TcCanonical.hs 66 KB
Newer Older
1 2
{-# LANGUAGE CPP #-}

3
module TcCanonical(
4 5 6 7 8
     canonicalize,
     unifyDerived,

     StopOrContinue(..), stopWith, continueWith
  ) where
9 10 11 12 13

#include "HsVersions.h"

import TcRnTypes
import TcType
14
import Type
dreixel's avatar
dreixel committed
15
import Kind
16 17
import TcFlatten
import TcSMonad
18
import TcEvidence
19 20 21
import Class
import TyCon
import TypeRep
22 23 24
import Coercion
import FamInstEnv ( FamInstEnvs )
import FamInst ( tcTopNormaliseNewTypeTF_maybe )
25
import Var
26
import Name( isSystemName )
27
import OccName( OccName )
28
import Outputable
29
import DynFlags( DynFlags )
30
import VarSet
31
import RdrName
32
import DataCon ( dataConName )
33

34
import Pair
35
import Util
36
import Bag
37 38
import MonadUtils ( zipWith3M, zipWith3M_ )
import Data.List  ( zip4 )
39
import BasicTypes
40
import FastString
41

Austin Seipp's avatar
Austin Seipp committed
42 43 44 45 46 47
{-
************************************************************************
*                                                                      *
*                      The Canonicaliser                               *
*                                                                      *
************************************************************************
48

49 50
Note [Canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~
51

52
Canonicalization converts a simple constraint to a canonical form. It is
53 54 55
unary (i.e. treats individual constraints one at a time), does not do
any zonking, but lives in TcS monad because it needs to create fresh
variables (for flattening) and consult the inerts (for efficiency).
56

57
The execution plan for canonicalization is the following:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
58 59

  1) Decomposition of equalities happens as necessary until we reach a
60
     variable or type family in one side. There is no decomposition step
Simon Peyton Jones's avatar
Simon Peyton Jones committed
61
     for other forms of constraints.
62

Simon Peyton Jones's avatar
Simon Peyton Jones committed
63 64 65 66
  2) If, when we decompose, we discover a variable on the head then we
     look at inert_eqs from the current inert for a substitution for this
     variable and contine decomposing. Hence we lazily apply the inert
     substitution if it is needed.
67

68 69
  3) If no more decomposition is possible, we deeply apply the substitution
     from the inert_eqs and continue with flattening.
70

Simon Peyton Jones's avatar
Simon Peyton Jones committed
71 72 73 74 75
  4) During flattening, we examine whether we have already flattened some
     function application by looking at all the CTyFunEqs with the same
     function in the inert set. The reason for deeply applying the inert
     substitution at step (3) is to maximise our chances of matching an
     already flattened family application in the inert.
76

Simon Peyton Jones's avatar
Simon Peyton Jones committed
77 78
The net result is that a constraint coming out of the canonicalization
phase cannot be rewritten any further from the inerts (but maybe /it/ can
79 80
rewrite an inert or still interact with an inert in a further phase in the
simplifier.
dimitris's avatar
dimitris committed
81

82
Note [Caching for canonicals]
Simon Peyton Jones's avatar
Simon Peyton Jones committed
83
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87
Our plan with pre-canonicalization is to be able to solve a constraint
really fast from existing bindings in TcEvBinds. So one may think that
the condition (isCNonCanonical) is not necessary.  However consider
the following setup:
88

Simon Peyton Jones's avatar
Simon Peyton Jones committed
89 90
InertSet = { [W] d1 : Num t }
WorkList = { [W] d2 : Num t, [W] c : t ~ Int}
91

92 93 94 95 96
Now, we prioritize equalities, but in our concrete example
(should_run/mc17.hs) the first (d2) constraint is dealt with first,
because (t ~ Int) is an equality that only later appears in the
worklist since it is pulled out from a nested implication
constraint. So, let's examine what happens:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
97

98 99
   - We encounter work item (d2 : Num t)

Simon Peyton Jones's avatar
Simon Peyton Jones committed
100
   - Nothing is yet in EvBinds, so we reach the interaction with inerts
101
     and set:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
102
              d2 := d1
103 104
    and we discard d2 from the worklist. The inert set remains unaffected.

105 106 107
   - Now the equation ([W] c : t ~ Int) is encountered and kicks-out
     (d1 : Num t) from the inerts.  Then that equation gets
     spontaneously solved, perhaps. We end up with:
108
        InertSet : { [G] c : t ~ Int }
Simon Peyton Jones's avatar
Simon Peyton Jones committed
109
        WorkList : { [W] d1 : Num t}
110

111 112
   - Now we examine (d1), we observe that there is a binding for (Num
     t) in the evidence binds and we set:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
113
             d1 := d2
114 115
     and end up in a loop!

116 117 118 119 120 121 122 123
Now, the constraints that get kicked out from the inert set are always
Canonical, so by restricting the use of the pre-canonicalizer to
NonCanonical constraints we eliminate this danger. Moreover, for
canonical constraints we already have good caching mechanisms
(effectively the interaction solver) and we are interested in reducing
things like superclasses of the same non-canonical constraint being
generated hence I don't expect us to lose a lot by introducing the
(isCNonCanonical) restriction.
124

125 126 127 128 129 130 131
A similar situation can arise in TcSimplify, at the end of the
solve_wanteds function, where constraints from the inert set are
returned as new work -- our substCt ensures however that if they are
not rewritten by subst, they remain canonical and hence we will not
attempt to solve them from the EvBinds. If on the other hand they did
get rewritten and are now non-canonical they will still not match the
EvBinds, so we are again good.
Austin Seipp's avatar
Austin Seipp committed
132
-}
133

134 135 136
-- Top-level canonicalization
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

137
canonicalize :: Ct -> TcS (StopOrContinue Ct)
138
canonicalize ct@(CNonCanonical { cc_ev = ev })
139
  = do { traceTcS "canonicalize (non-canonical)" (ppr ct)
140
       ; {-# SCC "canEvVar" #-}
141
         canEvNC ev }
142

143
canonicalize (CDictCan { cc_ev = ev
144 145
                       , cc_class  = cls
                       , cc_tyargs = xis })
146
  = {-# SCC "canClass" #-}
147 148
    canClass ev cls xis -- Do not add any superclasses
canonicalize (CTyEqCan { cc_ev = ev
149
                       , cc_tyvar  = tv
150 151
                       , cc_rhs    = xi
                       , cc_eq_rel = eq_rel })
152
  = {-# SCC "canEqLeafTyVarEq" #-}
153 154 155
    canEqNC ev eq_rel (mkTyVarTy tv) xi
      -- NB: Don't use canEqTyVar because that expects flattened types,
      -- and tv and xi may not be flat w.r.t. an updated inert set
156

157
canonicalize (CFunEqCan { cc_ev = ev
158 159
                        , cc_fun    = fn
                        , cc_tyargs = xis1
160
                        , cc_fsk    = fsk })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
161
  = {-# SCC "canEqLeafFunEq" #-}
162
    canCFunEqCan ev fn xis1 fsk
163

164 165
canonicalize (CIrredEvCan { cc_ev = ev })
  = canIrred ev
thomasw's avatar
thomasw committed
166 167
canonicalize (CHoleCan { cc_ev = ev, cc_occ = occ, cc_hole = hole })
  = canHole ev occ hole
168

169
canEvNC :: CtEvidence -> TcS (StopOrContinue Ct)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
170
-- Called only for non-canonical EvVars
171
canEvNC ev
172
  = case classifyPredType (ctEvPred ev) of
173 174 175 176 177 178
      ClassPred cls tys     -> do traceTcS "canEvNC:cls" (ppr cls <+> ppr tys)
                                  canClassNC ev cls tys
      EqPred eq_rel ty1 ty2 -> do traceTcS "canEvNC:eq" (ppr ty1 $$ ppr ty2)
                                  canEqNC    ev eq_rel ty1 ty2
      IrredPred {}          -> do traceTcS "canEvNC:irred" (ppr (ctEvPred ev))
                                  canIrred   ev
Austin Seipp's avatar
Austin Seipp committed
179 180 181 182 183 184 185
{-
************************************************************************
*                                                                      *
*                      Class Canonicalization
*                                                                      *
************************************************************************
-}
186

Simon Peyton Jones's avatar
Simon Peyton Jones committed
187
canClass, canClassNC
188
   :: CtEvidence
189
   -> Class -> [Type] -> TcS (StopOrContinue Ct)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
190
-- Precondition: EvVar is class evidence
191 192 193 194 195 196

-- The canClassNC version is used on non-canonical constraints
-- and adds superclasses.  The plain canClass version is used
-- for already-canonical class constraints (but which might have
-- been subsituted or somthing), and hence do not need superclasses

197 198
canClassNC ev cls tys
  = canClass ev cls tys
199 200
    `andWhenContinue` emitSuperclasses

201
canClass ev cls tys
202 203
  =   -- all classes do *nominal* matching
    ASSERT2( ctEvRole ev == Nominal, ppr ev $$ ppr cls $$ ppr tys )
204
    do { (xis, cos) <- flattenManyNom ev tys
Joachim Breitner's avatar
Joachim Breitner committed
205
       ; let co = mkTcTyConAppCo Nominal (classTyCon cls) cos
206
             xi = mkClassPred cls xis
207 208
             mk_ct new_ev = CDictCan { cc_ev = new_ev
                                     , cc_tyargs = xis, cc_class = cls }
209
       ; mb <- rewriteEvidence ev xi co
Simon Peyton Jones's avatar
Simon Peyton Jones committed
210
       ; traceTcS "canClass" (vcat [ ppr ev <+> ppr cls <+> ppr tys
Simon Peyton Jones's avatar
Simon Peyton Jones committed
211
                                   , ppr xi, ppr mb ])
212
       ; return (fmap mk_ct mb) }
dimitris's avatar
dimitris committed
213

214
emitSuperclasses :: Ct -> TcS (StopOrContinue Ct)
215
emitSuperclasses ct@(CDictCan { cc_ev = ev , cc_tyargs = xis_new, cc_class = cls })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
216 217
            -- Add superclasses of this one here, See Note [Adding superclasses].
            -- But only if we are not simplifying the LHS of a rule.
218
 = do { newSCWorkFromFlavored ev cls xis_new
Simon Peyton Jones's avatar
Simon Peyton Jones committed
219
      -- Arguably we should "seq" the coercions if they are derived,
220
      -- as we do below for emit_kind_constraint, to allow errors in
Simon Peyton Jones's avatar
Simon Peyton Jones committed
221
      -- superclasses to be executed if deferred to runtime!
222 223
      ; continueWith ct }
emitSuperclasses _ = panic "emit_superclasses of non-class!"
224

225 226
{- Note [Adding superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
227 228 229 230 231
Since dictionaries are canonicalized only once in their lifetime, the
place to add their superclasses is canonicalisation.  See Note [Add
superclasses only during canonicalisation].  Here is what we do:

  Givens:   Add all their superclasses as Givens.
232 233 234
            They may be needed to prove Wanteds

  Wanteds:  Do nothing.
235

236 237 238
  Deriveds: Add all their superclasses as Derived.
            The sole reason is to expose functional dependencies
            in superclasses or equality superclasses.
239

240 241 242
            We only do this in the improvement phase, if solving has
            not succeeded; see Note [The improvement story] in
            TcInteract
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Examples of how adding superclasses as Derived is useful

    --- Example 1
        class C a b | a -> b
    Suppose we want to solve
         [G] C a b
         [W] C a beta
    Then adding [D] beta~b will let us solve it.

    -- Example 2 (similar but using a type-equality superclass)
        class (F a ~ b) => C a b
    And try to sllve:
         [G] C a b
         [W] C a beta
    Follow the superclass rules to add
         [G] F a ~ b
         [D] F a ~ beta
    Now we we get [D] beta ~ b, and can solve that.

263
---------- Historical note -----------
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
Example of why adding superclass of a Wanted as a Given would
be terrible, see Note [Do not add superclasses of solved dictionaries]
in TcSMonad, which has this example:
        class Ord a => C a where
        instance Ord [a] => C [a] where ...
Suppose we are trying to solve
  [G] d1 : Ord a
  [W] d2 : C [a]
If we (bogusly) added the superclass of d2 as Gievn we'd have
  [G] d1 : Ord a
  [W] d2 : C [a]
  [G] d3 : Ord [a]   -- Superclass of d2, bogus

Then we'll use the instance decl to give
  [G] d1 : Ord a     Solved: d2 : C [a] = $dfCList d4
  [G] d3 : Ord [a]   -- Superclass of d2, bogus
  [W] d4: Ord [a]

ANd now we could bogusly solve d4 from d3.


Note [Add superclasses only during canonicalisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We add superclasses only during canonicalisation, on the passage
from CNonCanonical to CDictCan.  A class constraint can be repeatedly
rewritten, and there's no point in repeatedly adding its superclasses.

Here's a serious, but now out-dated example, from Trac #4497:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
292

293 294 295
   class Num (RealOf t) => Normed t
   type family RealOf x

Simon Peyton Jones's avatar
Simon Peyton Jones committed
296
Assume the generated wanted constraint is:
297 298 299
   [W] RealOf e ~ e
   [W] Normed e

Simon Peyton Jones's avatar
Simon Peyton Jones committed
300
If we were to be adding the superclasses during simplification we'd get:
301 302 303 304
   [W] RealOf e ~ e
   [W] Normed e
   [D] RealOf e ~ fuv
   [D] Num fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
305
==>
306
   e := fuv, Num fuv, Normed fuv, RealOf fuv ~ fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
307

308 309 310
While looks exactly like our original constraint. If we add the
superclass of (Normed fuv) again we'd loop.  By adding superclasses
definitely only once, during canonicalisation, this situation can't
311
happen.
312 313 314 315

Mind you, now that Wanteds cannot rewrite Derived, I think this particular
situation can't happen.
  -}
316

317
newSCWorkFromFlavored :: CtEvidence -> Class -> [Xi] -> TcS ()
318
-- Returns superclasses, see Note [Adding superclasses]
319
newSCWorkFromFlavored flavor cls xis
320
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- flavor
321 322 323 324 325 326 327 328 329 330 331
  = do { let size = sizePred (mkClassPred cls xis)
             loc' = case ctLocOrigin loc of
                       GivenOrigin InstSkol
                         -> loc { ctl_origin = GivenOrigin (InstSC size) }
                       GivenOrigin (InstSC n)
                         -> loc { ctl_origin = GivenOrigin (InstSC (n `max` size)) }
                       _ -> loc
                    -- See Note [Solving superclass constraints] in TcInstDcls
                    -- for explantation of loc'

       ; given_evs <- newGivenEvVars loc' (mkEvScSelectors (EvId evar) cls xis)
332
       ; emitWorkNC given_evs }
dimitris's avatar
dimitris committed
333 334

  | isEmptyVarSet (tyVarsOfTypes xis)
335
  = return () -- Wanteds with no variables yield no deriveds.
336
              -- See Note [Improvement from Ground Wanteds]
337

338
  | otherwise -- Derived case, just add those SC that can lead to improvement.
Simon Peyton Jones's avatar
Simon Peyton Jones committed
339
  = do { let sc_rec_theta = transSuperClasses cls xis
340
             impr_theta   = filter isImprovementPred sc_rec_theta
341
             loc          = ctEvLoc flavor
342
       ; traceTcS "newSCWork/Derived" $ text "impr_theta =" <+> ppr impr_theta
343
       ; emitNewDeriveds loc impr_theta }
344 345


Austin Seipp's avatar
Austin Seipp committed
346 347 348 349 350 351 352
{-
************************************************************************
*                                                                      *
*                      Irreducibles canonicalization
*                                                                      *
************************************************************************
-}
353

354
canIrred :: CtEvidence -> TcS (StopOrContinue Ct)
355
-- Precondition: ty not a tuple and no other evidence form
356
canIrred old_ev
Simon Peyton Jones's avatar
Simon Peyton Jones committed
357 358
  = do { let old_ty = ctEvPred old_ev
       ; traceTcS "can_pred" (text "IrredPred = " <+> ppr old_ty)
359
       ; (xi,co) <- flatten FM_FlattenAll old_ev old_ty -- co :: xi ~ old_ty
360
       ; rewriteEvidence old_ev xi co `andWhenContinue` \ new_ev ->
361 362
    do { -- Re-classify, in case flattening has improved its shape
       ; case classifyPredType (ctEvPred new_ev) of
363 364 365 366
           ClassPred cls tys     -> canClassNC new_ev cls tys
           EqPred eq_rel ty1 ty2 -> canEqNC new_ev eq_rel ty1 ty2
           _                     -> continueWith $
                                    CIrredEvCan { cc_ev = new_ev } } }
367

thomasw's avatar
thomasw committed
368 369
canHole :: CtEvidence -> OccName -> HoleSort -> TcS (StopOrContinue Ct)
canHole ev occ hole_sort
370 371
  = do { let ty = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev ty -- co :: xi ~ ty
372 373 374 375 376
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
    do { emitInsoluble (CHoleCan { cc_ev = new_ev
                                 , cc_occ = occ
                                 , cc_hole = hole_sort })
       ; stopWith new_ev "Emit insoluble hole" } }
377

Austin Seipp's avatar
Austin Seipp committed
378 379 380 381 382 383
{-
************************************************************************
*                                                                      *
*        Equalities
*                                                                      *
************************************************************************
384 385 386 387 388 389 390 391 392 393 394 395 396

Note [Canonicalising equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to canonicalise an equality, we look at the structure of the
two types at hand, looking for similarities. A difficulty is that the
types may look dissimilar before flattening but similar after flattening.
However, we don't just want to jump in and flatten right away, because
this might be wasted effort. So, after looking for similarities and failing,
we flatten and then try again. Of course, we don't want to loop, so we
track whether or not we've already flattened.

It is conceivable to do a better job at tracking whether or not a type
is flattened, but this is left as future work. (Mar '15)
Austin Seipp's avatar
Austin Seipp committed
397
-}
398

399 400
canEqNC :: CtEvidence -> EqRel -> Type -> Type -> TcS (StopOrContinue Ct)
canEqNC ev eq_rel ty1 ty2
401
  = can_eq_nc False ev eq_rel ty1 ty1 ty2 ty2
402

403
can_eq_nc
404 405
   :: Bool            -- True => both types are flat
   -> CtEvidence
406
   -> EqRel
Austin Seipp's avatar
Austin Seipp committed
407 408
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
409
   -> TcS (StopOrContinue Ct)
410
can_eq_nc flat ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Austin Seipp's avatar
Austin Seipp committed
411
  = do { traceTcS "can_eq_nc" $
412 413 414
         vcat [ ppr ev, ppr eq_rel, ppr ty1, ppr ps_ty1, ppr ty2, ppr ps_ty2 ]
       ; rdr_env <- getGlobalRdrEnvTcS
       ; fam_insts <- getFamInstEnvs
415
       ; can_eq_nc' flat rdr_env fam_insts ev eq_rel ty1 ps_ty1 ty2 ps_ty2 }
416 417

can_eq_nc'
418 419
   :: Bool           -- True => both input types are flattened
   -> GlobalRdrEnv   -- needed to see which newtypes are in scope
420 421 422 423 424 425
   -> FamInstEnvs    -- needed to unwrap data instances
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)
426 427

-- Expand synonyms first; see Note [Type synonyms and canonicalization]
428 429 430 431 432
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
  | Just ty1' <- tcView ty1 = can_eq_nc flat ev eq_rel ty1' ps_ty1 ty2  ps_ty2
  | Just ty2' <- tcView ty2 = can_eq_nc flat ev eq_rel ty1  ps_ty1 ty2' ps_ty2

-- need to check for reflexivity in the ReprEq case.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
433
-- See Note [Eager reflexivity check]
434 435 436 437 438 439
can_eq_nc' _flat _rdr_env _envs ev ReprEq ty1 _ ty2 _
  | ty1 `eqType` ty2
  = canEqReflexive ev ReprEq ty1

-- When working with ReprEq, unwrap newtypes.
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 _ ty2 ps_ty2
440 441
  | Just (co, ty1') <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty1
  = can_eq_newtype_nc rdr_env ev NotSwapped co ty1 ty1' ty2 ps_ty2
442
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 ps_ty1 ty2 _
443 444
  | Just (co, ty2') <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty2
  = can_eq_newtype_nc rdr_env ev IsSwapped  co ty2 ty2' ty1 ps_ty1
445 446 447 448 449 450

----------------------
-- Otherwise try to decompose
----------------------

-- Literals
451
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1@(LitTy l1) _ (LitTy l2) _
452
 | l1 == l2
453 454
  = do { setEvBindIfWanted ev (EvCoercion $
                               mkTcReflCo (eqRelRole eq_rel) ty1)
455
       ; stopWith ev "Equal LitTy" }
456

Austin Seipp's avatar
Austin Seipp committed
457
-- Decomposable type constructor applications
458
-- Synonyms and type functions (which are not decomposable)
Austin Seipp's avatar
Austin Seipp committed
459
-- have already been dealt with
460 461
can_eq_nc' _flat _rdr_env _envs ev eq_rel
          (TyConApp tc1 tys1) _ (TyConApp tc2 tys2) _
462 463 464
  | mightBeUnsaturatedTyCon tc1
  , mightBeUnsaturatedTyCon tc2
  = canTyConApp ev eq_rel tc1 tys1 tc2 tys2
465

466 467
can_eq_nc' _flat _rdr_env _envs ev eq_rel
           (TyConApp tc1 _) ps_ty1 (FunTy {}) ps_ty2
468
  | mightBeUnsaturatedTyCon tc1
469 470 471
      -- The guard is important
      -- e.g.  (x -> y) ~ (F x y) where F has arity 1
      --       should not fail, but get the app/app case
472
  = canEqHardFailure ev eq_rel ps_ty1 ps_ty2
473

474
can_eq_nc' _flat _rdr_env _envs ev eq_rel (FunTy s1 t1) _ (FunTy s2 t2) _
475
  = do { canDecomposableTyConAppOK ev eq_rel funTyCon [s1,t1] [s2,t2]
476 477
       ; stopWith ev "Decomposed FunTyCon" }

478 479
can_eq_nc' _flat _rdr_env _envs ev eq_rel
          (FunTy {}) ps_ty1 (TyConApp tc2 _) ps_ty2
480
  | mightBeUnsaturatedTyCon tc2
481
  = canEqHardFailure ev eq_rel ps_ty1 ps_ty2
482

483 484
can_eq_nc' _flat _rdr_env _envs ev eq_rel
           s1@(ForAllTy {}) _ s2@(ForAllTy {}) _
485
 | CtWanted { ctev_loc = loc, ctev_evar = orig_ev } <- ev
486 487
 = do { let (tvs1,body1) = tcSplitForAllTys s1
            (tvs2,body2) = tcSplitForAllTys s2
Simon Peyton Jones's avatar
Simon Peyton Jones committed
488
      ; if not (equalLength tvs1 tvs2) then
489
          canEqHardFailure ev eq_rel s1 s2
490
        else
491
          do { traceTcS "Creating implication for polytype equality" $ ppr ev
492 493
             ; ev_term <- deferTcSForAllEq (eqRelRole eq_rel)
                                           loc (tvs1,body1) (tvs2,body2)
494
             ; setWantedEvBind orig_ev ev_term
495
             ; stopWith ev "Deferred polytype equality" } }
496
 | otherwise
Simon Peyton Jones's avatar
Simon Peyton Jones committed
497
 = do { traceTcS "Ommitting decomposition of given polytype equality" $
498
        pprEq s1 s2    -- See Note [Do not decompose given polytype equalities]
499
      ; stopWith ev "Discard given polytype equality" }
500

501
-- See Note [Canonicalising type applications] about why we require flat types
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
502
can_eq_nc' True _rdr_env _envs ev eq_rel (AppTy t1 s1) _ ty2 _
503
  | Just (t2, s2) <- tcSplitAppTy_maybe ty2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
504 505
  = can_eq_app ev eq_rel t1 s1 t2 s2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 _ (AppTy t2 s2) _
506
  | Just (t1, s1) <- tcSplitAppTy_maybe ty1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
507
  = can_eq_app ev eq_rel t1 s1 t2 s2
508 509 510 511 512 513

-- No similarity in type structure detected. Flatten and try again!
can_eq_nc' False rdr_env envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ps_ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ps_ty2
       ; rewriteEqEvidence ev eq_rel NotSwapped xi1 xi2 co1 co2
514
         `andWhenContinue` \ new_ev ->
515 516 517 518 519 520 521 522 523 524 525 526 527
         can_eq_nc' True rdr_env envs new_ev eq_rel xi1 xi1 xi2 xi2 }

-- Type variable on LHS or RHS are last. We want only flat types sent
-- to canEqTyVar.
-- See also Note [No top-level newtypes on RHS of representational equalities]
can_eq_nc' True _rdr_env _envs ev eq_rel (TyVarTy tv1) _ _ ps_ty2
  = canEqTyVar ev eq_rel NotSwapped tv1 ps_ty2
can_eq_nc' True _rdr_env _envs ev eq_rel _ ps_ty1 (TyVarTy tv2) _
  = canEqTyVar ev eq_rel IsSwapped  tv2 ps_ty1

-- We've flattened and the types don't match. Give up.
can_eq_nc' True _rdr_env _envs ev eq_rel _ ps_ty1 _ ps_ty2
  = canEqHardFailure ev eq_rel ps_ty1 ps_ty2
528

529
{-
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
Note [Newtypes can blow the stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)
  newtype Y = MkY (Int -> Y)

and now wish to prove

  [W] X ~R Y

This Wanted will loop, expanding out the newtypes ever deeper looking
for a solid match or a solid discrepancy. Indeed, there is something
appropriate to this looping, because X and Y *do* have the same representation,
in the limit -- they're both (Fix ((->) Int)). However, no finitely-sized
coercion will ever witness it. This loop won't actually cause GHC to hang,
though, because we check our depth when unwrapping newtypes.

548 549 550 551 552 553 554 555 556
Note [Eager reflexivity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)

and

  [W] X ~R X
557

558 559 560 561 562
Naively, we would start unwrapping X and end up in a loop. Instead,
we do this eager reflexivity check. This is necessary only for representational
equality because the flattener technology deals with the similar case
(recursive type families) for nominal equality.

563 564
Note that this check does not catch all cases, but it will catch the cases
we're most worried about, types like X above that are actually inhabited.
565

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
566
Here's another place where this reflexivity check is key:
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
Consider trying to prove (f a) ~R (f a). The AppTys in there can't
be decomposed, because representational equality isn't congruent with respect
to AppTy. So, when canonicalising the equality above, we get stuck and
would normally produce a CIrredEvCan. However, we really do want to
be able to solve (f a) ~R (f a). So, in the representational case only,
we do a reflexivity check.

(This would be sound in the nominal case, but unnecessary, and I [Richard
E.] am worried that it would slow down the common case.)
-}

------------------------
-- | We're able to unwrap a newtype. Update the bits accordingly.
can_eq_newtype_nc :: GlobalRdrEnv
                  -> CtEvidence           -- ^ :: ty1 ~ ty2
                  -> SwapFlag
                  -> TcCoercion           -- ^ :: ty1 ~ ty1'
                  -> TcType               -- ^ ty1
                  -> TcType               -- ^ ty1'
                  -> TcType               -- ^ ty2
                  -> TcType               -- ^ ty2, with type synonyms
                  -> TcS (StopOrContinue Ct)
can_eq_newtype_nc rdr_env ev swapped co ty1 ty1' ty2 ps_ty2
  = do { traceTcS "can_eq_newtype_nc" $
         vcat [ ppr ev, ppr swapped, ppr co, ppr ty1', ppr ty2 ]

         -- check for blowing our stack:
594 595 596
         -- See Note [Newtypes can blow the stack]
       ; checkReductionDepth (ctEvLoc ev) ty1
       ; markDataConsAsUsed rdr_env (tyConAppTyCon ty1)
597 598 599 600 601 602
           -- we have actually used the newtype constructor here, so
           -- make sure we don't warn about importing it!

       ; rewriteEqEvidence ev ReprEq swapped ty1' ps_ty2
                           (mkTcSymCo co) (mkTcReflCo Representational ps_ty2)
         `andWhenContinue` \ new_ev ->
603
         can_eq_nc False new_ev ReprEq ty1' ty1' ty2 ps_ty2 }
604 605 606 607 608

-- | Mark all the datacons of the given 'TyCon' as used in this module,
-- avoiding "redundant import" warnings.
markDataConsAsUsed :: GlobalRdrEnv -> TyCon -> TcS ()
markDataConsAsUsed rdr_env tc = addUsedRdrNamesTcS
609
  [ greUsedRdrName gre
610
  | dc <- tyConDataCons tc
611 612
  , gre : _  <- return $ lookupGRE_Name rdr_env (dataConName dc)
  , not (isLocalGRE gre) ]
613

614
---------
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
615
-- ^ Decompose a type application.
616
-- All input types must be flat. See Note [Canonicalising type applications]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
617 618
can_eq_app :: CtEvidence       -- :: s1 t1 ~r s2 t2
           -> EqRel            -- r
619 620 621
           -> Xi -> Xi         -- s1 t1
           -> Xi -> Xi         -- s2 t2
           -> TcS (StopOrContinue Ct)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
622 623

-- AppTys only decompose for nominal equality, so this case just leads
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
624
-- to an irreducible constraint; see typecheck/should_compile/T10494
625
-- See Note [Decomposing equality]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
626 627 628
can_eq_app ev ReprEq _ _ _ _
  = do { traceTcS "failing to decompose representational AppTy equality" (ppr ev)
       ; continueWith (CIrredEvCan { cc_ev = ev }) }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
629 630
          -- no need to call canEqFailure, because that flattens, and the
          -- types involved here are already flat
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
631 632

can_eq_app ev NomEq s1 t1 s2 t2
633
  | CtDerived { ctev_loc = loc } <- ev
634
  = do { emitNewDerivedEq loc (mkTcEqPred t1 t2)
635 636 637 638 639 640 641
       ; canEqNC ev NomEq s1 s2 }
  | CtWanted { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { ev_s <- newWantedEvVarNC loc (mkTcEqPred s1 s2)
       ; co_t <- unifyWanted loc Nominal t1 t2
       ; let co = mkTcAppCo (ctEvCoercion ev_s) co_t
       ; setWantedEvBind evar (EvCoercion co)
       ; canEqNC ev_s NomEq s1 s2 }
642 643
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { let co   = mkTcCoVarCo evar
644 645 646 647 648 649 650 651
             co_s = mkTcLRCo CLeft  co
             co_t = mkTcLRCo CRight co
       ; evar_s <- newGivenEvVar loc (mkTcEqPred s1 s2, EvCoercion co_s)
       ; evar_t <- newGivenEvVar loc (mkTcEqPred t1 t2, EvCoercion co_t)
       ; emitWorkNC [evar_t]
       ; canEqNC evar_s NomEq s1 s2 }
  | otherwise  -- Can't happen
  = error "can_eq_app"
652

653
------------------------
654 655 656 657
canTyConApp :: CtEvidence -> EqRel
            -> TyCon -> [TcType]
            -> TyCon -> [TcType]
            -> TcS (StopOrContinue Ct)
658
-- See Note [Decomposing TyConApps]
659
canTyConApp ev eq_rel tc1 tys1 tc2 tys2
660
  | tc1 == tc2
661
  , length tys1 == length tys2
662
  = do { inerts <- getTcSInerts
663 664
       ; if can_decompose inerts
         then do { traceTcS "canTyConApp"
665 666 667 668
                       (ppr ev $$ ppr eq_rel $$ ppr tc1 $$ ppr tys1 $$ ppr tys2)
                 ; canDecomposableTyConAppOK ev eq_rel tc1 tys1 tys2
                 ; stopWith ev "Decomposed TyConApp" }
         else canEqFailure ev eq_rel ty1 ty2 }
669

670 671
  -- Fail straight away for better error messages
  -- See Note [Use canEqFailure in canDecomposableTyConApp]
672 673
  | eq_rel == ReprEq && not (isGenerativeTyCon tc1 Representational &&
                             isGenerativeTyCon tc2 Representational)
674 675 676 677 678 679 680
  = canEqFailure ev eq_rel ty1 ty2
  | otherwise
  = canEqHardFailure ev eq_rel ty1 ty2
  where
    ty1 = mkTyConApp tc1 tys1
    ty2 = mkTyConApp tc2 tys2

681 682 683
    loc  = ctEvLoc ev
    pred = ctEvPred ev

684 685 686 687 688
     -- See Note [Decomposing equality]
    can_decompose inerts
      =  isInjectiveTyCon tc1 (eqRelRole eq_rel)
      || (ctEvFlavour ev /= Given && isEmptyBag (matchableGivens loc pred inerts))

689 690 691 692 693
{-
Note [Use canEqFailure in canDecomposableTyConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must use canEqFailure, not canEqHardFailure here, because there is
the possibility of success if working with a representational equality.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
694
Here is one case:
695 696 697 698 699 700 701 702

  type family TF a where TF Char = Bool
  data family DF a
  newtype instance DF Bool = MkDF Int

Suppose we are canonicalising (Int ~R DF (T a)), where we don't yet
know `a`. This is *not* a hard failure, because we might soon learn
that `a` is, in fact, Char, and then the equality succeeds.
703

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
704 705
Here is another case:

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
706
  [G] Age ~R Int
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
707 708 709 710

where Age's constructor is not in scope. We don't want to report
an "inaccessible code" error in the context of this Given!

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
711 712 713 714 715 716 717 718 719 720
For example, see typecheck/should_compile/T10493, repeated here:

  import Data.Ord (Down)  -- no constructor

  foo :: Coercible (Down Int) Int => Down Int -> Int
  foo = coerce

That should compile, but only because we use canEqFailure and not
canEqHardFailure.

721 722
Note [Decomposing newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
Decomposing newtypes is a dangerous business. Here is a representative example
of why:

  newtype Nt a = Mk Bool         -- NB: a is not used in the RHS,
  type role Nt representational  -- but the user gives it an R role anyway

If we have [W] Nt alpha ~R Nt beta, we *don't* want to decompose to
[W] alpha ~R beta, because it's possible that alpha and beta aren't
representationally equal. So we really want to unwrap newtypes first,
which is what is done in can_eq_nc'.
It all comes from the fact that newtypes aren't necessarily injective w.r.t.
representational equality.

Furthermore, as explained in Note [NthCo and newtypes] in Coercion, we can't use
NthCo on representational coercions over newtypes. NthCo comes into play
only when decomposing givens. So we avoid decomposing representational given
equalities over newtypes.
740

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
741
But is it ever sensible to decompose *Wanted* constraints over newtypes? Yes, as
742 743 744 745 746 747 748 749
long as there are no Givens that might (later) influence Coercible solving.
(See Note [Instance and Given overlap] in TcInteract.) By the time we reach
canDecomposableTyConApp, we know that any newtypes that can be unwrapped have
been. So, without importing more constructors, say, we know there is no way
forward other than decomposition. So we take the one route we have available.
This *does* mean that importing a newtype's constructor might make code that
previously compiled fail to do so. (If that newtype is perversely recursive,
say.)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
750 751 752 753 754 755 756 757 758 759 760 761 762 763

Example of how a given might influence this decision-making:

  [G] alpha ~R beta
  [W] Nt Int ~R Nt gamma

where Nt is a newtype whose constructor is not in scope, and its parameter
is representational. Decomposing to [W] Int ~R gamma seems sensible, but it's
just possible that the given above will become informative and that we shouldn't
decompose. If we have `newtype Nt a = Mk Bool`, then there might be well-formed
evidence that (Nt Int ~R Nt Char), even if we can't form that evidence in this
module (because Mk is not in scope). Creating this scenario in source Haskell
is challenging; there is no test case.

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

Note [Decomposing equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a constraint (of any flavour and role) that looks like
T tys1 ~ T tys2, what can we conclude about tys1 and tys2? The answer,
of course, is "it depends". This Note spells it all out.

In this Note, "decomposition" refers to taking the constraint
  [fl] (T tys1 ~X T tys2)
(for some flavour fl and some role X) and replacing it with
  [fls'] (tys1 ~Xs' tys2)
where that notation indicates a list of new constraints, where the
new constraints may have different flavours and different roles.

The key property to consider is injectivity. When decomposing a Given the
decomposition is sound if and only if T is injective in all of its type
arguments. When decomposing a Wanted, the decomposition is sound (assuming the
correct roles in the produced equality constraints), but it may be a guess --
that is, an unforced decision by the constraint solver. Decomposing Wanteds
over injective TyCons does not entail guessing. But sometimes we want to
decompose a Wanted even when the TyCon involved is not injective! (See below.)

So, in broad strokes, we want this rule:

(*) Decompose a constraint (T tys1 ~X T tys2) if and only if T is injective
at role X.

Pursuing the details requires exploring three axes:
* Flavour: Given vs. Derived vs. Wanted
* Role: Nominal vs. Representational
* TyCon species: datatype vs. newtype vs. data family vs. type family vs. type variable

(So a type variable isn't a TyCon, but it's convenient to put the AppTy case
in the same table.)

Right away, we can say that Derived behaves just as Wanted for the purposes
of decomposition. The difference between Derived and Wanted is the handling of
evidence. Since decomposition in these cases isn't a matter of soundness but of
guessing, we want the same behavior regardless of evidence.

Here is a table (discussion following) detailing where decomposition is allowed:

NOMINAL               GIVEN                       WANTED

Datatype               YES                         YES
Newtype                YES                         YES
Data family            YES                         YES
Type family            YES, in injective args{1}   YES, in injective args{1}
Type variable          YES                         YES

REPRESENTATIONAL      GIVEN                       WANTED

Datatype               YES                         YES
Newtype                NO{2}                      MAYBE{2}
Data family            NO{3}                      MAYBE{3}
Type family             NO                          NO
Type variable          NO{4}                       NO{4}

{1}: Type families can be injective in some, but not all, of their arguments,
so we want to do partial decomposition. This is quite different than the way
other decomposition is done, where the decomposed equalities replace the original
one. We thus proceed much like we do with superclasses: emitting new Givens
when "decomposing" a partially-injective type family Given and new Deriveds
when "decomposing" a partially-injective type family Wanted. (As of the time of
writing, 13 June 2015, the implementation of injective type families has not
been merged, but it should be soon. Please delete this parenthetical if the
implementation is indeed merged.)

{2}: See Note [Decomposing newtypes]

{3}: Because of the possibility of newtype instances, we must treat data families
like newtypes. See also Note [Decomposing newtypes].

{4}: Because type variables can stand in for newtypes, we conservatively do not
decompose AppTys over representational equality.

In the implementation of can_eq_nc and friends, we don't directly pattern
match using lines like in the tables above, as those tables don't cover
all cases (what about PrimTyCon? tuples?). Instead we just ask about injectivity,
boiling the tables above down to rule (*). The exceptions to rule (*) are for
injective type families, which are handled separately from other decompositions,
and the MAYBE entries above.

847 848 849
-}

canDecomposableTyConAppOK :: CtEvidence -> EqRel
850
                          -> TyCon -> [TcType] -> [TcType]
851 852
                          -> TcS ()
-- Precondition: tys1 and tys2 are the same length, hence "OK"
853
canDecomposableTyConAppOK ev eq_rel tc tys1 tys2
854 855
  = case ev of
     CtDerived { ctev_loc = loc }
856
        -> unifyDeriveds loc tc_roles tys1 tys2
857 858

     CtWanted { ctev_evar = evar, ctev_loc = loc }
859
        -> do { cos <- zipWith3M (unifyWanted loc) tc_roles tys1 tys2
860
              ; setWantedEvBind evar (EvCoercion (mkTcTyConAppCo role tc cos)) }
861

862 863
     CtGiven { ctev_evar = evar, ctev_loc = loc }
        -> do { let ev_co = mkTcCoVarCo evar
864 865 866 867 868
              ; given_evs <- newGivenEvVars loc $
                             [ ( mkTcEqPredRole r ty1 ty2
                               , EvCoercion (mkTcNthCo i ev_co) )
                             | (r, ty1, ty2, i) <- zip4 tc_roles tys1 tys2 [0..]
                             , r /= Phantom ]
869 870
              ; emitWorkNC given_evs }
  where
871 872 873 874 875
    role     = eqRelRole eq_rel
    tc_roles = tyConRolesX role tc

-- | Call when canonicalizing an equality fails, but if the equality is
-- representational, there is some hope for the future.
876
-- Examples in Note [Use canEqFailure in canDecomposableTyConApp]
877 878 879
canEqFailure :: CtEvidence -> EqRel
             -> TcType -> TcType -> TcS (StopOrContinue Ct)
canEqFailure ev ReprEq ty1 ty2
880
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ty1
881 882 883
       ; (xi2, co2) <- flatten FM_FlattenAll ev ty2
       ; traceTcS "canEqFailure with ReprEq" $
         vcat [ ppr ev, ppr ty1, ppr ty2, ppr xi1, ppr xi2 ]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
884 885 886
       ; rewriteEqEvidence ev ReprEq NotSwapped xi1 xi2 co1 co2
         `andWhenContinue` \ new_ev ->
         continueWith (CIrredEvCan { cc_ev = new_ev }) }
887 888 889 890 891
canEqFailure ev NomEq ty1 ty2 = canEqHardFailure ev NomEq ty1 ty2

-- | Call when canonicalizing an equality fails with utterly no hope.
canEqHardFailure :: CtEvidence -> EqRel
                 -> TcType -> TcType -> TcS (StopOrContinue Ct)
892
-- See Note [Make sure that insolubles are fully rewritten]
893
canEqHardFailure ev eq_rel ty1 ty2
894 895
  = do { (s1, co1) <- flatten FM_SubstOnly ev ty1
       ; (s2, co2) <- flatten FM_SubstOnly ev ty2
896 897 898 899
       ; rewriteEqEvidence ev eq_rel NotSwapped s1 s2 co1 co2
         `andWhenContinue` \ new_ev ->
    do { emitInsoluble (mkNonCanonical new_ev)
       ; stopWith new_ev "Definitely not equal" }}
900

Austin Seipp's avatar
Austin Seipp committed
901
{-
902 903 904 905 906 907 908 909 910 911 912 913 914
Note [Decomposing TyConApps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (T s1 t1 ~ T s2 t2), then we can just decompose to
  (s1 ~ s2, t1 ~ t2)
and push those back into the work list.  But if
  s1 = K k1    s2 = K k2
then we will jus decomopose s1~s2, and it might be better to
do so on the spot.  An important special case is where s1=s2,
and we get just Refl.

So canDecomposableTyCon is a fast-path decomposition that uses
unifyWanted etc to short-cut that work.

915 916 917
Note [Canonicalising type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (s1 t1) ~ ty2, how should we proceed?
Austin Seipp's avatar
Austin Seipp committed
918
The simple things is to see if ty2 is of form (s2 t2), and
919
decompose.  By this time s1 and s2 can't be saturated type
Austin Seipp's avatar
Austin Seipp committed
920 921
function applications, because those have been dealt with
by an earlier equation in can_eq_nc, so it is always sound to
922 923
decompose.

Austin Seipp's avatar
Austin Seipp committed
924
However, over-eager decomposition gives bad error messages
925 926 927 928 929 930 931
for things like
   a b ~ Maybe c
   e f ~ p -> q
Suppose (in the first example) we already know a~Array.  Then if we
decompose the application eagerly, yielding
   a ~ Maybe
   b ~ c
Austin Seipp's avatar
Austin Seipp committed
932
we get an error        "Can't match Array ~ Maybe",
933 934
but we'd prefer to get "Can't match Array b ~ Maybe c".

935 936 937
So instead can_eq_wanted_app flattens the LHS and RHS, in the hope of
replacing (a b) by (Array b), before using try_decompose_app to
decompose it.
938

939 940
Note [Make sure that insolubles are fully rewritten]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simon Peyton Jones's avatar
Simon Peyton Jones committed
941 942
When an equality fails, we still want to rewrite the equality
all the way down, so that it accurately reflects
943 944 945
 (a) the mutable reference substitution in force at start of solving
 (b) any ty-binds in force at this point in solving
See Note [Kick out insolubles] in TcInteract.
Simon Peyton Jones's avatar
Simon Peyton Jones committed
946
And if we don't do this there is a bad danger that
947 948 949
TcSimplify.applyTyVarDefaulting will find a variable
that has in fact been substituted.

950
Note [Do not decompose Given polytype equalities]
951 952
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider [G] (forall a. t1 ~ forall a. t2).  Can we decompose this?
953
No -- what would the evidence look like?  So instead we simply discard
Simon Peyton Jones's avatar
Simon Peyton Jones committed
954
this given evidence.
955 956


957 958 959 960 961 962 963 964 965 966 967 968 969
Note [Combining insoluble constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As this point we have an insoluble constraint, like Int~Bool.

 * If it is Wanted, delete it from the cache, so that subsequent
   Int~Bool constraints give rise to separate error messages

 * But if it is Derived, DO NOT delete from cache.  A class constraint
   may get kicked out of the inert set, and then have its functional
   dependency Derived constraints generated a second time. In that
   case we don't want to get two (or more) error messages by
   generating two (or more) insoluble fundep constraints from the same
   class constraint.
970 971 972 973 974 975 976 977 978 979 980

Note [No top-level newtypes on RHS of representational equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we're in this situation:

 work item:  [W] c1 : a ~R b
     inert:  [G] c2 : b ~R Id a

where
  newtype Id a = Id a

981 982 983 984
We want to make sure canEqTyVar sees [W] a ~R a, after b is flattened
and the Id newtype is unwrapped. This is assured by requiring only flat
types in canEqTyVar *and* having the newtype-unwrapping check above
the tyvar check in can_eq_nc.
985

Austin Seipp's avatar
Austin Seipp committed
986
-}
Simon Peyton Jones's avatar
Simon Peyton Jones committed
987

Austin Seipp's avatar
Austin Seipp committed
988
canCFunEqCan :: CtEvidence
989
             -> TyCon -> [TcType]   -- LHS
990 991
             -> TcTyVar             -- RHS
             -> TcS (StopOrContinue Ct)
Austin Seipp's avatar
Austin Seipp committed
992 993
-- ^ Canonicalise a CFunEqCan.  We know that
--     the arg types are already flat,
994 995 996
-- and the RHS is a fsk, which we must *not* substitute.
-- So just substitute in the LHS
canCFunEqCan ev fn tys fsk
997
  = do { (tys', cos) <- flattenManyNom ev tys
998 999 1000 1001 1002
                        -- cos :: tys' ~ tys
       ; let lhs_co  = mkTcTyConAppCo Nominal fn cos
                        -- :: F tys' ~ F tys
             new_lhs = mkTyConApp fn tys'
             fsk_ty  = mkTyVarTy fsk
1003 1004 1005 1006
       ; rewriteEqEvidence ev NomEq NotSwapped new_lhs fsk_ty
                           lhs_co (mkTcNomReflCo fsk_ty)
         `andWhenContinue` \ ev' ->
    do { extendFlatCache fn tys' (ctEvCoercion ev', fsk_ty, ctEvFlavour ev')
1007
       ; continueWith (CFunEqCan { cc_ev = ev', cc_fun = fn
1008
                                 , cc_tyargs = tys', cc_fsk = fsk }) } }
1009 1010

---------------------
1011
canEqTyVar :: CtEvidence -> EqRel -> SwapFlag
1012 1013
           -> TcTyVar             -- already flat
           -> TcType              -- already flat
1014
           -> TcS (StopOrContinue Ct)
1015
-- A TyVar on LHS, but so far un-zonked
1016 1017 1018
canEqTyVar ev eq_rel swapped tv1 ps_ty2              -- ev :: tv ~ s2
  = do { traceTcS "canEqTyVar" (ppr tv1 $$ ppr ps_ty2 $$ ppr swapped)
         -- FM_Avoid commented out: see Note [Lazy flattening] in TcFlatten
1019 1020 1021 1022
         -- let fmode = FE { fe_ev = ev, fe_mode = FM_Avoid tv1' True }
         -- Flatten the RHS less vigorously, to avoid gratuitous flattening
         -- True <=> xi2 should not itself be a type-function application
       ; dflags <- getDynFlags
1023
       ; canEqTyVar2 dflags ev eq_rel swapped tv1 ps_ty2 }
1024 1025

canEqTyVar2 :: DynFlags
1026
            -> CtEvidence   -- lhs ~ rhs (or, if swapped, orhs ~ olhs)
1027
            -> EqRel
1028
            -> SwapFlag
1029 1030
            -> TcTyVar      -- lhs, flat
            -> TcType       -- rhs, flat
1031
            -> TcS (StopOrContinue Ct)
Austin Seipp's avatar
Austin Seipp committed
1032
-- LHS is an inert type variable,
1033
-- and RHS is fully rewritten, but with type synonyms
1034
-- preserved as much as possible
1035

1036
canEqTyVar2 dflags ev eq_rel swapped tv1 xi2
1037
  | Just tv2 <- getTyVar_maybe xi2
1038
  = canEqTyVarTyVar ev eq_rel swapped tv1 tv2
1039

1040
  | OC_OK xi2' <- occurCheckExpand dflags tv1 xi2  -- No occurs check
1041 1042 1043 1044
     -- We use xi2' on the RHS of the new CTyEqCan, a ~ xi2'
     -- to establish the invariant that a does not appear in the
     -- rhs of the CTyEqCan. This is guaranteed by occurCheckExpand;
     -- see Note [Occurs check expansion] in TcType
1045 1046
  = do { let k1 = tyVarKind tv1
             k2 = typeKind xi2'
1047
       ; rewriteEqEvidence ev eq_rel swapped xi1 xi2' co1 (mkTcReflCo role xi2')
1048 1049 1050
         `andWhenContinue` \ new_ev ->
         if k2 `isSubKind` k1
         then   -- Establish CTyEqCan kind invariant
1051 1052
                -- Reorientation has done its best, but the kinds might
                -- simply be incompatible
1053 1054 1055 1056
               continueWith (CTyEqCan { cc_ev = new_ev
                                      , cc_tyvar  = tv1, cc_rhs = xi2'
                                      , cc_eq_rel = eq_rel })
         else incompatibleKind new_ev xi1 k1 xi2' k2 }
1057 1058

  | otherwise  -- Occurs check error
1059 1060 1061
  = rewriteEqEvidence ev eq_rel swapped xi1 xi2 co1 co2
    `andWhenContinue` \ new_ev ->
    case eq_rel of
1062
      NomEq  -> do { emitInsoluble (mkNonCanonical new_ev)
1063 1064 1065
              -- If we have a ~ [a], it is not canonical, and in particular
              -- we don't want to rewrite existing inerts with it, otherwise
              -- we'd risk divergence in the constraint solver
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                   ; stopWith new_ev "Occurs check" }

        -- A representational equality with an occurs-check problem isn't
        -- insoluble! For example:
        --   a ~R b a
        -- We might learn that b is the newtype Id.
        -- But, the occurs-check certainly prevents the equality from being
        -- canonical, and we might loop if we were to use it in rewriting.
      ReprEq -> do { traceTcS "Occurs-check in representational equality"
                              (ppr xi1 $$ ppr xi2)
                   ; continueWith (CIrredEvCan { cc_ev = new_ev }) }
1077
  where
1078 1079 1080 1081
    role = eqRelRole eq_rel
    xi1  = mkTyVarTy tv1
    co1  = mkTcReflCo role xi1
    co2  = mkTcReflCo role xi2
1082

1083
canEqTyVarTyVar :: CtEvidence           -- tv1 ~ rhs (or rhs ~ tv1, if swapped)
1084
                -> EqRel
1085
                -> SwapFlag
1086
                -> TcTyVar -> TcTyVar   -- tv1, tv2
1087
                -> TcS (StopOrContinue Ct)
1088
-- Both LHS and RHS rewrote to a type variable
1089
-- See Note [Canonical orientation for tyvar/tyvar equality constraints]
1090
canEqTyVarTyVar ev eq_rel swapped tv1 tv2
1091
  | tv1 == tv2
1092
  = do { setEvBindIfWanted ev (EvCoercion $ mkTcReflCo role xi1)
1093 1094
       ; stopWith ev "Equal tyvars" }

1095 1096 1097 1098 1099 1100 1101
  | incompat_kind   = incompatibleKind ev xi1 k1 xi2 k2

-- We don't do this any more
-- See Note [Orientation of equalities with fmvs] in TcSMonad
--  | isFmvTyVar tv1  = do_fmv swapped            tv1 xi1 xi2 co1 co2
--  | isFmvTyVar tv2  = do_fmv (flipSwap swapped) tv2 xi2 xi1 co2 co1

1102 1103 1104
  | same_kind       = if swap_over then do_swap else no_swap
  | k1_sub_k2       = do_swap   -- Note [Kind orientation for CTyEqCan]
  | otherwise       = no_swap   -- k2_sub_k1
1105
  where
1106
    role = eqRelRole eq_rel
1107
    xi1 = mkTyVarTy tv1
1108
    co1 = mkTcReflCo role xi1
1109
    xi2 = mkTyVarTy tv2
1110
    co2 = mkTcReflCo role xi2
1111 1112
    k1  = tyVarKind tv1
    k2  = tyVarKind tv2
1113 1114 1115 1116 1117 1118 1119 1120 1121
    k1_sub_k2     = k1 `isSubKind` k2
    k2_sub_k1     = k2 `isSubKind` k1
    same_kind     = k1_sub_k2 && k2_sub_k1
    incompat_kind = not (k1_sub_k2 || k2_sub_k1)

    no_swap = canon_eq swapped            tv1 xi1 xi2 co1 co2
    do_swap = canon_eq (flipSwap swapped) tv2 xi2 xi1 co2 co1

    canon_eq swapped tv1 xi1 xi2 co1 co2
1122 1123 1124 1125 1126
        -- ev  : tv1 ~ rhs  (not swapped) or   rhs ~ tv1   (swapped)
      = rewriteEqEvidence ev eq_rel swapped xi1 xi2 co1 co2
        `andWhenContinue` \ new_ev ->
        continueWith (CTyEqCan { cc_ev = new_ev, cc_tyvar = tv1
                               , cc_rhs = xi2, cc_eq_rel = eq_rel })
1127

1128 1129 1130
{- We don't do this any more
   See Note [Orientation of equalities with fmvs] in TcSMonad
    -- tv1 is the flatten meta-var
1131 1132 1133
    do_fmv swapped tv1 xi1 xi2 co1 co2
      | same_kind
      = canon_eq swapped tv1 xi1 xi2 co1 co2
1134 1135 1136 1137 1138 1139 1140 1141 1142