TcType.lhs 39.3 KB
Newer Older
1
2
3
4
5
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[TcType]{Types used in the typechecker}

6
7
This module provides the Type interface for front-end parts of the 
compiler.  These parts 
8

9
10
11
	* treat "source types" as opaque: 
		newtypes, and predicates are meaningful. 
	* look through usage types
12

13
14
The "tc" prefix is for "typechechecker", because the type checker
is the principal client.
15

16
17
\begin{code}
module TcType (
18
  --------------------------------
19
  -- Types 
20
  TcType, TcSigmaType, TcRhoType, TcTauType, TcPredType, TcThetaType, 
21
  TcTyVar, TcTyVarSet, TcKind, 
22
23
24

  --------------------------------
  -- TyVarDetails
25
  TyVarDetails(..), isUserTyVar, isSkolemTyVar, 
26
  tyVarBindingInfo,
27
28

  --------------------------------
29
  -- Builders
30
  mkPhiTy, mkSigmaTy, 
31

32
33
34
  --------------------------------
  -- Splitters  
  -- These are important because they do not look through newtypes
35
  tcSplitForAllTys, tcSplitPhiTy, 
36
37
  tcSplitFunTy_maybe, tcSplitFunTys, tcFunArgTy, tcFunResultTy,
  tcSplitTyConApp, tcSplitTyConApp_maybe, tcTyConAppTyCon, tcTyConAppArgs,
38
  tcSplitAppTy_maybe, tcSplitAppTy, tcSplitAppTys, tcSplitSigmaTy,
39
40
41
42
43
  tcSplitMethodTy, tcGetTyVar_maybe, tcGetTyVar,

  ---------------------------------
  -- Predicates. 
  -- Again, newtypes are opaque
44
  tcEqType, tcEqTypes, tcEqPred, tcCmpType, tcCmpTypes, tcCmpPred,
45
  isSigmaTy, isOverloadedTy, 
46
  isDoubleTy, isFloatTy, isIntTy,
47
  isIntegerTy, isAddrTy, isBoolTy, isUnitTy,
48
  isTauTy, tcIsTyVarTy, tcIsForAllTy,
49
  allDistinctTyVars,
50
51
52

  ---------------------------------
  -- Misc type manipulators
53
  deNoteType, classesOfTheta,
54
  tyClsNamesOfType, tyClsNamesOfDFunHead, 
55
56
57
58
  getDFunTyKey,

  ---------------------------------
  -- Predicate types  
59
  getClassPredTys_maybe, getClassPredTys, 
60
  isClassPred, isTyVarClassPred, 
61
  mkDictTy, tcSplitPredTy_maybe, 
62
  isDictTy, tcSplitDFunTy, predTyUnique, 
63
  mkClassPred, isInheritablePred, isLinearPred, isIPPred, mkPredName, 
64

65
66
67
68
69
70
71
72
73
  ---------------------------------
  -- Foreign import and export
  isFFIArgumentTy,     -- :: DynFlags -> Safety -> Type -> Bool
  isFFIImportResultTy, -- :: DynFlags -> Type -> Bool
  isFFIExportResultTy, -- :: Type -> Bool
  isFFIExternalTy,     -- :: Type -> Bool
  isFFIDynArgumentTy,  -- :: Type -> Bool
  isFFIDynResultTy,    -- :: Type -> Bool
  isFFILabelTy,        -- :: Type -> Bool
sof's avatar
sof committed
74
75
76
77
  isFFIDotnetTy,       -- :: DynFlags -> Type -> Bool
  isFFIDotnetObjTy,    -- :: Type -> Bool
  
  toDNType,            -- :: Type -> DNType
78

79
80
81
82
  ---------------------------------
  -- Unifier and matcher  
  unifyTysX, unifyTyListsX, unifyExtendTysX,
  matchTy, matchTys, match,
83

84
85
  --------------------------------
  -- Rexported from Type
86
87
88
  Kind, 	-- Stuff to do with kinds is insensitive to pre/post Tc
  unliftedTypeKind, liftedTypeKind, openTypeKind, mkArrowKind, mkArrowKinds, 
  superBoxity, liftedBoxity, hasMoreBoxityInfo, defaultKind, superKind,
89
  isTypeKind, isAnyTypeKind,
90

91
  Type, PredType(..), ThetaType, 
92
93
  mkForAllTy, mkForAllTys, 
  mkFunTy, mkFunTys, zipFunTys, 
94
  mkTyConApp, mkGenTyConApp, mkAppTy, mkAppTys, mkSynTy, applyTy, applyTys,
95
  mkTyVarTy, mkTyVarTys, mkTyConTy, mkPredTy, mkPredTys, 
96

97
98
  isUnLiftedType,	-- Source types are always lifted
  isUnboxedTupleType,	-- Ditto
99
  isPrimitiveType, isTyVarTy, isPredTy,
100

101
  tidyTopType, tidyType, tidyPred, tidyTypes, tidyFreeTyVars, tidyOpenType, tidyOpenTypes,
102
  tidyTyVarBndr, tidyOpenTyVar, tidyOpenTyVars,
103
  typeKind, eqKind,
104
105

  tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta
106
107
  ) where

108
#include "HsVersions.h"
109
110


111
import {-# SOURCE #-} PprType( pprType )
112
-- PprType imports TcType so that it can print intelligently
113

114
-- friends:
115
116
117
import TypeRep		( Type(..), TyNote(..), funTyCon )  -- friend

import Type		(	-- Re-exports
118
			  tyVarsOfType, tyVarsOfTypes, tyVarsOfPred,
119
120
			  tyVarsOfTheta, Kind, Type, PredType(..),
			  ThetaType, unliftedTypeKind,
121
122
123
			  liftedTypeKind, openTypeKind, mkArrowKind,
			  mkArrowKinds, mkForAllTy, mkForAllTys,
			  defaultKind, isTypeKind, isAnyTypeKind,
124
			  mkFunTy, mkFunTys, zipFunTys, isTyVarTy,
125
126
127
			  mkTyConApp, mkGenTyConApp, mkAppTy,
			  mkAppTys, mkSynTy, applyTy, applyTys,
			  mkTyVarTy, mkTyVarTys, mkTyConTy, mkPredTy,
128
			  mkPredTys, isUnLiftedType, isPredTy,
129
			  isUnboxedTupleType, isPrimitiveType,
130
			  splitTyConApp_maybe,
131
132
133
			  tidyTopType, tidyType, tidyPred, tidyTypes,
			  tidyFreeTyVars, tidyOpenType, tidyOpenTypes,
			  tidyTyVarBndr, tidyOpenTyVar,
134
			  tidyOpenTyVars, eqKind, 
135
136
			  hasMoreBoxityInfo, liftedBoxity,
			  superBoxity, typeKind, superKind, repType
137
			)
138
import TyCon		( TyCon, isUnLiftedTyCon, tyConUnique )
139
140
import Class		( Class )
import Var		( TyVar, tyVarKind, isMutTyVar, mutTyVarDetails )
sof's avatar
sof committed
141
142
143
import ForeignCall	( Safety, playSafe
			  , DNType(..)
			)
144
145
import VarEnv
import VarSet
146
147

-- others:
148
import CmdLineOpts	( DynFlags, DynFlag( Opt_GlasgowExts ), dopt )
149
import Name		( Name, NamedThing(..), mkInternalName, getSrcLoc )
150
import NameSet
151
import OccName		( OccName, mkDictOcc )
152
import PrelNames	-- Lots (e.g. in isFFIArgumentTy)
153
import TysWiredIn	( unitTyCon, charTyCon, listTyCon )
154
import BasicTypes	( IPName(..), ipNameName )
155
import Unique		( Unique, Uniquable(..) )
156
import SrcLoc		( SrcLoc )
157
import Util		( cmpList, thenCmp, equalLength, snocView )
158
import Maybes		( maybeToBool, expectJust )
159
import Outputable
160
161
162
\end{code}


163
164
%************************************************************************
%*									*
165
166
167
168
\subsection{Types}
%*									*
%************************************************************************

169
170
171
The type checker divides the generic Type world into the 
following more structured beasts:

172
sigma ::= forall tyvars. phi
173
174
175
176
177
178
179
180
181
182
	-- A sigma type is a qualified type
	--
	-- Note that even if 'tyvars' is empty, theta
	-- may not be: e.g.   (?x::Int) => Int

	-- Note that 'sigma' is in prenex form:
	-- all the foralls are at the front.
	-- A 'phi' type has no foralls to the right of
	-- an arrow

183
184
185
phi :: theta => rho

rho ::= sigma -> rho
186
187
188
189
190
191
192
193
194
195
196
197
     |  tau

-- A 'tau' type has no quantification anywhere
-- Note that the args of a type constructor must be taus
tau ::= tyvar
     |  tycon tau_1 .. tau_n
     |  tau_1 tau_2
     |  tau_1 -> tau_2

-- In all cases, a (saturated) type synonym application is legal,
-- provided it expands to the required form.

198
199
200
201
202
203
204
205
206
207
208
209
\begin{code}
type TcTyVar    = TyVar		-- Might be a mutable tyvar
type TcTyVarSet = TyVarSet

type TcType = Type 		-- A TcType can have mutable type variables
	-- Invariant on ForAllTy in TcTypes:
	-- 	forall a. T
	-- a cannot occur inside a MutTyVar in T; that is,
	-- T is "flattened" before quantifying over a

type TcPredType     = PredType
type TcThetaType    = ThetaType
210
type TcSigmaType    = TcType
211
type TcRhoType      = TcType
212
type TcTauType      = TcType
213
214
215
216
217
218
219
type TcKind         = TcType
\end{code}


%************************************************************************
%*									*
\subsection{TyVarDetails}
220
221
222
%*									*
%************************************************************************

223
224
TyVarDetails gives extra info about type variables, used during type
checking.  It's attached to mutable type variables only.
225
226
It's knot-tied back to Var.lhs.  There is no reason in principle
why Var.lhs shouldn't actually have the definition, but it "belongs" here.
227

228
\begin{code}
229
data TyVarDetails
230
  = SigTv	-- Introduced when instantiating a type signature,
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
		-- prior to checking that the defn of a fn does 
		-- have the expected type.  Should not be instantiated.
		--
		-- 	f :: forall a. a -> a
		-- 	f = e
		-- When checking e, with expected type (a->a), we 
		-- should not instantiate a

   | ClsTv	-- Scoped type variable introduced by a class decl
		--	class C a where ...

   | InstTv	-- Ditto, but instance decl

   | VanillaTv	-- Everything else

246
247
248
249
250
251
252
isUserTyVar :: TcTyVar -> Bool	-- Avoid unifying these if possible
isUserTyVar tv = case mutTyVarDetails tv of
		   VanillaTv -> False
		   other     -> True

isSkolemTyVar :: TcTyVar -> Bool
isSkolemTyVar tv = case mutTyVarDetails tv of
253
254
255
		      SigTv  -> True
		      ClsTv  -> True
		      InstTv -> True
256
257
258
259
260
261
262
263
264
265
266
267
268
269
		      oteher -> False

tyVarBindingInfo :: TyVar -> SDoc	-- Used in checkSigTyVars
tyVarBindingInfo tv
  | isMutTyVar tv
  = sep [ptext SLIT("is bound by the") <+> details (mutTyVarDetails tv),
	 ptext SLIT("at") <+> ppr (getSrcLoc tv)]
  | otherwise
  = empty
  where
    details SigTv     = ptext SLIT("type signature")
    details ClsTv     = ptext SLIT("class declaration")
    details InstTv    = ptext SLIT("instance declaration")
    details VanillaTv = ptext SLIT("//vanilla//")	-- Ditto
270
\end{code}
271

272
273
274
275
276
277
278
279

%************************************************************************
%*									*
\subsection{Tau, sigma and rho}
%*									*
%************************************************************************

\begin{code}
280
mkSigmaTy tyvars theta tau = mkForAllTys tyvars (mkPhiTy theta tau)
sof's avatar
sof committed
281

282
mkPhiTy :: [PredType] -> Type -> Type
283
mkPhiTy theta ty = foldr (\p r -> FunTy (mkPredTy p) r) ty theta
284
285
286
\end{code}

@isTauTy@ tests for nested for-alls.
sof's avatar
sof committed
287

288
\begin{code}
289
290
291
isTauTy :: Type -> Bool
isTauTy (TyVarTy v)	 = True
isTauTy (TyConApp _ tys) = all isTauTy tys
292
isTauTy (NewTcApp _ tys) = all isTauTy tys
293
294
isTauTy (AppTy a b)	 = isTauTy a && isTauTy b
isTauTy (FunTy a b)	 = isTauTy a && isTauTy b
295
isTauTy (PredTy p)	 = True		-- Don't look through source types
296
297
298
299
300
301
302
isTauTy (NoteTy _ ty)	 = isTauTy ty
isTauTy other		 = False
\end{code}

\begin{code}
getDFunTyKey :: Type -> OccName	-- Get some string from a type, to be used to 
				-- construct a dictionary function name
303
304
305
306
307
308
309
310
311
getDFunTyKey (TyVarTy tv)    = getOccName tv
getDFunTyKey (TyConApp tc _) = getOccName tc
getDFunTyKey (NewTcApp tc _) = getOccName tc
getDFunTyKey (AppTy fun _)   = getDFunTyKey fun
getDFunTyKey (NoteTy _ t)    = getDFunTyKey t
getDFunTyKey (FunTy arg _)   = getOccName funTyCon
getDFunTyKey (ForAllTy _ t)  = getDFunTyKey t
getDFunTyKey ty		     = pprPanic "getDFunTyKey" (pprType ty)
-- PredTy shouldn't happen
sof's avatar
sof committed
312
313
314
\end{code}


315
316
%************************************************************************
%*									*
317
\subsection{Expanding and splitting}
318
319
%*									*
%************************************************************************
320

321
322
323
324
325
326
327
328
These tcSplit functions are like their non-Tc analogues, but
	a) they do not look through newtypes
	b) they do not look through PredTys
	c) [future] they ignore usage-type annotations

However, they are non-monadic and do not follow through mutable type
variables.  It's up to you to make sure this doesn't matter.

329
\begin{code}
330
331
332
333
334
335
336
337
338
339
340
tcSplitForAllTys :: Type -> ([TyVar], Type)
tcSplitForAllTys ty = split ty ty []
   where
     split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs)
     split orig_ty (NoteTy n  ty)   tvs = split orig_ty ty tvs
     split orig_ty t		    tvs = (reverse tvs, orig_ty)

tcIsForAllTy (ForAllTy tv ty) = True
tcIsForAllTy (NoteTy n ty)    = tcIsForAllTy ty
tcIsForAllTy t		      = False

341
342
tcSplitPhiTy :: Type -> ([PredType], Type)
tcSplitPhiTy ty = split ty ty []
343
344
345
346
347
348
349
350
 where
  split orig_ty (FunTy arg res) ts = case tcSplitPredTy_maybe arg of
					Just p  -> split res res (p:ts)
					Nothing -> (reverse ts, orig_ty)
  split orig_ty (NoteTy n ty)	ts = split orig_ty ty ts
  split orig_ty ty		ts = (reverse ts, orig_ty)

tcSplitSigmaTy ty = case tcSplitForAllTys ty of
351
			(tvs, rho) -> case tcSplitPhiTy rho of
352
353
354
355
356
357
358
359
360
361
362
363
364
365
					(theta, tau) -> (tvs, theta, tau)

tcTyConAppTyCon :: Type -> TyCon
tcTyConAppTyCon ty = fst (tcSplitTyConApp ty)

tcTyConAppArgs :: Type -> [Type]
tcTyConAppArgs ty = snd (tcSplitTyConApp ty)

tcSplitTyConApp :: Type -> (TyCon, [Type])
tcSplitTyConApp ty = case tcSplitTyConApp_maybe ty of
			Just stuff -> stuff
			Nothing	   -> pprPanic "tcSplitTyConApp" (pprType ty)

tcSplitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
366
367
368
369
tcSplitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
tcSplitTyConApp_maybe (NewTcApp tc tys) = Just (tc, tys)
tcSplitTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
tcSplitTyConApp_maybe (NoteTy n ty)     = tcSplitTyConApp_maybe ty
370
	-- Newtypes are opaque, so they may be split
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
	-- However, predicates are not treated
	-- as tycon applications by the type checker
tcSplitTyConApp_maybe other	        	= Nothing

tcSplitFunTys :: Type -> ([Type], Type)
tcSplitFunTys ty = case tcSplitFunTy_maybe ty of
			Nothing	       -> ([], ty)
			Just (arg,res) -> (arg:args, res')
				       where
					  (args,res') = tcSplitFunTys res

tcSplitFunTy_maybe :: Type -> Maybe (Type, Type)
tcSplitFunTy_maybe (FunTy arg res)  = Just (arg, res)
tcSplitFunTy_maybe (NoteTy n ty)    = tcSplitFunTy_maybe ty
tcSplitFunTy_maybe other	    = Nothing

tcFunArgTy    ty = case tcSplitFunTy_maybe ty of { Just (arg,res) -> arg }
tcFunResultTy ty = case tcSplitFunTy_maybe ty of { Just (arg,res) -> res }


tcSplitAppTy_maybe :: Type -> Maybe (Type, Type)
392
393
394
395
396
397
398
399
400
401
tcSplitAppTy_maybe (FunTy ty1 ty2)   = Just (TyConApp funTyCon [ty1], ty2)
tcSplitAppTy_maybe (AppTy ty1 ty2)   = Just (ty1, ty2)
tcSplitAppTy_maybe (NoteTy n ty)     = tcSplitAppTy_maybe ty
tcSplitAppTy_maybe (TyConApp tc tys) = case snocView tys of
					Just (tys', ty') -> Just (TyConApp tc tys', ty')
					Nothing		 -> Nothing
tcSplitAppTy_maybe (NewTcApp tc tys) = case snocView tys of
					Just (tys', ty') -> Just (NewTcApp tc tys', ty')
					Nothing		 -> Nothing
tcSplitAppTy_maybe other	     = Nothing
402
403
404
405
406

tcSplitAppTy ty = case tcSplitAppTy_maybe ty of
		    Just stuff -> stuff
		    Nothing    -> pprPanic "tcSplitAppTy" (pprType ty)

407
408
409
410
411
412
413
414
tcSplitAppTys :: Type -> (Type, [Type])
tcSplitAppTys ty
  = go ty []
  where
    go ty args = case tcSplitAppTy_maybe ty of
		   Just (ty', arg) -> go ty' (arg:args)
		   Nothing	   -> (ty,args)

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
tcGetTyVar_maybe :: Type -> Maybe TyVar
tcGetTyVar_maybe (TyVarTy tv) 	= Just tv
tcGetTyVar_maybe (NoteTy _ t) 	= tcGetTyVar_maybe t
tcGetTyVar_maybe other	        = Nothing

tcGetTyVar :: String -> Type -> TyVar
tcGetTyVar msg ty = expectJust msg (tcGetTyVar_maybe ty)

tcIsTyVarTy :: Type -> Bool
tcIsTyVarTy ty = maybeToBool (tcGetTyVar_maybe ty)
\end{code}

The type of a method for class C is always of the form:
	Forall a1..an. C a1..an => sig_ty
where sig_ty is the type given by the method's signature, and thus in general
is a ForallTy.  At the point that splitMethodTy is called, it is expected
that the outer Forall has already been stripped off.  splitMethodTy then
432
returns (C a1..an, sig_ty') where sig_ty' is sig_ty with any Notes stripped off.
433
434
435
436
437
438
439
440
441
442
443

\begin{code}
tcSplitMethodTy :: Type -> (PredType, Type)
tcSplitMethodTy ty = split ty
 where
  split (FunTy arg res) = case tcSplitPredTy_maybe arg of
			    Just p  -> (p, res)
			    Nothing -> panic "splitMethodTy"
  split (NoteTy n ty)	= split ty
  split _               = panic "splitMethodTy"

444
tcSplitDFunTy :: Type -> ([TyVar], [PredType], Class, [Type])
445
446
447
448
449
-- Split the type of a dictionary function
tcSplitDFunTy ty 
  = case tcSplitSigmaTy ty       of { (tvs, theta, tau) ->
    case tcSplitPredTy_maybe tau of { Just (ClassP clas tys) -> 
    (tvs, theta, clas, tys) }}
450
451
\end{code}

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
(allDistinctTyVars tys tvs) = True 
	iff 
all the types tys are type variables, 
distinct from each other and from tvs.

This is useful when checking that unification hasn't unified signature
type variables.  For example, if the type sig is
	f :: forall a b. a -> b -> b
we want to check that 'a' and 'b' havn't 
	(a) been unified with a non-tyvar type
	(b) been unified with each other (all distinct)
	(c) been unified with a variable free in the environment

\begin{code}
allDistinctTyVars :: [Type] -> TyVarSet -> Bool

allDistinctTyVars []       acc
  = True
allDistinctTyVars (ty:tys) acc 
  = case tcGetTyVar_maybe ty of
	Nothing 		      -> False 	-- (a)
	Just tv | tv `elemVarSet` acc -> False	-- (b) or (c)
		| otherwise           -> allDistinctTyVars tys (acc `extendVarSet` tv)
\end{code}    

477
478
479

%************************************************************************
%*									*
480
\subsection{Predicate types}
481
482
%*									*
%************************************************************************
483

484
\begin{code}
485
486
tcSplitPredTy_maybe :: Type -> Maybe PredType
   -- Returns Just for predicates only
487
488
489
tcSplitPredTy_maybe (NoteTy _ ty) = tcSplitPredTy_maybe ty
tcSplitPredTy_maybe (PredTy p)  = Just p
tcSplitPredTy_maybe other	  = Nothing
490
	
491
predTyUnique :: PredType -> Unique
492
predTyUnique (IParam n _)      = getUnique (ipNameName n)
493
494
predTyUnique (ClassP clas tys) = getUnique clas

495
mkPredName :: Unique -> SrcLoc -> PredType -> Name
496
497
mkPredName uniq loc (ClassP cls tys) = mkInternalName uniq (mkDictOcc (getOccName cls)) loc
mkPredName uniq loc (IParam ip ty)   = mkInternalName uniq (getOccName (ipNameName ip)) loc
498
499
\end{code}

500
501

--------------------- Dictionary types ---------------------------------
502
503

\begin{code}
504
mkClassPred clas tys = ClassP clas tys
505

506
isClassPred :: PredType -> Bool
507
508
509
isClassPred (ClassP clas tys) = True
isClassPred other	      = False

510
isTyVarClassPred (ClassP clas tys) = all tcIsTyVarTy tys
511
512
isTyVarClassPred other		   = False

513
getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
514
515
516
517
518
519
520
getClassPredTys_maybe (ClassP clas tys) = Just (clas, tys)
getClassPredTys_maybe _		        = Nothing

getClassPredTys :: PredType -> (Class, [Type])
getClassPredTys (ClassP clas tys) = (clas, tys)

mkDictTy :: Class -> [Type] -> Type
521
mkDictTy clas tys = mkPredTy (ClassP clas tys)
522
523

isDictTy :: Type -> Bool
524
isDictTy (PredTy p)   = isClassPred p
525
526
isDictTy (NoteTy _ ty)	= isDictTy ty
isDictTy other		= False
527
\end{code}
528

529
530
531
--------------------- Implicit parameters ---------------------------------

\begin{code}
532
isIPPred :: PredType -> Bool
533
534
535
isIPPred (IParam _ _) = True
isIPPred other	      = False

536
isInheritablePred :: PredType -> Bool
537
538
539
540
541
542
543
544
-- Can be inherited by a context.  For example, consider
--	f x = let g y = (?v, y+x)
--	      in (g 3 with ?v = 8, 
--		  g 4 with ?v = 9)
-- The point is that g's type must be quantifed over ?v:
--	g :: (?v :: a) => a -> a
-- but it doesn't need to be quantified over the Num a dictionary
-- which can be free in g's rhs, and shared by both calls to g
545
546
547
548
549
550
isInheritablePred (ClassP _ _) = True
isInheritablePred other	     = False

isLinearPred :: TcPredType -> Bool
isLinearPred (IParam (Linear n) _) = True
isLinearPred other		   = False
551
\end{code}
552
553


554
555
%************************************************************************
%*									*
556
\subsection{Comparison}
557
558
%*									*
%************************************************************************
559

560
561
Comparison, taking note of newtypes, predicates, etc,

562
\begin{code}
563
564
565
tcEqType :: Type -> Type -> Bool
tcEqType ty1 ty2 = case ty1 `tcCmpType` ty2 of { EQ -> True; other -> False }

566
567
568
tcEqTypes :: [Type] -> [Type] -> Bool
tcEqTypes ty1 ty2 = case ty1 `tcCmpTypes` ty2 of { EQ -> True; other -> False }

569
570
571
572
573
574
575
576
577
tcEqPred :: PredType -> PredType -> Bool
tcEqPred p1 p2 = case p1 `tcCmpPred` p2 of { EQ -> True; other -> False }

-------------
tcCmpType :: Type -> Type -> Ordering
tcCmpType ty1 ty2 = cmpTy emptyVarEnv ty1 ty2

tcCmpTypes tys1 tys2 = cmpTys emptyVarEnv tys1 tys2

578
tcCmpPred p1 p2 = cmpPredTy emptyVarEnv p1 p2
579
580
581
582
583
584
585
586
587
-------------
cmpTys env tys1 tys2 = cmpList (cmpTy env) tys1 tys2

-------------
cmpTy :: TyVarEnv TyVar -> Type -> Type -> Ordering
  -- The "env" maps type variables in ty1 to type variables in ty2
  -- So when comparing for-alls.. (forall tv1 . t1) (forall tv2 . t2)
  -- we in effect substitute tv2 for tv1 in t1 before continuing

588
    -- Look through NoteTy
589
590
591
592
593
594
595
596
cmpTy env (NoteTy _ ty1) ty2 = cmpTy env ty1 ty2
cmpTy env ty1 (NoteTy _ ty2) = cmpTy env ty1 ty2

    -- Deal with equal constructors
cmpTy env (TyVarTy tv1) (TyVarTy tv2) = case lookupVarEnv env tv1 of
					  Just tv1a -> tv1a `compare` tv2
					  Nothing   -> tv1  `compare` tv2

597
cmpTy env (PredTy p1) (PredTy p2) = cmpPredTy env p1 p2
598
599
600
cmpTy env (AppTy f1 a1) (AppTy f2 a2) = cmpTy env f1 f2 `thenCmp` cmpTy env a1 a2
cmpTy env (FunTy f1 a1) (FunTy f2 a2) = cmpTy env f1 f2 `thenCmp` cmpTy env a1 a2
cmpTy env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` (cmpTys env tys1 tys2)
601
cmpTy env (NewTcApp tc1 tys1) (NewTcApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` (cmpTys env tys1 tys2)
602
603
cmpTy env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)   = cmpTy (extendVarEnv env tv1 tv2) t1 t2
    
604
    -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < NewTcApp < ForAllTy < PredTy
605
606
607
608
609
610
611
612
613
cmpTy env (AppTy _ _) (TyVarTy _) = GT
    
cmpTy env (FunTy _ _) (TyVarTy _) = GT
cmpTy env (FunTy _ _) (AppTy _ _) = GT
    
cmpTy env (TyConApp _ _) (TyVarTy _) = GT
cmpTy env (TyConApp _ _) (AppTy _ _) = GT
cmpTy env (TyConApp _ _) (FunTy _ _) = GT
    
614
615
616
617
618
cmpTy env (NewTcApp _ _) (TyVarTy _) 	= GT
cmpTy env (NewTcApp _ _) (AppTy _ _) 	= GT
cmpTy env (NewTcApp _ _) (FunTy _ _) 	= GT
cmpTy env (NewTcApp _ _) (TyConApp _ _) = GT
    
619
620
621
622
cmpTy env (ForAllTy _ _) (TyVarTy _)    = GT
cmpTy env (ForAllTy _ _) (AppTy _ _)    = GT
cmpTy env (ForAllTy _ _) (FunTy _ _)    = GT
cmpTy env (ForAllTy _ _) (TyConApp _ _) = GT
623
cmpTy env (ForAllTy _ _) (NewTcApp _ _) = GT
624

625
cmpTy env (PredTy _)   t2		= GT
626
627

cmpTy env _ _ = LT
628
629
630
\end{code}

\begin{code}
631
632
cmpPredTy :: TyVarEnv TyVar -> PredType -> PredType -> Ordering
cmpPredTy env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` (cmpTy env ty1 ty2)
633
634
635
	-- Compare types as well as names for implicit parameters
	-- This comparison is used exclusively (I think) for the
	-- finite map built in TcSimplify
636
637
638
cmpPredTy env (IParam _ _)     (ClassP _ _)	  = LT
cmpPredTy env (ClassP _ _)     (IParam _ _)     = GT
cmpPredTy env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` (cmpTys env tys1 tys2)
639
\end{code}
640

641
642
643
644
PredTypes are used as a FM key in TcSimplify, 
so we take the easy path and make them an instance of Ord

\begin{code}
645
646
instance Eq  PredType where { (==)    = tcEqPred }
instance Ord PredType where { compare = tcCmpPred }
647
648
\end{code}

649

650
651
652
653
654
%************************************************************************
%*									*
\subsection{Predicates}
%*									*
%************************************************************************
655

656
isSigmaTy returns true of any qualified type.  It doesn't *necessarily* have 
657
658
any foralls.  E.g.
	f :: (?x::Int) => Int -> Int
659

660
\begin{code}
661
662
663
664
665
isSigmaTy :: Type -> Bool
isSigmaTy (ForAllTy tyvar ty) = True
isSigmaTy (FunTy a b)	      = isPredTy a
isSigmaTy (NoteTy n ty)	      = isSigmaTy ty
isSigmaTy _		      = False
666
667
668
669
670
671
672

isOverloadedTy :: Type -> Bool
isOverloadedTy (ForAllTy tyvar ty) = isOverloadedTy ty
isOverloadedTy (FunTy a b)	   = isPredTy a
isOverloadedTy (NoteTy n ty)	   = isOverloadedTy ty
isOverloadedTy _		   = False
\end{code}
673
674

\begin{code}
675
676
677
678
679
680
isFloatTy      = is_tc floatTyConKey
isDoubleTy     = is_tc doubleTyConKey
isIntegerTy    = is_tc integerTyConKey
isIntTy        = is_tc intTyConKey
isAddrTy       = is_tc addrTyConKey
isBoolTy       = is_tc boolTyConKey
681
isUnitTy       = is_tc unitTyConKey
682
683
684
685
686
687
688

is_tc :: Unique -> Type -> Bool
-- Newtypes are opaque to this
is_tc uniq ty = case tcSplitTyConApp_maybe ty of
			Just (tc, _) -> uniq == getUnique tc
			Nothing	     -> False
\end{code}
689

690

691
692
693
694
695
696
697
698
%************************************************************************
%*									*
\subsection{Misc}
%*									*
%************************************************************************

\begin{code}
deNoteType :: Type -> Type
699
	-- Remove synonyms, but not predicate types
700
701
deNoteType ty@(TyVarTy tyvar)	= ty
deNoteType (TyConApp tycon tys) = TyConApp tycon (map deNoteType tys)
702
703
deNoteType (NewTcApp tycon tys) = NewTcApp tycon (map deNoteType tys)
deNoteType (PredTy p)		= PredTy (deNotePredType p)
704
705
706
707
708
deNoteType (NoteTy _ ty)	= deNoteType ty
deNoteType (AppTy fun arg)	= AppTy (deNoteType fun) (deNoteType arg)
deNoteType (FunTy fun arg)	= FunTy (deNoteType fun) (deNoteType arg)
deNoteType (ForAllTy tv ty)	= ForAllTy tv (deNoteType ty)

709
710
711
deNotePredType :: PredType -> PredType
deNotePredType (ClassP c tys)   = ClassP c (map deNoteType tys)
deNotePredType (IParam n ty)    = IParam n (deNoteType ty)
712
713
\end{code}

714
715
Find the free tycons and classes of a type.  This is used in the front
end of the compiler.
716

717
\begin{code}
718
719
720
tyClsNamesOfType :: Type -> NameSet
tyClsNamesOfType (TyVarTy tv)		    = emptyNameSet
tyClsNamesOfType (TyConApp tycon tys)	    = unitNameSet (getName tycon) `unionNameSets` tyClsNamesOfTypes tys
721
tyClsNamesOfType (NewTcApp tycon tys)	    = unitNameSet (getName tycon) `unionNameSets` tyClsNamesOfTypes tys
722
723
tyClsNamesOfType (NoteTy (SynNote ty1) ty2) = tyClsNamesOfType ty1
tyClsNamesOfType (NoteTy other_note    ty2) = tyClsNamesOfType ty2
724
725
tyClsNamesOfType (PredTy (IParam n ty))   = tyClsNamesOfType ty
tyClsNamesOfType (PredTy (ClassP cl tys)) = unitNameSet (getName cl) `unionNameSets` tyClsNamesOfTypes tys
726
727
728
729
730
731
732
tyClsNamesOfType (FunTy arg res)	    = tyClsNamesOfType arg `unionNameSets` tyClsNamesOfType res
tyClsNamesOfType (AppTy fun arg)	    = tyClsNamesOfType fun `unionNameSets` tyClsNamesOfType arg
tyClsNamesOfType (ForAllTy tyvar ty)	    = tyClsNamesOfType ty

tyClsNamesOfTypes tys = foldr (unionNameSets . tyClsNamesOfType) emptyNameSet tys

tyClsNamesOfDFunHead :: Type -> NameSet
733
734
735
736
737
738
-- Find the free type constructors and classes 
-- of the head of the dfun instance type
-- The 'dfun_head_type' is because of
--	instance Foo a => Baz T where ...
-- The decl is an orphan if Baz and T are both not locally defined,
--	even if Foo *is* locally defined
739
740
741
742
tyClsNamesOfDFunHead dfun_ty 
  = case tcSplitSigmaTy dfun_ty of
	(tvs,_,head_ty) -> tyClsNamesOfType head_ty

743
classesOfTheta :: ThetaType -> [Class]
744
-- Looks just for ClassP things; maybe it should check
745
classesOfTheta preds = [ c | ClassP c _ <- preds ]
746
747
748
\end{code}


749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
%************************************************************************
%*									*
\subsection[TysWiredIn-ext-type]{External types}
%*									*
%************************************************************************

The compiler's foreign function interface supports the passing of a
restricted set of types as arguments and results (the restricting factor
being the )

\begin{code}
isFFIArgumentTy :: DynFlags -> Safety -> Type -> Bool
-- Checks for valid argument type for a 'foreign import'
isFFIArgumentTy dflags safety ty 
   = checkRepTyCon (legalOutgoingTyCon dflags safety) ty

isFFIExternalTy :: Type -> Bool
-- Types that are allowed as arguments of a 'foreign export'
isFFIExternalTy ty = checkRepTyCon legalFEArgTyCon ty

isFFIImportResultTy :: DynFlags -> Type -> Bool
isFFIImportResultTy dflags ty 
  = checkRepTyCon (legalFIResultTyCon dflags) ty

isFFIExportResultTy :: Type -> Bool
isFFIExportResultTy ty = checkRepTyCon legalFEResultTyCon ty

isFFIDynArgumentTy :: Type -> Bool
-- The argument type of a foreign import dynamic must be Ptr, FunPtr, Addr,
-- or a newtype of either.
779
isFFIDynArgumentTy = checkRepTyConKey [ptrTyConKey, funPtrTyConKey, addrTyConKey]
780
781
782
783

isFFIDynResultTy :: Type -> Bool
-- The result type of a foreign export dynamic must be Ptr, FunPtr, Addr,
-- or a newtype of either.
784
isFFIDynResultTy = checkRepTyConKey [ptrTyConKey, funPtrTyConKey, addrTyConKey]
785
786
787
788

isFFILabelTy :: Type -> Bool
-- The type of a foreign label must be Ptr, FunPtr, Addr,
-- or a newtype of either.
789
isFFILabelTy = checkRepTyConKey [ptrTyConKey, funPtrTyConKey, addrTyConKey]
790

sof's avatar
sof committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
isFFIDotnetTy :: DynFlags -> Type -> Bool
isFFIDotnetTy dflags ty
  = checkRepTyCon (\ tc -> not (isByteArrayLikeTyCon tc) &&
  			   (legalFIResultTyCon dflags tc || 
			   isFFIDotnetObjTy ty || isStringTy ty)) ty

-- Support String as an argument or result from a .NET FFI call.
isStringTy ty = 
  case tcSplitTyConApp_maybe (repType ty) of
    Just (tc, [arg_ty])
      | tc == listTyCon ->
        case tcSplitTyConApp_maybe (repType arg_ty) of
	  Just (cc,[]) -> cc == charTyCon
	  _ -> False
    _ -> False

-- Support String as an argument or result from a .NET FFI call.
isFFIDotnetObjTy ty = 
  let
   (_, t_ty) = tcSplitForAllTys ty
  in
  case tcSplitTyConApp_maybe (repType t_ty) of
    Just (tc, [arg_ty]) | getName tc == objectTyConName -> True
    _ -> False

toDNType :: Type -> DNType
toDNType ty
  | isStringTy ty = DNString
  | isFFIDotnetObjTy ty = DNObject
  | Just (tc,argTys) <- tcSplitTyConApp_maybe ty = 
     case lookup (getUnique tc) dn_assoc of
       Just x  -> x
       Nothing 
         | tc `hasKey` ioTyConKey -> toDNType (head argTys)
	 | otherwise -> pprPanic ("toDNType: unsupported .NET type") (pprType ty <+> parens (hcat (map pprType argTys)) <+> ppr tc)
    where
      dn_assoc :: [ (Unique, DNType) ]
      dn_assoc = [ (unitTyConKey,   DNUnit)
      		 , (intTyConKey,    DNInt)
      	         , (int8TyConKey,   DNInt8)
		 , (int16TyConKey,  DNInt16)
		 , (int32TyConKey,  DNInt32)
		 , (int64TyConKey,  DNInt64)
		 , (wordTyConKey,   DNInt)
		 , (word8TyConKey,  DNWord8)
		 , (word16TyConKey, DNWord16)
		 , (word32TyConKey, DNWord32)
		 , (word64TyConKey, DNWord64)
		 , (floatTyConKey,  DNFloat)
		 , (doubleTyConKey, DNDouble)
		 , (addrTyConKey,   DNPtr)
		 , (ptrTyConKey,    DNPtr)
		 , (funPtrTyConKey, DNPtr)
		 , (charTyConKey,   DNChar)
		 , (boolTyConKey,   DNBool)
		 ]

848
849
850
checkRepTyCon :: (TyCon -> Bool) -> Type -> Bool
	-- Look through newtypes
	-- Non-recursive ones are transparent to splitTyConApp,
851
	-- but recursive ones aren't
852
checkRepTyCon check_tc ty 
853
854
  | Just (tc,_) <- splitTyConApp_maybe (repType ty) = check_tc tc
  | otherwise				  	    = False
855
856
857
858
859

checkRepTyConKey :: [Unique] -> Type -> Bool
-- Like checkRepTyCon, but just looks at the TyCon key
checkRepTyConKey keys
  = checkRepTyCon (\tc -> tyConUnique tc `elem` keys)
860
861
862
863
864
865
866
867
868
869
870
871
\end{code}

----------------------------------------------
These chaps do the work; they are not exported
----------------------------------------------

\begin{code}
legalFEArgTyCon :: TyCon -> Bool
-- It's illegal to return foreign objects and (mutable)
-- bytearrays from a _ccall_ / foreign declaration
-- (or be passed them as arguments in foreign exported functions).
legalFEArgTyCon tc
sof's avatar
sof committed
872
  | isByteArrayLikeTyCon tc
873
874
875
876
877
878
879
880
  = False
  -- It's also illegal to make foreign exports that take unboxed
  -- arguments.  The RTS API currently can't invoke such things.  --SDM 7/2000
  | otherwise
  = boxedMarshalableTyCon tc

legalFIResultTyCon :: DynFlags -> TyCon -> Bool
legalFIResultTyCon dflags tc
sof's avatar
sof committed
881
882
883
  | isByteArrayLikeTyCon tc = False
  | tc == unitTyCon         = True
  | otherwise	            = marshalableTyCon dflags tc
884
885
886

legalFEResultTyCon :: TyCon -> Bool
legalFEResultTyCon tc
sof's avatar
sof committed
887
888
889
  | isByteArrayLikeTyCon tc = False
  | tc == unitTyCon         = True
  | otherwise               = boxedMarshalableTyCon tc
890
891
892
893

legalOutgoingTyCon :: DynFlags -> Safety -> TyCon -> Bool
-- Checks validity of types going from Haskell -> external world
legalOutgoingTyCon dflags safety tc
sof's avatar
sof committed
894
  | playSafe safety && isByteArrayLikeTyCon tc
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
  = False
  | otherwise
  = marshalableTyCon dflags tc

marshalableTyCon dflags tc
  =  (dopt Opt_GlasgowExts dflags && isUnLiftedTyCon tc)
  || boxedMarshalableTyCon tc

boxedMarshalableTyCon tc
   = getUnique tc `elem` [ intTyConKey, int8TyConKey, int16TyConKey
			 , int32TyConKey, int64TyConKey
			 , wordTyConKey, word8TyConKey, word16TyConKey
			 , word32TyConKey, word64TyConKey
			 , floatTyConKey, doubleTyConKey
			 , addrTyConKey, ptrTyConKey, funPtrTyConKey
910
			 , charTyConKey
911
912
913
914
			 , stablePtrTyConKey
			 , byteArrayTyConKey, mutableByteArrayTyConKey
			 , boolTyConKey
			 ]
sof's avatar
sof committed
915
916
917
918

isByteArrayLikeTyCon :: TyCon -> Bool
isByteArrayLikeTyCon tc = 
  getUnique tc `elem` [byteArrayTyConKey, mutableByteArrayTyConKey]
919
920
921
\end{code}


922
923
924
925
926
927
928
929
%************************************************************************
%*									*
\subsection{Unification with an explicit substitution}
%*									*
%************************************************************************

Unify types with an explicit substitution and no monad.
Ignore usage annotations.
930
931

\begin{code}
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
type MySubst
   = (TyVarSet,		-- Set of template tyvars
      TyVarSubstEnv)	-- Not necessarily idempotent

unifyTysX :: TyVarSet		-- Template tyvars
	  -> Type
          -> Type
          -> Maybe TyVarSubstEnv
unifyTysX tmpl_tyvars ty1 ty2
  = uTysX ty1 ty2 (\(_,s) -> Just s) (tmpl_tyvars, emptySubstEnv)

unifyExtendTysX :: TyVarSet		-- Template tyvars
		-> TyVarSubstEnv	-- Substitution to start with
		-> Type
	        -> Type
        	-> Maybe TyVarSubstEnv	-- Extended substitution
unifyExtendTysX tmpl_tyvars subst ty1 ty2
  = uTysX ty1 ty2 (\(_,s) -> Just s) (tmpl_tyvars, subst)

unifyTyListsX :: TyVarSet -> [Type] -> [Type]
              -> Maybe TyVarSubstEnv
unifyTyListsX tmpl_tyvars tys1 tys2
  = uTyListsX tys1 tys2 (\(_,s) -> Just s) (tmpl_tyvars, emptySubstEnv)


uTysX :: Type
      -> Type
      -> (MySubst -> Maybe result)
      -> MySubst
      -> Maybe result

uTysX (NoteTy _ ty1) ty2 k subst = uTysX ty1 ty2 k subst
uTysX ty1 (NoteTy _ ty2) k subst = uTysX ty1 ty2 k subst

	-- Variables; go for uVar
uTysX (TyVarTy tyvar1) (TyVarTy tyvar2) k subst 
  | tyvar1 == tyvar2
  = k subst
uTysX (TyVarTy tyvar1) ty2 k subst@(tmpls,_)
  | tyvar1 `elemVarSet` tmpls
  = uVarX tyvar1 ty2 k subst
uTysX ty1 (TyVarTy tyvar2) k subst@(tmpls,_)
  | tyvar2 `elemVarSet` tmpls
  = uVarX tyvar2 ty1 k subst

977
	-- Predicates
978
uTysX (PredTy (IParam n1 t1)) (PredTy (IParam n2 t2)) k subst
979
  | n1 == n2 = uTysX t1 t2 k subst
980
uTysX (PredTy (ClassP c1 tys1)) (PredTy (ClassP c2 tys2)) k subst
981
982
  | c1 == c2 = uTyListsX tys1 tys2 k subst

983
984
985
986
987
	-- Functions; just check the two parts
uTysX (FunTy fun1 arg1) (FunTy fun2 arg2) k subst
  = uTysX fun1 fun2 (uTysX arg1 arg2 k) subst

	-- Type constructors must match
988
989
uTysX (NewTcApp tc1 tys1) (NewTcApp tc2 tys2) k subst
  | tc1 == tc2 = uTyListsX tys1 tys2 k subst
990
uTysX (TyConApp con1 tys1) (TyConApp con2 tys2) k subst
sof's avatar
sof committed
991
  | (con1 == con2 && equalLength tys1 tys2)
992
993
994
995
996
997
998
999
1000
  = uTyListsX tys1 tys2 k subst

	-- Applications need a bit of care!
	-- They can match FunTy and TyConApp, so use splitAppTy_maybe
	-- NB: we've already dealt with type variables and Notes,
	-- so if one type is an App the other one jolly well better be too
uTysX (AppTy s1 t1) ty2 k subst
  = case tcSplitAppTy_maybe ty2 of
      Just (s2, t2) -> uTysX s1 s2 (uTysX t1 t2 k) subst