhs ]) $
627
         case decomposeRuleLhs bndrs ds_lhs of {
628
           Left msg -> do { warnDs NoReason msg; return Nothing } ;
629
           Right (rule_bndrs, _fn, args) -> do
630

631
       { dflags <- getDynFlags
632
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
633 634 635 636
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
637 638 639
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
640
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
641
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
642 643 644
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
645

646
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
647

648 649
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
650
--              (warnDs $ text "SPECIALISE pragma on INLINE function probably won't fire:"
651
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
652 653 654 655 656

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
657 658 659 660
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
661
             = rhs          -- Local Id; this is its rhs
662 663
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
664 665 666
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
667
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
668
                            -- The type checker has checked that it *has* an unfolding
669

670 671 672 673 674
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
675
                                 -- in OccurAnal
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


693 694 695 696 697 698
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
699
        warnDs (Reason Opt_WarnOrphans) (ruleOrphWarn rule)
700 701 702
    return rule

ruleOrphWarn :: CoreRule -> SDoc
703
ruleOrphWarn rule = text "Orphan rule:" <+> ppr rule
704

705 706 707 708 709 710 711 712 713 714 715 716 717
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

718 719 720 721 722 723 724 725
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

726
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
748
SPEC [n] f :: ty            [n]   INLINE [k]
749 750 751 752 753 754 755 756 757 758
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
759 760
************************************************************************
*                                                                      *
761
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
762 763 764
*                                                                      *
************************************************************************
-}
765

766
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
767 768
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
769
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
770
--
771
-- Returns Nothing if the LHS isn't of the expected shape
772 773 774 775 776 777
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

778 779
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
780 781 782 783 784 785
  = -- pprTrace "decmposeRuleLhs" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
    --                                  , text "orig_lhs:" <+> ppr orig_lhs
    --                                  , text "lhs1:"     <+> ppr lhs1
    --                                  , text "extra_dict_bndrs:" <+> ppr extra_dict_bndrs
    --                                  , text "fn_id:" <+> ppr fn_id
    --                                  , text "args:"   <+> ppr args]) $
786
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
787

788
  | otherwise
789
  = Left bad_shape_msg
790
 where
791 792 793 794
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

795 796
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
797

798
   orig_bndr_set = mkVarSet orig_bndrs
799

800
        -- Add extra dict binders: Note [Free dictionaries]
801 802
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
niteria's avatar
niteria committed
803 804 805
       | d <- exprsFreeVarsList args
       , not (d `elemVarSet` orig_bndr_set)
       , not (d == fn_id)
806 807 808 809 810 811 812 813 814
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
815

816
   bad_shape_msg = hang (text "RULE left-hand side too complicated to desugar")
817 818
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
819 820
   dead_msg bndr = hang (sep [ text "Forall'd" <+> pp_bndr bndr
                             , text "is not bound in RULE lhs"])
821 822 823
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
824
   pp_bndr bndr
825 826 827
    | isTyVar bndr                      = text "type variable" <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = text "constraint" <+> quotes (ppr pred)
    | otherwise                         = text "variable" <+> quotes (ppr bndr)
828 829

   drop_dicts :: CoreExpr -> CoreExpr
830
   drop_dicts e
831 832 833
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
834
       (bnds, body) = split_lets (occurAnalyseExpr e)
835
           -- The occurAnalyseExpr drops dead bindings which is
836 837
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
838 839

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
840 841
   split_lets (Let (NonRec d r) body)
     | isDictId d
842
     = ((d,r):bs, body')
843 844 845 846 847 848 849 850 851
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
852 853 854 855

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
856
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
857 858 859 860
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
861

Austin Seipp's avatar
Austin Seipp committed
862
{-
863
Note [Decomposing the left-hand side of a RULE]
864
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
865
There are several things going on here.
866 867
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
868
* extra_dict_bndrs: see Note [Free dictionaries]
869 870 871

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
872
drop_dicts drops dictionary bindings on the LHS where possible.
873 874
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
875
   Reasoning here is that there is only one d:Eq [Int], and so we can
876 877 878 879
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
880
         one of the orig_bndrs, which we assume occur on RHS.
881 882 883 884 885 886
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
887
         to match, but there is no other way to get d:Eq a
888

889
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
890 891 892 893 894 895
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
896
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
897 898 899 900 901 902
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
903
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
904 905
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

906 907 908
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

909 910 911 912 913 914 915 916 917 918
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
919
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
920 921 922 923 924 925
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


926 927 928 929
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

930
   (a) Inline any remaining dictionary bindings (which hopefully
931 932 933
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
934
       Note that we substitute the function too; we might
935 936
       have this as a LHS:  let f71 = M.f Int in f71

937
   (c) Do eta reduction.  To see why, consider the fold/build rule,
938 939 940 941
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
942
         augment g (build h)
943
       we do not want to get
944
         augment (\a. g a) (build h)
945 946
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
947

948
Note [Matching seqId]
949 950
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
951
and this code turns it back into an application of seq!
952 953
See Note [Rules for seq] in MkId for the details.

954 955 956
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
957
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
958
        ... SPECIALISE f :: Eq a => a -> a ...
959 960
It's true that this *is* a more specialised type, but the rule
we get is something like this:
961 962
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
963 964
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
965 966 967 968
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

969 970
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
971 972
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
973 974 975
over it too.  *Any* dict with that type will do.

So for example when you have
976 977
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
978
        ... SPECIALISE f :: Int -> Int ...
979 980

Then we get the SpecPrag