TcInteract.lhs 79.3 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcInteract ( 
10 11
     solveInteractGiven,  -- Solves [EvVar],GivenLoc
     solveInteractCts,    -- Solves [Cts]
12 13 14 15
  ) where  

#include "HsVersions.h"

16

17
import BasicTypes ()
18 19 20
import TcCanonical
import VarSet
import Type
dimitris's avatar
dimitris committed
21
import Unify
22 23
import FamInstEnv
import Coercion( mkAxInstRHS )
24 25 26 27 28

import Id 
import Var

import TcType
29
import PrelNames (typeNatClassName)
30

31 32
import Class
import TyCon
33
import Name
34
import IParam
35 36 37

import FunDeps

38
import TcEvidence
39 40
import Outputable

41 42
import TcMType ( zonkTcPredType )

43
import TcRnTypes
44
import TcErrors
45
import TcSMonad
46
import Maybes( orElse )
47
import Bag
48

49 50 51
import Control.Monad ( foldM )
import TrieMap

dimitris's avatar
dimitris committed
52 53 54
import VarEnv
import qualified Data.Traversable as Traversable

55
import Control.Monad( when )
56
import Pair ( pSnd )
57
import UniqFM
58 59 60
import FastString ( sLit ) 
import DynFlags
\end{code}
61 62
**********************************************************************
*                                                                    * 
63 64 65 66
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

67 68
Note [Basic Simplifier Plan] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
69

70 71
1. Pick an element from the WorkList if there exists one with depth 
   less thanour context-stack depth. 
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
2. Run it down the 'stage' pipeline. Stages are: 
      - canonicalization
      - inert reactions
      - spontaneous reactions
      - top-level intreactions
   Each stage returns a StopOrContinue and may have sideffected 
   the inerts or worklist.
  
   The threading of the stages is as follows: 
      - If (Stop) is returned by a stage then we start again from Step 1. 
      - If (ContinueWith ct) is returned by a stage, we feed 'ct' on to 
        the next stage in the pipeline. 
4. If the element has survived (i.e. ContinueWith x) the last stage 
   then we add him in the inerts and jump back to Step 1.

If in Step 1 no such element exists, we have exceeded our context-stack 
depth and will simply fail.
90 91
\begin{code}

92 93 94 95 96 97 98 99 100 101
solveInteractCts :: [Ct] -> TcS ()
solveInteractCts cts 
  = do { evvar_cache <- getTcSEvVarCacheMap
       ; (cts_thinner, new_evvar_cache) <- add_cts_in_cache evvar_cache cts
       ; traceTcS "solveInteractCts" (vcat [ text "cts_original =" <+> ppr cts, 
                                             text "cts_thinner  =" <+> ppr cts_thinner
                                           ])
       ; setTcSEvVarCacheMap new_evvar_cache 
       ; updWorkListTcS (appendWorkListCt cts_thinner) >> solveInteract }
 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  where 
    add_cts_in_cache evvar_cache cts
      = do { ctxt <- getTcSContext
           ; foldM (solve_or_cache (simplEqsOnly ctxt)) ([],evvar_cache) cts }

    solve_or_cache :: Bool    -- Solve equalities only, not classes etc
                   -> ([Ct],TypeMap (EvVar,CtFlavor)) 
                   -> Ct
                   -> TcS ([Ct],TypeMap (EvVar,CtFlavor))
    solve_or_cache eqs_only (acc_cts,acc_cache) ct
      | dont_cache eqs_only (classifyPredType pred_ty)
      = return (ct:acc_cts,acc_cache) 

      | Just (ev',fl') <- lookupTM pred_ty acc_cache
      , fl' `canSolve` fl
      , isWanted fl
      = do { _ <- setEvBind ev (EvId ev') fl
           ; return (acc_cts,acc_cache) }

      | otherwise -- If it's a given keep it in the work list, even if it exists in the cache!
      = return (ct:acc_cts, alterTM pred_ty (\_ -> Just (ev,fl)) acc_cache)
      where fl = cc_flavor ct
            ev = cc_id ct
            pred_ty = ctPred ct

    dont_cache :: Bool -> PredTree -> Bool
    -- Do not use the cache, not update it, if this is true
    dont_cache _ (IPPred {}) = True    -- IPPreds have subtle shadowing
    dont_cache _ (EqPred ty1 ty2)      -- Report Int ~ Bool errors separately
      | Just tc1 <- tyConAppTyCon_maybe ty1
      , Just tc2 <- tyConAppTyCon_maybe ty2
      , tc1 /= tc2
      = isDecomposableTyCon tc1 && isDecomposableTyCon tc2
      | otherwise = False
    dont_cache eqs_only _ = eqs_only
            -- If we are simplifying equalities only, 
            -- do not cache non-equalities
            -- See Note [Simplifying RULE lhs constraints] in TcSimplify
140 141 142 143 144 145 146 147 148 149 150 151 152

solveInteractGiven :: GivenLoc -> [EvVar] -> TcS () 
solveInteractGiven gloc evs
  = solveInteractCts (map mk_noncan evs)
  where mk_noncan ev = CNonCanonical { cc_id = ev
                                     , cc_flavor = Given gloc GivenOrig 
                                     , cc_depth = 0 }

-- The main solver loop implements Note [Basic Simplifier Plan]
---------------------------------------------------------------
solveInteract :: TcS ()
-- Returns the final InertSet in TcS, WorkList will be eventually empty.
solveInteract
153 154
  = {-# SCC "solveInteract" #-}
    do { dyn_flags <- getDynFlags
155 156
       ; let max_depth = ctxtStkDepth dyn_flags
             solve_loop
157 158
              = {-# SCC "solve_loop" #-}
                do { sel <- selectNextWorkItem max_depth
159 160 161 162
                   ; case sel of 
                      NoWorkRemaining     -- Done, successfuly (modulo frozen)
                        -> return ()
                      MaxDepthExceeded ct -- Failure, depth exceeded
163
                        -> wrapErrTcS $ solverDepthErrorTcS (cc_depth ct) [ct]
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                      NextWorkItem ct     -- More work, loop around!
                        -> runSolverPipeline thePipeline ct >> solve_loop }
       ; solve_loop }

type WorkItem = Ct
type SimplifierStage = WorkItem -> TcS StopOrContinue

continueWith :: WorkItem -> TcS StopOrContinue
continueWith work_item = return (ContinueWith work_item) 

data SelectWorkItem 
       = NoWorkRemaining      -- No more work left (effectively we're done!)
       | MaxDepthExceeded Ct  -- More work left to do but this constraint has exceeded
                              -- the max subgoal depth and we must stop 
       | NextWorkItem Ct      -- More work left, here's the next item to look at 

selectNextWorkItem :: SubGoalDepth -- Max depth allowed
                   -> TcS SelectWorkItem
selectNextWorkItem max_depth
  = updWorkListTcS_return pick_next
184
  where 
185
    pick_next :: WorkList -> (SelectWorkItem, WorkList)
dimitris's avatar
dimitris committed
186 187 188 189 190 191 192 193
    pick_next wl = case selectWorkItem wl of
                     (Nothing,_) 
                         -> (NoWorkRemaining,wl)           -- No more work
                     (Just ct, new_wl) 
                         | cc_depth ct > max_depth         -- Depth exceeded
                         -> (MaxDepthExceeded ct,new_wl)
                     (Just ct, new_wl) 
                         -> (NextWorkItem ct, new_wl)      -- New workitem and worklist
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

runSolverPipeline :: [(String,SimplifierStage)] -- The pipeline 
                  -> WorkItem                   -- The work item 
                  -> TcS () 
-- Run this item down the pipeline, leaving behind new work and inerts
runSolverPipeline pipeline workItem 
  = do { initial_is <- getTcSInerts 
       ; traceTcS "Start solver pipeline {" $ 
                  vcat [ ptext (sLit "work item = ") <+> ppr workItem 
                       , ptext (sLit "inerts    = ") <+> ppr initial_is]

       ; final_res  <- run_pipeline pipeline (ContinueWith workItem)

       ; final_is <- getTcSInerts
       ; case final_res of 
           Stop            -> do { traceTcS "End solver pipeline (discharged) }" 
                                       (ptext (sLit "inerts    = ") <+> ppr final_is)
                                 ; return () }
           ContinueWith ct -> do { traceTcS "End solver pipeline (not discharged) }" $
                                       vcat [ ptext (sLit "final_item = ") <+> ppr ct
                                            , ptext (sLit "inerts     = ") <+> ppr final_is]
                                 ; updInertSetTcS ct }
       }
  where run_pipeline :: [(String,SimplifierStage)] -> StopOrContinue -> TcS StopOrContinue
        run_pipeline [] res = return res 
        run_pipeline _ Stop = return Stop 
        run_pipeline ((stg_name,stg):stgs) (ContinueWith ct)
          = do { traceTcS ("runStage " ++ stg_name ++ " {")
                          (text "workitem   = " <+> ppr ct) 
               ; res <- stg ct 
               ; traceTcS ("end stage " ++ stg_name ++ " }") empty
               ; run_pipeline stgs res 
               }
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
253 254 255 256 257
thePipeline :: [(String,SimplifierStage)]
thePipeline = [ ("canonicalization",        canonicalizationStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("top-level reactions",     topReactionsStage) ]
258 259 260 261
\end{code}


\begin{code}
262

263 264 265 266
-- The canonicalization stage, see TcCanonical for details
----------------------------------------------------------
canonicalizationStage :: SimplifierStage
canonicalizationStage = TcCanonical.canonicalize 
267

268 269 270 271 272 273 274 275
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

276 277 278 279 280 281
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

282
Case 1: In Rewriting Equalities (function rewriteEqLHS) 
283

284 285 286 287 288 289 290 291 292 293
    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 
294

295 296 297 298 299
Case 2: Functional Dependencies 
    Again, we should prefer, if possible, the inert variables on the RHS

Case 3: IP improvement work
    We must always rewrite so that the inert type is on the right. 
300

301 302
\begin{code}
spontaneousSolveStage :: SimplifierStage 
303
spontaneousSolveStage workItem
304
  = do { mSolve <- trySpontaneousSolve workItem
305
       ; spont_solve mSolve } 
306 307 308 309 310 311 312
  where spont_solve SPCantSolve 
          | isCTyEqCan workItem                    -- Unsolved equality
          = do { kickOutRewritableInerts workItem  -- NB: will add workItem in inerts
               ; return Stop }
          | otherwise
          = continueWith workItem
        spont_solve (SPSolved workItem')           -- Post: workItem' must be equality
313 314 315 316
          = do { bumpStepCountTcS
               ; traceFireTcS (cc_depth workItem) $
                 ptext (sLit "Spontaneous") 
                           <+> parens (ppr (cc_flavor workItem)) <+> ppr workItem
317 318 319 320

                 -- NB: will add the item in the inerts
               ; kickOutRewritableInerts workItem'
               -- .. and Stop
321 322 323 324
               ; return Stop }

kickOutRewritableInerts :: Ct -> TcS () 
-- Pre:  ct is a CTyEqCan 
325 326 327
-- Post: The TcS monad is left with the thinner non-rewritable inerts; but which
--       contains the new constraint.
--       The rewritable end up in the worklist
dimitris's avatar
dimitris committed
328
kickOutRewritableInerts ct
329 330 331 332 333 334
  = {-# SCC "kickOutRewritableInerts" #-}
    do { (wl,ieqs) <- {-# SCC "kick_out_rewritable" #-}
                      modifyInertTcS (kick_out_rewritable ct)

       -- Step 1: Rewrite as many of the inert_eqs on the spot! 
       -- NB: if it is a solved constraint just use the cached evidence
335 336
       
       ; let ct_coercion = getCtCoercion ct 
337 338 339

       ; new_ieqs <- {-# SCC "rewriteInertEqsFromInertEq" #-}
                     rewriteInertEqsFromInertEq (cc_tyvar ct,ct_coercion, cc_flavor ct) ieqs
dimitris's avatar
dimitris committed
340 341
       ; modifyInertTcS (\is -> ((), is { inert_eqs = new_ieqs }))

342 343
       -- Step 2: Add the new guy in
       ; updInertSetTcS ct
344 345 346

       ; traceTcS "Kick out" (ppr ct $$ ppr wl)
       ; updWorkListTcS (unionWorkList wl) }
dimitris's avatar
dimitris committed
347

348 349 350 351
rewriteInertEqsFromInertEq :: (TcTyVar, TcCoercion, CtFlavor) -- A new substitution
                           -> TyVarEnv (Ct, TcCoercion)       -- All inert equalities
                           -> TcS (TyVarEnv (Ct,TcCoercion)) -- The new inert equalities
rewriteInertEqsFromInertEq (subst_tv, subst_co, subst_fl) ieqs
352 353 354 355 356 357 358 359 360 361
-- The goal: traverse the inert equalities and rewrite some of them, dropping some others
-- back to the worklist. This is delicate, see Note [Delicate equality kick-out]
 = do { mieqs <- Traversable.mapM do_one ieqs 
      ; traceTcS "Original inert equalities:" (ppr ieqs)
      ; let flatten_justs elem venv
              | Just (act,aco) <- elem = extendVarEnv venv (cc_tyvar act) (act,aco)
              | otherwise = venv                                     
            final_ieqs = foldVarEnv flatten_justs emptyVarEnv mieqs
      ; traceTcS "Remaining inert equalities:" (ppr final_ieqs)
      ; return final_ieqs }
362 363

 where do_one (ct,inert_co)
364 365 366 367 368 369 370 371 372 373 374 375 376 377
         | subst_fl `canRewrite` fl && (subst_tv `elemVarSet` tyVarsOfCt ct) 
                                      -- Annoyingly inefficient, but we can't simply check 
                                      -- that isReflCo co because of cached solved ReflCo evidence.
         = if fl `canRewrite` subst_fl then 
               -- If also the inert can rewrite the subst it's totally safe 
               -- to rewrite on the spot
               do { (ct',inert_co') <- rewrite_on_the_spot (ct,inert_co)
                  ; return $ Just (ct',inert_co') }
           else -- We have to throw inert back to worklist for occurs checks 
              do { updWorkListTcS (extendWorkListEq ct)
                 ; return Nothing }
         | otherwise -- Just keep it there
         = return $ Just (ct,inert_co)
         where 
378 379 380 381 382 383
	   -- We have new guy         co : tv ~ something
	   -- and old inert  {wanted} cv : tv' ~ rhs[tv]
	   -- We want to rewrite to
	   --  	      	     {wanted} cv' : tv' ~ rhs[something] 
           --                cv = cv' ; rhs[Sym co]
	   --                  
384
           rewrite_on_the_spot (ct,_inert_co)
385
             = do { let rhs' = pSnd (tcCoercionKind co)
386 387
                  ; delCachedEvVar ev fl
                  ; evc <- newEqVar fl (mkTyVarTy tv) rhs'
388 389
                  ; let ev'   = evc_the_evvar evc
                  ; let evco' = mkTcCoVarCo ev' 
390 391 392
                  ; fl' <- if isNewEvVar evc then
                               do { case fl of 
                                      Wanted {} 
393
                                        -> setEqBind ev (evco' `mkTcTransCo` mkTcSymCo co) fl
394
                                      Given {} 
395
                                        -> setEqBind ev' (mkTcCoVarCo ev `mkTcTransCo` co) fl
396 397 398 399
                                      Derived {}
                                        -> return fl }
                           else
                               if isWanted fl then 
400
                                   setEqBind ev (evco' `mkTcTransCo` mkTcSymCo co) fl
401 402 403 404 405 406 407
                               else return fl
                  ; let ct' = ct { cc_id = ev', cc_flavor = fl', cc_rhs = rhs' }
                  ; return (ct',evco') }
           ev  = cc_id ct
           fl  = cc_flavor ct
           tv  = cc_tyvar ct
           rhs = cc_rhs ct
408
           co  = liftTcCoSubstWith [subst_tv] [subst_co] rhs
409

410
kick_out_rewritable :: Ct -> InertSet -> ((WorkList,TyVarEnv (Ct,TcCoercion)), InertSet)
411
-- Returns ALL equalities, to be dealt with later
412 413 414 415 416 417 418 419
kick_out_rewritable ct (IS { inert_eqs    = eqmap
                           , inert_eq_tvs = inscope
                           , inert_dicts  = dictmap
                           , inert_ips    = ipmap
                           , inert_funeqs = funeqmap
                           , inert_irreds = irreds
                           , inert_frozen = frozen
                           } )
420
  = ((kicked_out, eqmap), remaining)
421
  where
422
    kicked_out = WorkList { wl_eqs    = []
dimitris's avatar
dimitris committed
423 424 425
                          , wl_funeqs = bagToList feqs_out
                          , wl_rest   = bagToList (fro_out `andCts` dicts_out 
                                          `andCts` ips_out `andCts` irs_out) }
426
  
427
    remaining = IS { inert_eqs = emptyVarEnv
428 429 430 431 432 433 434 435 436 437
                   , inert_eq_tvs = inscope -- keep the same, safe and cheap
                   , inert_dicts = dicts_in
                   , inert_ips = ips_in
                   , inert_funeqs = feqs_in
                   , inert_irreds = irs_in
                   , inert_frozen = fro_in 
                   }

    fl = cc_flavor ct
    tv = cc_tyvar ct
438 439
                               
    (ips_out,   ips_in)     = partitionCCanMap rewritable ipmap
440

441 442
    (feqs_out,  feqs_in)    = partitionCtTypeMap rewritable funeqmap
    (dicts_out, dicts_in)   = partitionCCanMap rewritable dictmap
443 444 445

    (irs_out,   irs_in)   = partitionBag rewritable irreds
    (fro_out,   fro_in)   = partitionBag rewritable frozen
dimitris's avatar
dimitris committed
446 447

    rewritable ct = (fl `canRewrite` cc_flavor ct)  &&
448 449 450 451 452 453 454 455 456 457
                    (tv `elemVarSet` tyVarsOfCt ct) 
                    -- NB: tyVarsOfCt will return the type 
                    --     variables /and the kind variables/ that are 
                    --     directly visible in the type. Hence we will
                    --     have exposed all the rewriting we care about
                    --     to make the most precise kinds visible for 
                    --     matching classes etc. No need to kick out 
                    --     constraints that mention type variables whose
                    --     kinds could contain this variable!

458
\end{code}
459

460 461
Note [Delicate equality kick-out]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
dimitris's avatar
dimitris committed
462

463 464 465 466 467
Delicate:
When kicking out rewritable constraints, it would be safe to simply
kick out all rewritable equalities, but instead we only kick out those
that, when rewritten, may result in occur-check errors. We rewrite the
rest on the spot. Example:
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
          WorkItem =   [S] a ~ b
          Inerts   = { [W] b ~ [a] }
Now at this point the work item cannot be further rewritten by the
inert (due to the weaker inert flavor), so we are examining if we can
instead rewrite the inert from the workitem. But if we rewrite it on
the spot we have to recanonicalize because of the danger of occurs
errors.  On the other hand if the inert flavor was just as powerful or
more powerful than the workitem flavor, the work-item could not have
reached this stage (because it would have already been rewritten by
the inert).

The coclusion is: we kick out the 'dangerous' equalities that may
require recanonicalization (occurs checks) and the rest we rewrite
unconditionally without further checks, on-the-spot with function
rewriteInertEqsFromInertEq.


\begin{code}
487 488
data SPSolveResult = SPCantSolve
                   | SPSolved WorkItem 
489

490 491 492
-- SPCantSolve means that we can't do the unification because e.g. the variable is untouchable
-- SPSolved workItem' gives us a new *given* to go on 

493
-- @trySpontaneousSolve wi@ solves equalities where one side is a
494
-- touchable unification variable.
495
--     	    See Note [Touchables and givens] 
496
trySpontaneousSolve :: WorkItem -> TcS SPSolveResult
497 498
trySpontaneousSolve workItem@(CTyEqCan { cc_id = eqv, cc_flavor = gw
                                       , cc_tyvar = tv1, cc_rhs = xi, cc_depth = d })
dimitris's avatar
dimitris committed
499
  | isGivenOrSolved gw
500
  = return SPCantSolve
501 502 503 504
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
505 506 507
           (True,  True)  -> trySpontaneousEqTwoWay d eqv gw tv1 tv2
           (True,  False) -> trySpontaneousEqOneWay d eqv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay d eqv gw tv2 (mkTyVarTy tv1)
508
	   _ -> return SPCantSolve }
509 510
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
511 512 513
       ; if tch1 then trySpontaneousEqOneWay d eqv gw tv1 xi
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" $
                           ppr workItem 
514
                         ; return SPCantSolve }
515
       }
516 517 518 519

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
520
trySpontaneousSolve _ = return SPCantSolve
521 522

----------------
523 524
trySpontaneousEqOneWay :: SubGoalDepth 
                       -> EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
525
-- tv is a MetaTyVar, not untouchable
526 527 528
trySpontaneousEqOneWay d eqv gw tv xi
  | not (isSigTyVar tv) || isTyVarTy xi
  = solveWithIdentity d eqv gw tv xi
529
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
530
  = return SPCantSolve
531 532

----------------
533 534
trySpontaneousEqTwoWay :: SubGoalDepth 
                       -> EqVar -> CtFlavor -> TcTyVar -> TcTyVar -> TcS SPSolveResult
535
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
536 537

trySpontaneousEqTwoWay d eqv gw tv1 tv2
538
  = do { let k1_sub_k2 = k1 `isSubKind` k2
dreixel's avatar
dreixel committed
539
       ; if k1_sub_k2 && nicer_to_update_tv2
540
         then solveWithIdentity d eqv gw tv2 (mkTyVarTy tv1)
541
         else solveWithIdentity d eqv gw tv1 (mkTyVarTy tv2) }
542 543 544 545
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
546

547 548
\end{code}

549 550 551 552
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
553
where alpha :: ArgKind and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
554
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
555
simply returns @CantSolve@ then that wanted constraint is going to propagate all the way and 
556
get quantified over in inference mode. That's bad because we do know at this point that the 
557
constraint is insoluble. Instead, we call 'recKindErrorTcS' here, which will fail later on.
558 559

The same applies in canonicalization code in case of kind errors in the givens. 
560

561
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
562
If there were a kind error in the givens, this means some form of inconsistency or dead code.
563

564 565 566 567 568
You may think that when we spontaneously solve wanteds we may have to look through the 
bindings to determine the right kind of the RHS type. E.g one may be worried that xi is 
@alpha@ where alpha :: ? and a previous spontaneous solving has set (alpha := f) with (f :: *).
But we orient our constraints so that spontaneously solved ones can rewrite all other constraint
so this situation can't happen. 
569

570 571
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
572 573 574
Note that our canonical constraints insist that *all* equalities (tv ~
xi) or (F xis ~ rhs) require the LHS and the RHS to have *compatible*
the same kinds.  ("compatible" means one is a subKind of the other.)
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589
  - It can't be *equal* kinds, because
     b) wanted constraints don't necessarily have identical kinds
               eg   alpha::? ~ Int
     b) a solved wanted constraint becomes a given

  - SPJ thinks that *given* constraints (tv ~ tau) always have that
    tau has a sub-kind of tv; and when solving wanted constraints
    in trySpontaneousEqTwoWay we re-orient to achieve this.

  - Note that the kind invariant is maintained by rewriting.
    Eg wanted1 rewrites wanted2; if both were compatible kinds before,
       wanted2 will be afterwards.  Similarly givens.

Caveat:
590 591 592 593 594 595 596 597 598
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

599 600 601 602 603 604 605

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
606
      given : a ~ alpha      [having unified alpha := a] 
607 608 609
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

610
We avoid this problem by orienting the resulting given so that the unification
611 612
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
613

614 615 616
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
617 618 619

\begin{code}
----------------
620

621 622
solveWithIdentity :: SubGoalDepth 
                  -> EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
623 624
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
625 626 627
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
628
-- Returns: workItem where 
629
--        workItem = the new Given constraint
630
solveWithIdentity d eqv wd tv xi 
631
  = do { traceTcS "Sneaky unification:" $ 
632
                       vcat [text "Coercion variable:  " <+> ppr eqv <+> ppr wd, 
633 634 635
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
636
                            ]
637

638
       ; setWantedTyBind tv xi
639
       ; let refl_xi = mkTcReflCo xi
640

641
       ; let solved_fl = mkSolvedFlavor wd UnkSkol (EvCoercion refl_xi) 
642
       ; (_,eqv_given) <- newGivenEqVar solved_fl (mkTyVarTy tv) xi refl_xi
643

644
       ; when (isWanted wd) $ do { _ <- setEqBind eqv refl_xi wd; return () }
645
           -- We don't want to do this for Derived, that's why we use 'when (isWanted wd)'
646 647 648 649 650
       ; return $ SPSolved (CTyEqCan { cc_id     = eqv_given
                                     , cc_flavor = solved_fl
                                     , cc_tyvar  = tv, cc_rhs = xi, cc_depth = d }) }
\end{code}

651 652 653 654 655 656 657

*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
Note [The Solver Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We always add Givens first.  So you might think that the solver has
the invariant

   If the work-item is Given, 
   then the inert item must Given

But this isn't quite true.  Suppose we have, 
    c1: [W] beta ~ [alpha], c2 : [W] blah, c3 :[W] alpha ~ Int
After processing the first two, we get
     c1: [G] beta ~ [alpha], c2 : [W] blah
Now, c3 does not interact with the the given c1, so when we spontaneously
solve c3, we must re-react it with the inert set.  So we can attempt a 
reaction between inert c2 [W] and work-item c3 [G].

It *is* true that [Solver Invariant]
   If the work-item is Given, 
   AND there is a reaction
   then the inert item must Given
or, equivalently,
   If the work-item is Given, 
   and the inert item is Wanted/Derived
   then there is no reaction

683 684 685
\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert

686 687 688 689
data InteractResult 
    = IRWorkItemConsumed { ir_fire :: String } 
    | IRInertConsumed    { ir_fire :: String } 
    | IRKeepGoing        { ir_fire :: String }
690

691 692
irWorkItemConsumed :: String -> TcS InteractResult
irWorkItemConsumed str = return (IRWorkItemConsumed str) 
693

694 695
irInertConsumed :: String -> TcS InteractResult
irInertConsumed str = return (IRInertConsumed str) 
696

697 698 699 700
irKeepGoing :: String -> TcS InteractResult 
irKeepGoing str = return (IRKeepGoing str) 
-- You can't discard neither workitem or inert, but you must keep 
-- going. It's possible that new work is waiting in the TcS worklist. 
701 702


703 704 705 706
interactWithInertsStage :: WorkItem -> TcS StopOrContinue 
-- Precondition: if the workitem is a CTyEqCan then it will not be able to 
-- react with anything at this stage. 
interactWithInertsStage wi 
707
  = do { ctxt <- getTcSContext
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
       ; if simplEqsOnly ctxt then 
             return (ContinueWith wi)
         else 
             extractRelevantInerts wi >>= 
               foldlBagM interact_next (ContinueWith wi) }

  where interact_next Stop atomic_inert 
          = updInertSetTcS atomic_inert >> return Stop
        interact_next (ContinueWith wi) atomic_inert 
          = do { ir <- doInteractWithInert atomic_inert wi
               ; let mk_msg rule keep_doc 
                       = text rule <+> keep_doc
      	                 <+> vcat [ ptext (sLit "Inert =") <+> ppr atomic_inert
      	                          , ptext (sLit "Work =")  <+> ppr wi ]
               ; case ir of 
                   IRWorkItemConsumed { ir_fire = rule } 
                       -> do { bumpStepCountTcS
                             ; traceFireTcS (cc_depth wi) 
                                            (mk_msg rule (text "WorkItemConsumed"))
                             ; updInertSetTcS atomic_inert
                             ; return Stop } 
                   IRInertConsumed { ir_fire = rule }
                       -> do { bumpStepCountTcS
                             ; traceFireTcS (cc_depth atomic_inert) 
                                            (mk_msg rule (text "InertItemConsumed"))
                             ; return (ContinueWith wi) }
                   IRKeepGoing {} -- Should we do a bumpStepCountTcS? No for now.
                       -> do { updInertSetTcS atomic_inert
                             ; return (ContinueWith wi) }
               }
   
739
--------------------------------------------
740
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert
741

742 743
doInteractWithInert :: Ct -> Ct -> TcS InteractResult
-- Identical class constraints.
744
doInteractWithInert
745
  inertItem@(CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
746
   workItem@(CDictCan { cc_id = _d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
747

748
  | cls1 == cls2  
batterseapower's avatar
batterseapower committed
749 750
  = do { let pty1 = mkClassPred cls1 tys1
             pty2 = mkClassPred cls2 tys2
751
             inert_pred_loc     = (pty1, pprFlavorArising fl1)
752
             work_item_pred_loc = (pty2, pprFlavorArising fl2)
753

754 755 756
       ; traceTcS "doInteractWithInert" (vcat [ text "inertItem = " <+> ppr inertItem
                                              , text "workItem  = " <+> ppr workItem ])

757 758 759 760 761 762
       ; any_fundeps 
           <- if isGivenOrSolved fl1 && isGivenOrSolved fl2 then return Nothing
              -- NB: We don't create fds for given (and even solved), have not seen a useful
              -- situation for these and even if we did we'd have to be very careful to only
              -- create Derived's and not Wanteds. 

763 764 765
              else do { let fd_eqns = improveFromAnother inert_pred_loc work_item_pred_loc
                      ; wloc  <- get_workitem_wloc fl2 
                      ; rewriteWithFunDeps fd_eqns tys2 wloc }
766 767 768 769 770 771
                      -- See Note [Efficient Orientation], [When improvement happens]

       ; case any_fundeps of
           -- No Functional Dependencies 
           Nothing             
               | eqTypes tys1 tys2 -> solveOneFromTheOther "Cls/Cls" (EvId d1,fl1) workItem
772
               | otherwise         -> irKeepGoing "NOP"
773 774

           -- Actual Functional Dependencies
775 776
           Just (_rewritten_tys2,_cos2,fd_work)
              -- Standard thing: create derived fds and keep on going. Importantly we don't
777
               -- throw workitem back in the worklist because this can cause loops. See #5236.
778 779
               -> do { emitFDWorkAsDerived fd_work (cc_depth workItem)
                     ; irKeepGoing "Cls/Cls (new fundeps)" } -- Just keep going without droping the inert 
780
       }
781 782 783 784 785 786
  where get_workitem_wloc (Wanted wl)  = return wl 
        get_workitem_wloc (Derived wl) = return wl 
        get_workitem_wloc (Given {})   = pprPanic "Unexpected given workitem!" $
                                         vcat [ text "Work item =" <+> ppr workItem
                                              , text "Inert item=" <+> ppr inertItem
                                              ]
787

788 789 790 791 792 793 794 795
-- Two pieces of irreducible evidence: if their types are *exactly identical* we can
-- rewrite them. We can never improve using this: if we want ty1 :: Constraint and have
-- ty2 :: Constraint it clearly does not mean that (ty1 ~ ty2)
doInteractWithInert (CIrredEvCan { cc_id = id1, cc_flavor = ifl, cc_ty = ty1 })
           workItem@(CIrredEvCan { cc_ty = ty2 })
  | ty1 `eqType` ty2
  = solveOneFromTheOther "Irred/Irred" (EvId id1,ifl) workItem

796 797 798 799 800
-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
801
doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
802
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
dimitris's avatar
dimitris committed
803
  | nm1 == nm2 && isGivenOrSolved wfl && isGivenOrSolved ifl
804 805 806
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
807 808
	-- For example, given let ?x::Int = 3 in let ?x::Bool = True in ...
	--              we must *override* the outer one with the inner one
809
    irInertConsumed "IP/IP (override inert)"
810

811
  | nm1 == nm2 && ty1 `eqType` ty2 
812
  = solveOneFromTheOther "IP/IP" (EvId id1,ifl) workItem 
813

814
  | nm1 == nm2
815
  =  	-- See Note [When improvement happens]
816 817 818 819 820 821 822 823
    do { let flav = Wanted (combineCtLoc ifl wfl)
       ; eqv <- newEqVar flav ty2 ty1 -- See Note [Efficient Orientation]
       ; when (isNewEvVar eqv) $
              (let ct = CNonCanonical { cc_id     = evc_the_evvar eqv 
                                      , cc_flavor = flav
                                      , cc_depth  = cc_depth workItem }
              in updWorkListTcS (extendWorkListEq ct))

824 825 826 827
       ; case wfl of
           Given   {} -> pprPanic "Unexpected given IP" (ppr workItem)
           Derived {} -> pprPanic "Unexpected derived IP" (ppr workItem)
           Wanted  {} ->
828
               do { _ <- setEvBind (cc_id workItem) 
829
                            (mkEvCast id1 (mkTcSymCo (mkTcTyConAppCo (ipTyCon nm1) [mkTcCoVarCo (evc_the_evvar eqv)]))) wfl
830
                  ; irWorkItemConsumed "IP/IP (solved by rewriting)" } }
831

batterseapower's avatar
batterseapower committed
832
doInteractWithInert (CFunEqCan { cc_id = eqv1, cc_flavor = fl1, cc_fun = tc1
833 834 835 836
                               , cc_tyargs = args1, cc_rhs = xi1, cc_depth = d1 }) 
                    (CFunEqCan { cc_id = eqv2, cc_flavor = fl2, cc_fun = tc2
                               , cc_tyargs = args2, cc_rhs = xi2, cc_depth = d2 })
  | lhss_match  
837
  , Just (GivenSolved {}) <- isGiven_maybe fl1 -- Inert is solved and we can simply ignore it
838 839 840 841
                                          -- when workitem is given/solved
  , isGivenOrSolved fl2
  = irInertConsumed "FunEq/FunEq"
  | lhss_match 
842 843
  , Just (GivenSolved {}) <- isGiven_maybe fl2 -- Workitem is solved and we can ignore it when
                                               -- the inert is given/solved
844 845
  , isGivenOrSolved fl1                 
  = irWorkItemConsumed "FunEq/FunEq" 
846
  | fl1 `canSolve` fl2 && lhss_match
847 848 849
  = do { rewriteEqLHS LeftComesFromInert  (eqv1,xi1) (eqv2,d2,fl2,xi2) 
       ; irWorkItemConsumed "FunEq/FunEq" }

850
  | fl2 `canSolve` fl1 && lhss_match
851 852
  = do { rewriteEqLHS RightComesFromInert (eqv2,xi2) (eqv1,d1,fl1,xi1) 
       ; irInertConsumed "FunEq/FunEq"}
853
  where
854
    lhss_match = tc1 == tc2 && eqTypes args1 args2 
855 856


857 858 859 860
doInteractWithInert _ _ = irKeepGoing "NOP"


rewriteEqLHS :: WhichComesFromInert -> (EqVar,Xi) -> (EqVar,SubGoalDepth,CtFlavor,Xi) -> TcS ()
861
-- Used to ineract two equalities of the following form: 
862 863
-- First Equality:   co1: (XXX ~ xi1)  
-- Second Equality:  cv2: (XXX ~ xi2) 
864
-- Where the cv1 `canRewrite` cv2 equality 
865 866
-- We have an option of creating new work (xi1 ~ xi2) OR (xi2 ~ xi1), 
--    See Note [Efficient Orientation] for that 
867
rewriteEqLHS LeftComesFromInert (eqv1,xi1) (eqv2,d,gw,xi2) 
868
  = do { delCachedEvVar eqv2 gw -- Similarly to canonicalization!
869 870
       ; evc <- newEqVar gw xi2 xi1
       ; let eqv2' = evc_the_evvar evc
871
       ; gw' <- case gw of 
872
           Wanted {} 
873
               -> setEqBind eqv2 
874
                    (mkTcCoVarCo eqv1 `mkTcTransCo` mkTcSymCo (mkTcCoVarCo eqv2')) gw
875 876
           Given {}
               -> setEqBind eqv2'
877
                    (mkTcSymCo (mkTcCoVarCo eqv2) `mkTcTransCo` mkTcCoVarCo eqv1) gw
878
           Derived {} 
879
               -> return gw
880 881
       ; when (isNewEvVar evc) $ 
              updWorkListTcS (extendWorkListEq (CNonCanonical { cc_id     = eqv2'
882
                                                              , cc_flavor = gw'
883 884 885
                                                              , cc_depth  = d } ) ) }

rewriteEqLHS RightComesFromInert (eqv1,xi1) (eqv2,d,gw,xi2) 
886
  = do { delCachedEvVar eqv2 gw -- Similarly to canonicalization!
887 888
       ; evc <- newEqVar gw xi1 xi2
       ; let eqv2' = evc_the_evvar evc
889
       ; gw' <- case gw of
890
           Wanted {} 
891
               -> setEqBind eqv2
892
                    (mkTcCoVarCo eqv1 `mkTcTransCo` mkTcCoVarCo eqv2') gw
893
           Given {}  
894
               -> setEqBind eqv2'
895
                    (mkTcSymCo (mkTcCoVarCo eqv1) `mkTcTransCo` mkTcCoVarCo eqv2) gw
896
           Derived {} 
897
               -> return gw
898 899 900

       ; when (isNewEvVar evc) $
              updWorkListTcS (extendWorkListEq (CNonCanonical { cc_id = eqv2'
901
                                                              , cc_flavor = gw'
902 903 904 905 906 907 908 909 910 911
                                                              , cc_depth  = d } ) ) }

solveOneFromTheOther :: String             -- Info 
                     -> (EvTerm, CtFlavor) -- Inert 
                     -> Ct        -- WorkItem 
                     -> TcS InteractResult
-- Preconditions: 
-- 1) inert and work item represent evidence for the /same/ predicate
-- 2) ip/class/irred evidence (no coercions) only
solveOneFromTheOther info (ev_term,ifl) workItem
912
  | isDerived wfl
913
  = irWorkItemConsumed ("Solved[DW] " ++ info)
914

915 916 917
  | isDerived ifl -- The inert item is Derived, we can just throw it away, 
    	      	  -- The workItem is inert wrt earlier inert-set items, 
		  -- so it's safe to continue on from this point
918
  = irInertConsumed ("Solved[DI] " ++ info)
919
  
920
  | Just (GivenSolved {}) <- isGiven_maybe ifl, isGivenOrSolved wfl
dimitris's avatar
dimitris committed
921
    -- Same if the inert is a GivenSolved -- just get rid of it
922
  = irInertConsumed ("Solved[SI] " ++ info)
dimitris's avatar
dimitris committed
923

924 925 926
  | otherwise
  = ASSERT( ifl `canSolve` wfl )
      -- Because of Note [The Solver Invariant], plus Derived dealt with
927
    do { when (isWanted wfl) $ do { _ <- setEvBind wid ev_term wfl; return () }
928 929
           -- Overwrite the binding, if one exists
	   -- If both are Given, we already have evidence; no need to duplicate
930
       ; irWorkItemConsumed ("Solved " ++ info) }
931 932 933
  where 
     wfl = cc_flavor workItem
     wid = cc_id workItem
934

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
\end{code}

Note [Superclasses and recursive dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    Overlaps with Note [SUPERCLASS-LOOP 1]
                  Note [SUPERCLASS-LOOP 2]
                  Note [Recursive instances and superclases]
    ToDo: check overlap and delete redundant stuff

Right before adding a given into the inert set, we must
produce some more work, that will bring the superclasses 
of the given into scope. The superclass constraints go into 
our worklist. 

When we simplify a wanted constraint, if we first see a matching
instance, we may produce new wanted work. To (1) avoid doing this work 
twice in the future and (2) to handle recursive dictionaries we may ``cache'' 
952 953 954
this item as given into our inert set WITHOUT adding its superclass constraints, 
otherwise we'd be in danger of creating a loop [In fact this was the exact reason
for doing the isGoodRecEv check in an older version of the type checker]. 
955 956 957 958 959 960 961 962 963 964

But now we have added partially solved constraints to the worklist which may 
interact with other wanteds. Consider the example: 

Example 1: 

    class Eq b => Foo a b        --- 0-th selector
    instance Eq a => Foo [a] a   --- fooDFun

and wanted (Foo [t] t). We are first going to see that the instance matches 
965
and create an inert set that includes the solved (Foo [t] t) but not its superclasses:
966 967 968 969
       d1 :_g Foo [t] t                 d1 := EvDFunApp fooDFun d3 
Our work list is going to contain a new *wanted* goal
       d3 :_w Eq t 

970
Ok, so how do we get recursive dictionaries, at all: 
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

Example 2:

    data D r = ZeroD | SuccD (r (D r));
    
    instance (Eq (r (D r))) => Eq (D r) where
        ZeroD     == ZeroD     = True
        (SuccD a) == (SuccD b) = a == b
        _         == _         = False;
    
    equalDC :: D [] -> D [] -> Bool;
    equalDC = (==);

We need to prove (Eq (D [])). Here's how we go:

	d1 :_w Eq (D [])

by instance decl, holds if
	d2 :_w Eq [D []]
	where 	d1 = dfEqD d2

*BUT* we have an inert set which gives us (no superclasses): 
        d1 :_g Eq (D []) 
By the instance declaration of Eq we can show the 'd2' goal if 
	d3 :_w Eq (D [])
	where	d2 = dfEqList d3
		d1 = dfEqD d2
Now, however this wanted can interact with our inert d1 to set: 
        d3 := d1 
and solve the goal. Why was this interaction OK? Because, if we chase the 
evidence of d1 ~~> dfEqD d2 ~~-> dfEqList d3, so by setting d3 := d1 we 
are really setting
        d3 := dfEqD2 (dfEqList d3) 
which is FINE because the use of d3 is protected by the instance function 
applications. 

So, our strategy is to try to put solved wanted dictionaries into the
inert set along with their superclasses (when this is meaningful,
i.e. when new wanted goals are generated) but solve a wanted dictionary
from a given only in the case where the evidence variable of the
wanted is mentioned in the evidence of the given (recursively through
the evidence binds) in a protected way: more instance function applications 
than superclass selectors.

Here are some more examples from GHC's previous type checker


Example 3: 
This code arises in the context of "Scrap Your Boilerplate with Class"

    class Sat a
    class Data ctx a
    instance  Sat (ctx Char)             => Data ctx Char       -- dfunData1
    instance (Sat (ctx [a]), Data ctx a) => Data ctx [a]        -- dfunData2

    class Data Maybe a => Foo a    

    instance Foo t => Sat (Maybe t)                             -- dfunSat

    instance Data Maybe a => Foo a                              -- dfunFoo1
    instance Foo a        => Foo [a]                            -- dfunFoo2
    instance                 Foo [Char]                         -- dfunFoo3

Consider generating the superclasses of the instance declaration
	 instance Foo a => Foo [a]

So our problem is this
    d0 :_g Foo t
    d1 :_w Data Maybe [t] 

We may add the given in the inert set, along with its superclasses
[assuming we don't fail because there is a matching instance, see 
 tryTopReact, given case ]
  Inert:
    d0 :_g Foo t 
  WorkList 
    d01 :_g Data Maybe t  -- d2 := EvDictSuperClass d0 0 
    d1 :_w Data Maybe [t] 
Then d2 can readily enter the inert, and we also do solving of the wanted
  Inert: 
    d0 :_g Foo t 
    d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
  WorkList
    d2 :_w Sat (Maybe [t])          
    d3 :_w Data Maybe t
    d01 :_g Data Maybe t 
Now, we may simplify d2 more: 
  Inert:
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d1 :_g Data Maybe [t] 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
  WorkList: 
      d3 :_w Data Maybe t 
      d4 :_w Foo [t] 
      d01 :_g Data Maybe t 

Now, we can just solve d3.
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
  WorkList
      d4 :_w Foo [t] 
      d01 :_g Data Maybe t 
And now we can simplify d4 again, but since it has superclasses we *add* them to the worklist:
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
      d4 :_g Foo [t]                  d4 := dfunFoo2 d5 
  WorkList:
      d5 :_w Foo t 
      d6 :_g Data Maybe [t]           d6 := EvDictSuperClass d4 0
      d01 :_g Data Maybe t 
Now, d5 can be solved! (and its superclass enter scope) 
  Inert
      d0 :_g Foo t 
      d1 :_s Data Maybe [t]           d1 := dfunData2 d2 d3 
      d2 :_g Sat (Maybe [t])          d2 := dfunSat d4 
      d4 :_g Foo [t]                  d4 := dfunFoo2 d5 
      d5 :_g Foo t                    d5 := dfunFoo1 d7
  WorkList:
      d7 :_w Data Maybe t
      d6 :_g Data Maybe [t]
      d8 :_g Data Maybe t            d8 := EvDictSuperClass d5 0
      d01 :_g Data Maybe t 

Now, two problems: 
   [1] Suppose we pick d8 and we react him with d01. Which of the two givens should 
       we keep? Well, we *MUST NOT* drop d01 because d8 contains recursive evidence 
       that must not be used (look at case interactInert where both inert and workitem
       are givens). So we have several options: 
       - Drop the workitem always (this will drop d8)
              This feels very unsafe -- what if the work item was the "good" one
              that should be used later to solve another wanted?
       - Don't drop anyone: the inert set may contain multiple givens! 
              [This is currently implemented] 

The "don't drop anyone" seems the most safe thing to do, so now we come to problem 2: 
  [2] We have added both d6 and d01 in the inert set, and we are interacting our wanted
      d7. Now the [isRecDictEv] function in the ineration solver 
      [case inert-given workitem-wanted] will prevent us from interacting d7 := d8 
      precisely because chasing the evidence of d8 leads us to an unguarded use of d7. 

      So, no interaction happens there. Then we meet d01 and there is no recursion 
      problem there [isRectDictEv] gives us the OK to interact and we do solve d7 := d01! 
             
Note [SUPERCLASS-LOOP 1]
~~~~~~~~~~~~~~~~~~~~~~~~
We have to be very, very careful when generating superclasses, lest we
accidentally build a loop. Here's an example:

  class S a

  class S a => C a where { opc :: a -> a }
  class S b => D b where { opd :: b -> b }
  
  instance C Int where
     opc = opd
  
  instance D Int where
     opd = opc

From (instance C Int) we get the constraint set {ds1:S Int, dd:D Int}
Simplifying, we may well get:
	$dfCInt = :C ds1 (opd dd)
	dd  = $dfDInt
	ds1 = $p1 dd
Notice that we spot that we can extract ds1 from dd.  

Alas!  Alack! We can do the same for (instance D Int):

	$dfDInt = :D ds2 (opc dc)
	dc  = $dfCInt
	ds2 = $p1 dc

And now we've defined the superclass in terms of itself.
Two more nasty cases are in
	tcrun021
	tcrun033

Solution: 
  - Satisfy the superclass context *all by itself* 
    (tcSimplifySuperClasses)
  - And do so completely; i.e. no left-over constraints
    to mix with the constraints arising from method declarations


Note [SUPERCLASS-LOOP 2]
~~~~~~~~~~~~~~~~~~~~~~~~
We need to be careful when adding "the constaint we are trying to prove".
Suppose we are *given* d1:Ord a, and want to deduce (d2:C [a]) where

	class Ord a => C a where
	instance Ord [a] => C [a] where ...

Then we'll use the instance decl to deduce C [a] from Ord [a], and then add the
superclasses of C [a] to avails.  But we must not overwrite the binding
for Ord [a] (which is obtained from Ord a) with a superclass selection or we'll just
build a loop! 

Here's another variant, immortalised in tcrun020
	class Monad m => C1 m
	class C1 m => C2 m x
	instance C2 Maybe Bool
For the instance decl we need to build (C1 Maybe), and it's no good if
we run around and add (C2 Maybe Bool) and its superclasses to the avails 
before we search for C1 Maybe.

Here's another example 
 	class Eq b => Foo a b
	instance Eq a => Foo [a] a
If we are reducing
	(Foo [t] t)

we'll first deduce that it holds (via the instance decl).  We must not
then overwrite the Eq t constraint with a superclass selection!

At first I had a gross hack, whereby I simply did not add superclass constraints
in addWanted, though I did for addGiven and addIrred.  This was sub-optimal,
becuase it lost legitimate superclass sharing, and it still didn't do the job:
I found a very obscure program (now tcrun021) in which improvement meant the
simplifier got two bites a the cherry... so something seemed to be an Stop
first time, but reducible next time.

Now we implement the Right Solution, which is to check for loops directly 
when adding superclasses.  It's a bit like the occurs check in unification.

Note [Recursive instances and superclases]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this code, which arises in the context of "Scrap Your 
Boilerplate with Class".  

    class Sat a
    class Data ctx a
    instance  Sat (ctx Char)             => Data ctx Char
    instance (Sat (ctx [a]), Data ctx a) => Data ctx [a]

    class Data Maybe a => Foo a

    instance Foo t => Sat (Maybe t)

    instance Data Maybe a => Foo a
    instance Foo a        => Foo [a]
    instance                 Foo [Char]

In the instance for Foo [a], when generating evidence for the superclasses
(ie in tcSimplifySuperClasses) we need a superclass (Data Maybe [a]).
Using the instance for Data, we therefore need
        (Sat (Maybe [a], Data Maybe a)
But we are given (Foo a), and hence its superclass (Data Maybe a).
So that leaves (Sat (Maybe [a])).  Using the instance for Sat means
we need (Foo [a]).  And that is the very dictionary we are bulding
an instance for!  So we must put that in the "givens".  So in this
case we have
	Given:  Foo a, Foo [a]
	Wanted: Data Maybe [a]

BUT we must *not not not* put the *superclasses* of (Foo [a]) in
the givens, which is what 'addGiven' would normally do. Why? Because
(Data Maybe [a]) is the superclass, so we'd "satisfy" the wanted 
by selecting a superclass from Foo [a], which simply makes a loop.

On the other hand we *must* put the superclasses of (Foo a) in
the givens, as you can see from the derivation described above.

Conclusion: in the very special case of tcSimplifySuperClasses
we have one 'given' (namely the "this" dictionary) whose superclasses
must not be added to 'givens' by addGiven.  

There is a complication though.  Suppose there are equalities
      instance (Eq a, a~b) => Num (a,b)
Then we normalise the 'givens' wrt the equalities, so the original
given "this" dictionary is cast to one of a different type.  So it's a
bit trickier than before to identify the "special" dictionary whose
superclasses must not be added. See test
   indexed-types/should_run/EqInInstance

We need a persistent property of the dictionary to record this
special-ness.  Current I'm using the InstLocOrigin (a bit of a hack,
but cool), which is maintained by dictionary normalisation.
Specifically, the InstLocOrigin is
	     NoScOrigin
then the no-superclass thing kicks in.  WATCH OUT if you fiddle
with InstLocOrigin!

Note [MATCHING-SYNONYMS]
~~~~~~~~~~~~~~~~~~~~~~~~
When trying to match a dictionary (D tau) to a top-level instance, or a 
type family equation (F taus_1 ~ tau_2) to a top-level family instance, 
we do *not* need to expand type synonyms because the matcher will do that for us.


Note [RHS-FAMILY-SYNONYMS] 
~~~~~~~~~~~~~~~~~~~~~~~~~~
The RHS of a family instance is represented as yet another constructor which is 
like a type synonym for the real RHS the programmer declared. Eg: 
    type instance F (a,a) = [a] 
Becomes: 
    :R32 a = [a]      -- internal type synonym introduced
    F (a,a) ~ :R32 a  -- instance 

When we react a family instance with a type family equation in the work list 
we keep the synonym-using RHS without expansion. 


1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
%************************************************************************
%*                                                                      *
%*          Functional dependencies, instantiation of equations
%*                                                                      *
%************************************************************************

When we spot an equality arising from a functional dependency,
we now use that equality (a "wanted") to rewrite the work-item
constraint right away.  This avoids two dangers

 Danger 1: If we send the original constraint on down the pipeline
           it may react with an instance declaration, and in delicate
	   situations (when a Given overlaps with an instance) that
	   may produce new insoluble goals: see Trac #4952

 Danger 2: If we don't rewrite the constraint, it may re-react
           with the same thing later, and produce the same equality
           again --> termination worries.

To achieve this required some refactoring of FunDeps.lhs (nicer
now!).  

\begin{code}
rewriteWithFunDeps :: [Equation]
                   -> [Xi] 
                   -> WantedLoc 
                   -> TcS (Maybe ([Xi], [TcCoercion], [(EvVar,WantedLoc)])) 
                                           -- Not quite a WantedEvVar unfortunately
                                           -- Because our intention could be to make 
                                           -- it derived at the end of the day
-- NB: The flavor of the returned EvVars will be decided by the caller
-- Post: returns no trivial equalities (identities) and all EvVars returned are fresh
rewriteWithFunDeps eqn_pred_locs xis wloc
 = do { fd_ev_poss <- mapM (instFunDepEqn wloc) eqn_pred_locs
      ; let fd_ev_pos :: [(Int,(EqVar,WantedLoc))]
            fd_ev_pos = concat fd_ev_poss
            (rewritten_xis, cos) = unzip (rewriteDictParams fd_ev_pos xis)
      ; if null fd_ev_pos then return Nothing
        else return (Just (rewritten_xis, cos, map snd fd_ev_pos)) }

instFunDepEqn :: WantedLoc -> Equation -> TcS [(Int,(EvVar,WantedLoc))]
-- Post: Returns the position index as well as the corresponding FunDep equality
instFunDepEqn wl (FDEqn { fd_qtvs = qtvs, fd_eqs = eqs
                        , fd_pred1 = d1, fd_pred2 = d2 })
  = do { let tvs = varSetElems qtvs
       ; tvs' <- mapM instFlexiTcS tvs  -- IA0_TODO: we might need to do kind substitution
       ; let subst = zipTopTvSubst tvs (mkTyVarTys tvs')
       ; foldM (do_one subst) [] eqs }
  where 
    do_one subst ievs (FDEq { fd_pos = i, fd_ty_left = ty1, fd_ty_right = ty2 })
       = let sty1 = Type.substTy subst ty1 
             sty2 = Type.substTy subst ty2 
         in if eqType sty1 sty2 then return ievs -- Return no trivial equalities
            else do { eqv <- newEqVar (Derived wl) sty1 sty2 -- Create derived or cached by deriveds
                    ; let wl' = push_ctx wl 
                    ; if isNewEvVar eqv then 
                          return $ (i,(evc_the_evvar eqv,wl')):ievs 
                      else -- We are eventually going to emit FD work back in the work list so 
                           -- it is important that we only return the /freshly created/ and not 
                           -- some existing equality!
                          return ievs }

    push_ctx :: WantedLoc -> WantedLoc 
    push_ctx loc = pushErrCtxt FunDepOrigin (False, mkEqnMsg d1 d2) loc

mkEqnMsg :: (TcPredType, SDoc) 
         -> (TcPredType, SDoc) -> TidyEnv -> TcM (TidyEnv, SDoc)
mkEqnMsg (pred1,from1) (pred2,from2) tidy_env
  = do  { zpred1 <- zonkTcPredType pred1
        ; zpred2 <- zonkTcPredType pred2
	; let { tpred1 = tidyType tidy_env zpred1
              ; tpred2 = tidyType tidy_env zpred2 }
	; let msg = vcat [ptext (sLit "When using functional dependencies to combine"),
			  nest 2 (sep [ppr tpred1 <> comma, nest 2 from1]), 
			  nest 2 (sep [ppr tpred2 <> comma, nest 2 from2])]
	; return (tidy_env, msg) }

rewriteDictParams :: [(Int,(EqVar,WantedLoc))] -- A set of coercions : (pos, ty' ~ ty)
                  -> [Type]                    -- A sequence of types: tys
                  -> [(Type, TcCoercion)]      -- Returns: [(ty', co : ty' ~ ty)]
rewriteDictParams param_eqs tys
  = zipWith do_one tys [0..]
  where
    do_one :: Type -> Int -> (Type, TcCoercion)
    do_one ty n = case lookup n param_eqs of
                    Just wev -> (get_fst_ty wev, mkTcCoVarCo (fst wev))
                    Nothing  -> (ty,             mkTcReflCo ty)	-- Identity

    get_fst_ty (wev,_wloc) 
      | Just (ty1, _) <- getEqPredTys_maybe (evVarPred wev )
      = ty1
      | otherwise 
      = panic "rewriteDictParams: non equality fundep!?"

        
emitFDWorkAsDerived :: [(EvVar,WantedLoc)] 
                    -> SubGoalDepth -> TcS () 
emitFDWorkAsDerived evlocs d 
  = updWorkListTcS $ appendWorkListEqs fd_cts
  where fd_cts = map mk_fd_ct evlocs 
        mk_fd_ct (v,wl) = CNonCanonical { cc_id = v
                                        , cc_flavor = Derived wl 
                                        , cc_depth = d }


\end{code}




1388 1389 1390 1391 1392 1393 1394
*********************************************************************************
*                                                                               * 
                       The top-reaction Stage
*                                                                               *
*********************************************************************************

\begin{code}
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

topReactionsStage :: SimplifierStage 
topReactionsStage workItem 
 = tryTopReact workItem 
   

tryTopReact :: WorkItem -> TcS StopOrContinue
tryTopReact wi 
 = do { inerts <- getTcSInerts
      ; ctxt   <- getTcSContext
      ; if simplEqsOnly ctxt then return (ContinueWith wi) -- or Stop?
        else 
            do { tir <- doTopReact inerts wi
               ; case tir of 
                   NoTopInt 
                       -> return (ContinueWith wi)
                   SomeTopInt rule what_next 
                       -> do { bumpStepCountTcS 
                             ; traceFireTcS (cc_depth wi) $
                               ptext (sLit "Top react:") <+> text rule
                             ; return what_next }
               } }

1418
data TopInteractResult 
1419 1420
 = NoTopInt
 | SomeTopInt { tir_rule :: String, tir_new_item :: StopOrContinue }
1421 1422


dimitris's avatar