StgCmmHeap.hs 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
-----------------------------------------------------------------------------
--
-- Stg to C--: heap management functions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module StgCmmHeap (
10 11
        getVirtHp, setVirtHp, setRealHp,
        getHpRelOffset, hpRel,
12

13
        entryHeapCheck, altHeapCheck,
14

15 16
        mkVirtHeapOffsets, mkVirtConstrOffsets,
        mkStaticClosureFields, mkStaticClosure,
17

18
        allocDynClosure, allocDynClosureCmm, emitSetDynHdr
19 20 21 22
    ) where

#include "HsVersions.h"

23
import CmmType
24 25 26 27 28 29 30 31 32 33 34
import StgSyn
import CLabel
import StgCmmLayout
import StgCmmUtils
import StgCmmMonad
import StgCmmProf
import StgCmmTicky
import StgCmmGran
import StgCmmClosure
import StgCmmEnv

35
import MkGraph
36 37

import SMRep
38
import Cmm
39 40 41
import CmmUtils
import CostCentre
import Outputable
42
import IdInfo( CafInfo(..), mayHaveCafRefs )
43
import Module
44
import FastString( mkFastString, fsLit )
45
import Constants
46
import DynFlags
47 48

-----------------------------------------------------------
49
--              Initialise dynamic heap objects
50 51 52
-----------------------------------------------------------

allocDynClosure
Simon Marlow's avatar
Simon Marlow committed
53 54
        :: CmmInfoTable
        -> LambdaFormInfo
55 56 57 58 59 60 61 62 63 64
        -> CmmExpr              -- Cost Centre to stick in the object
        -> CmmExpr              -- Cost Centre to blame for this alloc
                                -- (usually the same; sometimes "OVERHEAD")

        -> [(NonVoid StgArg, VirtualHpOffset)]  -- Offsets from start of object
                                                -- ie Info ptr has offset zero.
                                                -- No void args in here
        -> FCode (LocalReg, CmmAGraph)

allocDynClosureCmm
Simon Marlow's avatar
Simon Marlow committed
65
        :: CmmInfoTable -> LambdaFormInfo -> CmmExpr -> CmmExpr
66 67 68 69
        -> [(CmmExpr, VirtualHpOffset)]
        -> FCode (LocalReg, CmmAGraph)

-- allocDynClosure allocates the thing in the heap,
70
-- and modifies the virtual Hp to account for this.
71 72 73
-- The second return value is the graph that sets the value of the
-- returned LocalReg, which should point to the closure after executing
-- the graph.
74 75 76 77 78

-- Note [Return a LocalReg]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- allocDynClosure returns a LocalReg, not a (Hp+8) CmmExpr.
-- Reason:
79 80 81 82 83
--      ...allocate object...
--      obj = Hp + 8
--      y = f(z)
--      ...here obj is still valid,
--         but Hp+8 means something quite different...
84 85


Simon Marlow's avatar
Simon Marlow committed
86
allocDynClosure info_tbl lf_info use_cc _blame_cc args_w_offsets
87 88
  = do  { let (args, offsets) = unzip args_w_offsets
        ; cmm_args <- mapM getArgAmode args     -- No void args
Simon Marlow's avatar
Simon Marlow committed
89 90
        ; allocDynClosureCmm info_tbl lf_info
                             use_cc _blame_cc (zip cmm_args offsets)
91 92
        }

Simon Marlow's avatar
Simon Marlow committed
93
allocDynClosureCmm info_tbl lf_info use_cc _blame_cc amodes_w_offsets
94 95 96
  = do  { virt_hp <- getVirtHp

        -- SAY WHAT WE ARE ABOUT TO DO
Simon Marlow's avatar
Simon Marlow committed
97 98 99
        ; let rep = cit_rep info_tbl
        ; tickyDynAlloc rep lf_info
        ; profDynAlloc rep use_cc
100 101 102 103 104 105 106 107

        -- FIND THE OFFSET OF THE INFO-PTR WORD
        ; let   info_offset = virt_hp + 1
                -- info_offset is the VirtualHpOffset of the first
                -- word of the new object
                -- Remember, virtHp points to last allocated word,
                -- ie 1 *before* the info-ptr word of new object.

Simon Marlow's avatar
Simon Marlow committed
108
                info_ptr = CmmLit (CmmLabel (cit_lbl info_tbl))
109 110 111

        -- ALLOCATE THE OBJECT
        ; base <- getHpRelOffset info_offset
112
        ; emit (mkComment $ mkFastString "allocDynClosure")
113 114 115 116 117
        ; emitSetDynHdr base info_ptr  use_cc
        ; let (cmm_args, offsets) = unzip amodes_w_offsets
        ; hpStore base cmm_args offsets

        -- BUMP THE VIRTUAL HEAP POINTER
Simon Marlow's avatar
Simon Marlow committed
118
        ; setVirtHp (virt_hp + heapClosureSize rep)
119 120 121 122 123

        -- Assign to a temporary and return
        -- Note [Return a LocalReg]
        ; hp_rel <- getHpRelOffset info_offset
        ; getCodeR $ assignTemp hp_rel }
124 125

emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
126
emitSetDynHdr base info_ptr ccs
127 128 129 130
  = hpStore base header [0..]
  where
    header :: [CmmExpr]
    header = [info_ptr] ++ dynProfHdr ccs
131 132 133
        -- ToDo: Gransim stuff
        -- ToDo: Parallel stuff
        -- No ticky header
134 135 136 137 138 139

hpStore :: CmmExpr -> [CmmExpr] -> [VirtualHpOffset] -> FCode ()
-- Store the item (expr,off) in base[off]
hpStore base vals offs
  = emit (catAGraphs (zipWith mk_store vals offs))
  where
140
    mk_store val off = mkStore (cmmOffsetW base off) val
141 142 143


-----------------------------------------------------------
144
--              Layout of static closures
145 146 147 148 149
-----------------------------------------------------------

-- Make a static closure, adding on any extra padding needed for CAFs,
-- and adding a static link field if necessary.

150
mkStaticClosureFields
Simon Marlow's avatar
Simon Marlow committed
151
        :: CmmInfoTable
152
        -> CostCentreStack
153
        -> CafInfo
154 155
        -> [CmmLit]             -- Payload
        -> [CmmLit]             -- The full closure
Simon Marlow's avatar
Simon Marlow committed
156
mkStaticClosureFields info_tbl ccs caf_refs payload
157 158
  = mkStaticClosure info_lbl ccs payload padding
        static_link_field saved_info_field
159
  where
Simon Marlow's avatar
Simon Marlow committed
160
    info_lbl = cit_lbl info_tbl
161 162 163 164 165 166 167 168 169

    -- CAFs must have consistent layout, regardless of whether they
    -- are actually updatable or not.  The layout of a CAF is:
    --
    --        3 saved_info
    --        2 static_link
    --        1 indirectee
    --        0 info ptr
    --
Simon Marlow's avatar
Simon Marlow committed
170 171 172
    -- the static_link and saved_info fields must always be in the
    -- same place.  So we use isThunkRep rather than closureUpdReqd
    -- here:
173

Simon Marlow's avatar
Simon Marlow committed
174
    is_caf = isThunkRep (cit_rep info_tbl)
175

176 177 178
    padding
        | not is_caf = []
        | otherwise  = ASSERT(null payload) [mkIntCLit 0]
179 180

    static_link_field
Simon Marlow's avatar
Simon Marlow committed
181 182
        | is_caf || staticClosureNeedsLink info_tbl = [static_link_value]
        | otherwise                                 = []
183 184

    saved_info_field
185 186
        | is_caf     = [mkIntCLit 0]
        | otherwise  = []
187

188
        -- For a static constructor which has NoCafRefs, we set the
189 190
        -- static link field to a non-zero value so the garbage
        -- collector will ignore it.
191
    static_link_value
192 193
        | mayHaveCafRefs caf_refs  = mkIntCLit 0
        | otherwise                = mkIntCLit 1  -- No CAF refs
194 195 196 197


mkStaticClosure :: CLabel -> CostCentreStack -> [CmmLit]
  -> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
198
mkStaticClosure info_lbl ccs payload padding static_link_field saved_info_field
199 200
  =  [CmmLabel info_lbl]
  ++ variable_header_words
201
  ++ concatMap padLitToWord payload
202
  ++ padding
203 204 205 206
  ++ static_link_field
  ++ saved_info_field
  where
    variable_header_words
207 208 209 210
        =  staticGranHdr
        ++ staticParHdr
        ++ staticProfHdr ccs
        ++ staticTickyHdr
211

212 213
-- JD: Simon had ellided this padding, but without it the C back end asserts
-- failure. Maybe it's a bad assertion, and this padding is indeed unnecessary?
214 215 216 217 218 219 220 221 222 223 224
padLitToWord :: CmmLit -> [CmmLit]
padLitToWord lit = lit : padding pad_length
  where width = typeWidth (cmmLitType lit)
        pad_length = wORD_SIZE - widthInBytes width :: Int

        padding n | n <= 0 = []
                  | n `rem` 2 /= 0 = CmmInt 0 W8  : padding (n-1)
                  | n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n-2)
                  | n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n-4)
                  | otherwise      = CmmInt 0 W64 : padding (n-8)

225
-----------------------------------------------------------
226
--              Heap overflow checking
227 228 229 230 231 232 233 234 235 236 237 238
-----------------------------------------------------------

{- Note [Heap checks]
   ~~~~~~~~~~~~~~~~~~
Heap checks come in various forms.  We provide the following entry
points to the runtime system, all of which use the native C-- entry
convention.

  * gc() performs garbage collection and returns
    nothing to its caller

  * A series of canned entry points like
239
        r = gc_1p( r )
240 241
    where r is a pointer.  This performs gc, and
    then returns its argument r to its caller.
242

243
  * A series of canned entry points like
244
        gcfun_2p( f, x, y )
245 246 247 248 249 250 251 252 253
    where f is a function closure of arity 2
    This performs garbage collection, keeping alive the
    three argument ptrs, and then tail-calls f(x,y)

These are used in the following circumstances

* entryHeapCheck: Function entry
    (a) With a canned GC entry sequence
        f( f_clo, x:ptr, y:ptr ) {
254 255 256
             Hp = Hp+8
             if Hp > HpLim goto L
             ...
257 258 259
          L: HpAlloc = 8
             jump gcfun_2p( f_clo, x, y ) }
     Note the tail call to the garbage collector;
260
     it should do no register shuffling
261 262 263

    (b) No canned sequence
        f( f_clo, x:ptr, y:ptr, ...etc... ) {
264 265 266
          T: Hp = Hp+8
             if Hp > HpLim goto L
             ...
267
          L: HpAlloc = 8
268 269
             call gc()  -- Needs an info table
             goto T }
270 271

* altHeapCheck: Immediately following an eval
272 273
  Started as
        case f x y of r { (p,q) -> rhs }
274 275 276
  (a) With a canned sequence for the results of f
       (which is the very common case since
       all boxed cases return just one pointer
277 278 279 280 281 282
           ...
           r = f( x, y )
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
283

284 285
        L: r = gc_1p( r )
           goto K }
286

287 288 289 290
        Here, the info table needed by the call
        to gc_1p should be the *same* as the
        one for the call to f; the C-- optimiser
        spots this sharing opportunity)
291 292 293

   (b) No canned sequence for results of f
       Note second info table
294 295 296 297 298 299
           ...
           (r1,r2,r3) = call f( x, y )
        K:
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
300

301 302
        L: call gc()    -- Extra info table here
           goto K
303 304 305

* generalHeapCheck: Anywhere else
  e.g. entry to thunk
306
       case branch *not* following eval,
307 308 309
       or let-no-escape
  Exactly the same as the previous case:

310 311 312 313
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...
314

315 316
        L: call gc()
           goto K
317 318 319 320 321
-}

--------------------------------------------------------------
-- A heap/stack check at a function or thunk entry point.

322 323 324 325 326 327 328
entryHeapCheck :: ClosureInfo
               -> Int            -- Arg Offset
               -> Maybe LocalReg -- Function (closure environment)
               -> Int            -- Arity -- not same as len args b/c of voids
               -> [LocalReg]     -- Non-void args (empty for thunk)
               -> FCode ()
               -> FCode ()
329

330
entryHeapCheck cl_info offset nodeSet arity args code
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  = do dflags <- getDynFlags

       let platform = targetPlatform dflags

           is_thunk = arity == 0
           is_fastf = case closureFunInfo cl_info of
                           Just (_, ArgGen _) -> False
                           _otherwise         -> True

           args' = map (CmmReg . CmmLocal) args
           setN = case nodeSet of
                          Just n  -> mkAssign nodeReg (CmmReg $ CmmLocal n)
                          Nothing -> mkAssign nodeReg $
                              CmmLit (CmmLabel $ staticClosureLabel platform cl_info)

           {- Thunks:          Set R1 = node, jump GCEnter1
              Function (fast): Set R1 = node, jump GCFun
              Function (slow): Set R1 = node, call generic_gc -}
           gc_call upd = setN <*> gc_lbl upd
           gc_lbl upd
               | is_thunk  = mkDirectJump (CmmReg $ CmmGlobal GCEnter1) [] sp
               | is_fastf  = mkDirectJump (CmmReg $ CmmGlobal GCFun) [] sp
               | otherwise = mkForeignJump Slow (CmmReg $ CmmGlobal GCFun) args' upd
               where sp = max offset upd
           {- DT (12/08/10) This is a little fishy, mainly the sp fix up amount.
            - This is since the ncg inserts spills before the stack/heap check.
            - This should be fixed up and then we won't need to fix up the Sp on
            - GC calls, but until then this fishy code works -}

       updfr_sz <- getUpdFrameOff
361 362 363 364 365 366 367 368 369 370
       heapCheck True (gc_call updfr_sz) code

{-
    -- This code is slightly outdated now and we could easily keep the above
    -- GC methods. However, there may be some performance gains to be made by
    -- using more specialised GC entry points. Since the semi generic GCFun
    -- entry needs to check the node and figure out what registers to save...
    -- if we provided and used more specialised GC entry points then these
    -- runtime decisions could be turned into compile time decisions.

371 372
    args'     = case fun of Just f  -> f : args
                            Nothing -> args
373
    arg_exprs = map (CmmReg . CmmLocal) args'
374
    gc_call updfr_sz
375
        | arity == 0 = mkJumpGC (CmmReg (CmmGlobal GCEnter1)) arg_exprs updfr_sz
376 377 378 379 380 381
        | otherwise =
            case gc_lbl args' of
                Just _lbl -> panic "StgCmmHeap.entryHeapCheck: not finished"
                            -- mkJumpGC (CmmLit (CmmLabel (mkRtsCodeLabel lbl)))
                            --         arg_exprs updfr_sz
                Nothing  -> mkCall generic_gc (GC, GC) [] [] updfr_sz
382

383
    gc_lbl :: [LocalReg] -> Maybe FastString
384
    gc_lbl [reg]
385 386 387 388 389 390 391 392 393 394 395
        | isGcPtrType ty  = Just (sLit "stg_gc_unpt_r1") -- "stg_gc_fun_1p"
        | isFloatType ty  = case width of
                              W32 -> Just (sLit "stg_gc_f1")
                              W64 -> Just (sLit "stg_gc_d1")
                              _other -> Nothing
        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
          ty = localRegType reg
          width = typeWidth ty
396 397 398

    gc_lbl regs = gc_lbl_ptrs (map (isGcPtrType . localRegType) regs)

399
    gc_lbl_ptrs :: [Bool] -> Maybe FastString
400
    -- JD: TEMPORARY -- UNTIL THESE FUNCTIONS EXIST...
401 402 403
    --gc_lbl_ptrs [True,True]      = Just (sLit "stg_gc_fun_2p")
    --gc_lbl_ptrs [True,True,True] = Just (sLit "stg_gc_fun_3p")
    gc_lbl_ptrs _ = Nothing
404 405 406 407 408
-}


--------------------------------------------------------------
-- A heap/stack check at in a case alternative
409

410 411
altHeapCheck :: [LocalReg] -> FCode a -> FCode a
altHeapCheck regs code
412 413
  = do updfr_sz <- getUpdFrameOff
       heapCheck False (gc_call updfr_sz) code
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  where
    reg_exprs = map (CmmReg . CmmLocal) regs

    gc_call sp =
        case rts_label regs of
             Just gc -> mkCall (CmmLit gc) (GC, GC) regs reg_exprs sp
             Nothing -> mkCall generic_gc (GC, GC) [] [] sp

    rts_label [reg]
        | isGcPtrType ty = Just (mkGcLabel "stg_gc_unpt_r1")
        | isFloatType ty = case width of
                                W32       -> Just (mkGcLabel "stg_gc_f1")
                                W64       -> Just (mkGcLabel "stg_gc_d1")
                                _         -> Nothing

        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
            ty = localRegType reg
            width = typeWidth ty
436 437 438 439

    rts_label _ = Nothing


440 441 442 443 444 445 446
-- | The generic GC procedure; no params, no results
generic_gc :: CmmExpr
generic_gc = CmmLit $ mkGcLabel "stg_gc_noregs"

-- | Create a CLabel for calling a garbage collector entry point
mkGcLabel :: String -> CmmLit
mkGcLabel = (CmmLabel . (mkCmmCodeLabel rtsPackageId) . fsLit)
447 448

-------------------------------
449 450
heapCheck :: Bool -> CmmAGraph -> FCode a -> FCode a
heapCheck checkStack do_gc code
451
  = getHeapUsage $ \ hpHw ->
452 453 454 455 456 457 458
    -- Emit heap checks, but be sure to do it lazily so
    -- that the conditionals on hpHw don't cause a black hole
    do  { emit $ do_checks checkStack hpHw do_gc
        ; tickyAllocHeap hpHw
        ; doGranAllocate hpHw
        ; setRealHp hpHw
        ; code }
459

460
do_checks :: Bool       -- Should we check the stack?
461 462
          -> WordOff    -- Heap headroom
          -> CmmAGraph  -- What to do on failure
463 464 465 466
          -> CmmAGraph
do_checks checkStack alloc do_gc
  = withFreshLabel "gc" $ \ loop_id ->
    withFreshLabel "gc" $ \ gc_id   ->
467
      mkLabel loop_id
468 469
      <*> (let hpCheck = if alloc == 0 then mkNop
                         else mkAssign hpReg bump_hp <*>
470 471 472 473
                              mkCmmIfThen hp_oflo (alloc_n <*> mkBranch gc_id)
           in if checkStack
                 then mkCmmIfThenElse sp_oflo (mkBranch gc_id) hpCheck
                 else hpCheck)
474
      <*> mkComment (mkFastString "outOfLine should follow:")
475
      <*> outOfLine (mkLabel gc_id
476 477 478
                     <*> mkComment (mkFastString "outOfLine here")
                     <*> do_gc
                     <*> mkBranch loop_id)
479 480 481 482 483 484
                -- Test for stack pointer exhaustion, then
                -- bump heap pointer, and test for heap exhaustion
                -- Note that we don't move the heap pointer unless the
                -- stack check succeeds.  Otherwise we might end up
                -- with slop at the end of the current block, which can
                -- confuse the LDV profiler.
485
  where
486
    alloc_lit = CmmLit (mkIntCLit (alloc*wORD_SIZE)) -- Bytes
487 488
    bump_hp   = cmmOffsetExprB (CmmReg hpReg) alloc_lit

489 490 491
    -- Sp overflow if (Sp - CmmHighStack < SpLim)
    sp_oflo = CmmMachOp mo_wordULt
                  [CmmMachOp (MO_Sub (typeWidth (cmmRegType spReg)))
492 493
                             [CmmReg spReg, CmmLit CmmHighStackMark],
                   CmmReg spLimReg]
494

495 496 497 498 499 500 501
    -- Hp overflow if (Hp > HpLim)
    -- (Hp has been incremented by now)
    -- HpLim points to the LAST WORD of valid allocation space.
    hp_oflo = CmmMachOp mo_wordUGt
                  [CmmReg hpReg, CmmReg (CmmGlobal HpLim)]

    alloc_n = mkAssign (CmmGlobal HpAlloc) alloc_lit
502 503 504 505 506 507 508 509 510 511

{-

{- Unboxed tuple alternatives and let-no-escapes (the two most annoying
constructs to generate code for!)  For unboxed tuple returns, there
are an arbitrary number of possibly unboxed return values, some of
which will be in registers, and the others will be on the stack.  We
always organise the stack-resident fields into pointers &
non-pointers, and pass the number of each to the heap check code. -}

512 513 514 515 516 517 518
unbxTupleHeapCheck
        :: [(Id, GlobalReg)]    -- Live registers
        -> WordOff      -- no. of stack slots containing ptrs
        -> WordOff      -- no. of stack slots containing nonptrs
        -> CmmAGraph    -- code to insert in the failure path
        -> FCode ()
        -> FCode ()
519 520

unbxTupleHeapCheck regs ptrs nptrs fail_code code
521
  -- We can't manage more than 255 pointers/non-pointers
522 523
  -- in a generic heap check.
  | ptrs > 255 || nptrs > 255 = panic "altHeapCheck"
524
  | otherwise
525
  = initHeapUsage $ \ hpHw -> do
526 527 528 529 530
        { codeOnly $ do { do_checks 0 {- no stack check -} hpHw
                                    full_fail_code rts_label
                        ; tickyAllocHeap hpHw }
        ; setRealHp hpHw
        ; code }
531 532
  where
    full_fail_code  = fail_code `plusStmts` oneStmt assign_liveness
533 534 535 536
    assign_liveness = CmmAssign (CmmGlobal (VanillaReg 9))      -- Ho ho ho!
                                (CmmLit (mkWordCLit liveness))
    liveness        = mkRegLiveness regs ptrs nptrs
    rts_label       = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_ut")))
537 538


539
{- Old Gransim com -- I have no idea whether it still makes sense (SLPJ Sep07)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
For GrAnSim the code for doing a heap check and doing a context switch
has been separated. Especially, the HEAP_CHK macro only performs a
heap check. THREAD_CONTEXT_SWITCH should be used for doing a context
switch. GRAN_FETCH_AND_RESCHEDULE must be put at the beginning of
every slow entry code in order to simulate the fetching of
closures. If fetching is necessary (i.e. current closure is not local)
then an automatic context switch is done. -}


When failing a check, we save a return address on the stack and
jump to a pre-compiled code fragment that saves the live registers
and returns to the scheduler.

The return address in most cases will be the beginning of the basic
block in which the check resides, since we need to perform the check
again on re-entry because someone else might have stolen the resource
in the meantime.

%************************************************************************
559
%*                                                                      *
560
     Generic Heap/Stack Checks - used in the RTS
561
%*                                                                      *
562 563 564 565 566 567 568 569
%************************************************************************

\begin{code}
hpChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
hpChkGen bytes liveness reentry
  = do_checks' bytes True assigns stg_gc_gen
  where
    assigns = mkStmts [
570 571 572
                CmmAssign (CmmGlobal (VanillaReg 9))  liveness,
                CmmAssign (CmmGlobal (VanillaReg 10)) reentry
                ]
573 574 575 576 577 578 579 580 581 582 583 584

-- a heap check where R1 points to the closure to enter on return, and
-- we want to assign to Sp[0] on failure (used in AutoApply.cmm:BUILD_PAP).
hpChkNodePointsAssignSp0 :: CmmExpr -> CmmExpr -> FCode ()
hpChkNodePointsAssignSp0 bytes sp0
  = do_checks' bytes True assign stg_gc_enter1
  where assign = oneStmt (CmmStore (CmmReg spReg) sp0)

stg_gc_gen    = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_gen")))
\end{code}

-}