TcPat.lhs 41.7 KB
Newer Older
1
%
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
%
5
6

TcPat: Typechecking patterns
7
8

\begin{code}
9
{-# OPTIONS -w #-}
10
11
12
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
13
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
14
15
-- for details

16
module TcPat ( tcLetPat, tcLamPat, tcLamPats, tcProcPat, tcOverloadedLit,
17
	       addDataConStupidTheta, badFieldCon, polyPatSig ) where
18

19
#include "HsVersions.h"
20

21
import {-# SOURCE #-}	TcExpr( tcSyntaxOp, tcInferRho)
22
23
24

import HsSyn
import TcHsSyn
25
import TcRnMonad
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import Inst
import Id
import Var
import CoreFVs
import Name
import TcSimplify
import TcEnv
import TcMType
import TcType
import VarSet
import TcUnify
import TcHsType
import TysWiredIn
import TcGadt
import Type
41
import Coercion
42
43
44
import StaticFlags
import TyCon
import DataCon
45
import DynFlags
46
47
48
49
50
51
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
import SrcLoc
import ErrUtils
import Util
import Maybes
sof's avatar
sof committed
52
import Outputable
53
import FastString
54
import Monad
55
\end{code}
56

57
58
59

%************************************************************************
%*									*
60
		External interface
61
62
63
64
%*									*
%************************************************************************

\begin{code}
65
66
tcLetPat :: (Name -> Maybe TcRhoType)
      	 -> LPat Name -> BoxySigmaType 
67
     	 -> TcM a
68
69
70
      	 -> TcM (LPat TcId, a)
tcLetPat sig_fn pat pat_ty thing_inside
  = do	{ let init_state = PS { pat_ctxt = LetPat sig_fn, 
71
72
				pat_reft = emptyRefinement,
				pat_eqs  = False }
73
74
75
76
77
78
79
80
81
82
83
84
85
	; (pat', ex_tvs, res) <- tc_lpat pat pat_ty init_state (\ _ -> thing_inside)

	-- Don't know how to deal with pattern-bound existentials yet
	; checkTc (null ex_tvs) (existentialExplode pat)

	; return (pat', res) }

-----------------
tcLamPats :: [LPat Name]				-- Patterns,
	  -> [BoxySigmaType]				--   and their types
	  -> BoxyRhoType 				-- Result type,
	  -> ((Refinement, BoxyRhoType) -> TcM a)	--   and the checker for the body
	  -> TcM ([LPat TcId], a)
86
87
88
89
90
91
92
93
94

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
-- do the thing inside, use any existentially-bound dictionaries to 
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
95
--   3. Apply the refinement to the environment and result type
96
97
98
--   4. Check the body
--   5. Check that no existentials escape

99
tcLamPats pats tys res_ty thing_inside
100
  = tc_lam_pats LamPat (zipEqual "tcLamPats" pats tys)
101
102
103
104
105
106
	        (emptyRefinement, res_ty) thing_inside

tcLamPat :: LPat Name -> BoxySigmaType 
      	 -> (Refinement,BoxyRhoType)		-- Result type
      	 -> ((Refinement,BoxyRhoType) -> TcM a)	-- Checker for body, given its result type
      	 -> TcM (LPat TcId, a)
107
108
109
110
111
112

tcProcPat = tc_lam_pat ProcPat
tcLamPat  = tc_lam_pat LamPat

tc_lam_pat ctxt pat pat_ty res_ty thing_inside
  = do	{ ([pat'],thing) <- tc_lam_pats ctxt [(pat, pat_ty)] res_ty thing_inside
113
	; return (pat', thing) }
114

115
-----------------
116
117
tc_lam_pats :: PatCtxt
	    -> [(LPat Name,BoxySigmaType)]
118
119
120
       	    -> (Refinement,BoxyRhoType)			-- Result type
       	    -> ((Refinement,BoxyRhoType) -> TcM a)	-- Checker for body, given its result type
       	    -> TcM ([LPat TcId], a)
121
122
tc_lam_pats ctxt pat_ty_prs (reft, res_ty) thing_inside 
  =  do	{ let init_state = PS { pat_ctxt = ctxt, pat_reft = reft, pat_eqs = False }
123
124

	; (pats', ex_tvs, res) <- tcMultiple tc_lpat_pr pat_ty_prs init_state $ \ pstate' ->
125
126
127
128
				  refineEnvironment (pat_reft pstate') (pat_eqs pstate') $
				  if (pat_eqs pstate' && (not $ isRigidTy res_ty))
				     then failWithTc (nonRigidResult res_ty)
	     			     else thing_inside (pat_reft pstate', res_ty)
129

130
131
	; let tys = map snd pat_ty_prs
	; tcCheckExistentialPat pats' ex_tvs tys res_ty
132
133
134
135
136

	; returnM (pats', res) }


-----------------
137
tcCheckExistentialPat :: [LPat TcId]		-- Patterns (just for error message)
138
139
140
141
142
143
144
145
146
147
148
		      -> [TcTyVar]		-- Existentially quantified tyvars bound by pattern
		      -> [BoxySigmaType]	-- Types of the patterns
		      -> BoxyRhoType		-- Type of the body of the match
		      				-- Tyvars in either of these must not escape
		      -> TcM ()
-- NB: we *must* pass "pats_tys" not just "body_ty" to tcCheckExistentialPat
-- For example, we must reject this program:
--	data C = forall a. C (a -> Int) 
-- 	f (C g) x = g x
-- Here, result_ty will be simply Int, but expected_ty is (C -> a -> Int).

149
tcCheckExistentialPat pats [] pat_tys body_ty
150
151
  = return ()	-- Short cut for case when there are no existentials

152
tcCheckExistentialPat pats ex_tvs pat_tys body_ty
153
  = addErrCtxtM (sigPatCtxt pats ex_tvs pat_tys body_ty)	$
154
155
156
157
    checkSigTyVarsWrt (tcTyVarsOfTypes (body_ty:pat_tys)) ex_tvs

data PatState = PS {
	pat_ctxt :: PatCtxt,
158
159
160
	pat_reft :: Refinement,	-- Binds rigid TcTyVars to their refinements
	pat_eqs  :: Bool        -- <=> there are GADT equational constraints 
				--     for refinement 
161
162
163
164
  }

data PatCtxt 
  = LamPat 
165
166
  | ProcPat				-- The pattern in (proc pat -> ...)
					--	see Note [Arrows and patterns]
167
168
169
170
171
  | LetPat (Name -> Maybe TcRhoType)	-- Used for let(rec) bindings

patSigCtxt :: PatState -> UserTypeCtxt
patSigCtxt (PS { pat_ctxt = LetPat _ }) = BindPatSigCtxt
patSigCtxt other			= LamPatSigCtxt
172
173
174
\end{code}


175

176
177
%************************************************************************
%*									*
178
		Binders
179
180
181
%*									*
%************************************************************************

182
\begin{code}
183
184
185
186
187
tcPatBndr :: PatState -> Name -> BoxySigmaType -> TcM TcId
tcPatBndr (PS { pat_ctxt = LetPat lookup_sig }) bndr_name pat_ty
  | Just mono_ty <- lookup_sig bndr_name
  = do	{ mono_name <- newLocalName bndr_name
	; boxyUnify mono_ty pat_ty
188
	; return (Id.mkLocalId mono_name mono_ty) }
189
190

  | otherwise
191
  = do	{ pat_ty' <- unBoxPatBndrType pat_ty bndr_name
192
	; mono_name <- newLocalName bndr_name
193
	; return (Id.mkLocalId mono_name pat_ty') }
194

195
196
197
198
199
200
201
202
203
204
205
206
tcPatBndr (PS { pat_ctxt = _lam_or_proc }) bndr_name pat_ty
  = do	{ pat_ty' <- unBoxPatBndrType pat_ty bndr_name
		-- We have an undecorated binder, so we do rule ABS1,
		-- by unboxing the boxy type, forcing any un-filled-in
		-- boxes to become monotypes
		-- NB that pat_ty' can still be a polytype:
		-- 	data T = MkT (forall a. a->a)
		-- 	f t = case t of { MkT g -> ... }
		-- Here, the 'g' must get type (forall a. a->a) from the
		-- MkT context
	; return (Id.mkLocalId bndr_name pat_ty') }

207
208
209
210
211
212
213
214
215
216

-------------------
bindInstsOfPatId :: TcId -> TcM a -> TcM (a, LHsBinds TcId)
bindInstsOfPatId id thing_inside
  | not (isOverloadedTy (idType id))
  = do { res <- thing_inside; return (res, emptyLHsBinds) }
  | otherwise
  = do	{ (res, lie) <- getLIE thing_inside
	; binds <- bindInstsOfLocalFuns lie [id]
	; return (res, binds) }
217
218
219
220

-------------------
unBoxPatBndrType  ty name = unBoxArgType ty (ptext SLIT("The variable") <+> quotes (ppr name))
unBoxWildCardType ty      = unBoxArgType ty (ptext SLIT("A wild-card pattern"))
221
unBoxViewPatType  ty pat  = unBoxArgType ty (ptext SLIT("The view pattern") <+> ppr pat)
222
223
224
225
226
227
228
229
230
231
232
233
234

unBoxArgType :: BoxyType -> SDoc -> TcM TcType
-- In addition to calling unbox, unBoxArgType ensures that the type is of ArgTypeKind; 
-- that is, it can't be an unboxed tuple.  For example, 
--	case (f x) of r -> ...
-- should fail if 'f' returns an unboxed tuple.
unBoxArgType ty pp_this
  = do	{ ty' <- unBox ty	-- Returns a zonked type

	-- Neither conditional is strictly necesssary (the unify alone will do)
	-- but they improve error messages, and allocate fewer tyvars
	; if isUnboxedTupleType ty' then
		failWithTc msg
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
235
	  else if isSubArgTypeKind (typeKind ty') then
236
237
238
239
240
241
242
		return ty'
	  else do 	-- OpenTypeKind, so constrain it
	{ ty2 <- newFlexiTyVarTy argTypeKind
	; unifyType ty' ty2
	; return ty' }}
  where
    msg = pp_this <+> ptext SLIT("cannot be bound to an unboxed tuple")
243
244
\end{code}

245

246
247
%************************************************************************
%*									*
248
		The main worker functions
249
250
251
%*									*
%************************************************************************

252
253
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
254
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
255
256
257
258
259
260
261
262
so that tcPat can extend the environment for the thing_inside, but also 
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
want the error-context for the pattern to scope over the RHS. 
Hence the getErrCtxt/setErrCtxt stuff in tc_lpats.

263
\begin{code}
264
--------------------
265
266
267
268
269
270
271
272
type Checker inp out =  forall r.
			  inp
		       -> PatState
		       -> (PatState -> TcM r)
		       -> TcM (out, [TcTyVar], r)

tcMultiple :: Checker inp out -> Checker [inp] [out]
tcMultiple tc_pat args pstate thing_inside
273
  = do	{ err_ctxt <- getErrCtxt
274
	; let loop pstate []
275
276
277
		= do { res <- thing_inside pstate
		     ; return ([], [], res) }

278
	      loop pstate (arg:args)
279
		= do { (p', p_tvs, (ps', ps_tvs, res)) 
280
				<- tc_pat arg pstate $ \ pstate' ->
281
				   setErrCtxt err_ctxt $
282
				   loop pstate' args
283
284
285
286
287
		-- setErrCtxt: restore context before doing the next pattern
		-- See note [Nesting] above
				
		     ; return (p':ps', p_tvs ++ ps_tvs, res) }

288
	; loop pstate args }
289
290

--------------------
291
292
293
294
295
296
297
298
299
300
301
302
tc_lpat_pr :: (LPat Name, BoxySigmaType)
	   -> PatState
	   -> (PatState -> TcM a)
	   -> TcM (LPat TcId, [TcTyVar], a)
tc_lpat_pr (pat, ty) = tc_lpat pat ty

tc_lpat :: LPat Name 
	-> BoxySigmaType
	-> PatState
	-> (PatState -> TcM a)
	-> TcM (LPat TcId, [TcTyVar], a)
tc_lpat (L span pat) pat_ty pstate thing_inside
303
304
  = setSrcSpan span		  $
    maybeAddErrCtxt (patCtxt pat) $
305
306
307
    do	{ let mb_reft = refineType (pat_reft pstate) pat_ty
	      pat_ty' = case mb_reft of { Just (_, ty') -> ty'; Nothing -> pat_ty }

308
		-- Make sure the result type reflects the current refinement
309
310
311
312
313
314
		-- We must do this here, so that it correctly ``sees'' all
		-- the refinements to the left.  Example:
		-- Suppose C :: forall a. T a -> a -> Foo
		-- Pattern	C a p1 True
		-- So p1 might refine 'a' to True, and the True 
		-- pattern had better see it.
315

316
	; (pat', tvs, res) <- tc_pat pstate pat pat_ty' thing_inside
317
318
319
320
	; let final_pat = case mb_reft of
				Nothing     -> pat'
				Just (co,_) -> CoPat (WpCo co) pat' pat_ty
	; return (L span final_pat, tvs, res) }
321
322
323

--------------------
tc_pat	:: PatState
324
325
326
327
328
329
        -> Pat Name 
        -> BoxySigmaType	-- Fully refined result type
        -> (PatState -> TcM a)	-- Thing inside
        -> TcM (Pat TcId, 	-- Translated pattern
                [TcTyVar], 	-- Existential binders
                a)		-- Result of thing inside
330

331
332
tc_pat pstate (VarPat name) pat_ty thing_inside
  = do	{ id <- tcPatBndr pstate name pat_ty
333
334
335
	; (res, binds) <- bindInstsOfPatId id $
			  tcExtendIdEnv1 name id $
			  (traceTc (text "binding" <+> ppr name <+> ppr (idType id))
336
			   >> thing_inside pstate)
337
338
339
340
	; let pat' | isEmptyLHsBinds binds = VarPat id
		   | otherwise		   = VarPatOut id binds
	; return (pat', [], res) }

341
tc_pat pstate (ParPat pat) pat_ty thing_inside
342
  = do	{ (pat', tvs, res) <- tc_lpat pat pat_ty pstate thing_inside
343
344
	; return (ParPat pat', tvs, res) }

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
345
tc_pat pstate (BangPat pat) pat_ty thing_inside
346
  = do	{ (pat', tvs, res) <- tc_lpat pat pat_ty pstate thing_inside
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
347
348
	; return (BangPat pat', tvs, res) }

349
-- There's a wrinkle with irrefutable patterns, namely that we
350
351
352
353
354
355
356
357
358
-- must not propagate type refinement from them.  For example
--	data T a where { T1 :: Int -> T Int; ... }
--	f :: T a -> Int -> a
--	f ~(T1 i) y = y
-- It's obviously not sound to refine a to Int in the right
-- hand side, because the arugment might not match T1 at all!
--
-- Nor should a lazy pattern bind any existential type variables
-- because they won't be in scope when we do the desugaring
359
360
361
362
363
364
365
366
367
368
369
370
--
-- Note [Hopping the LIE in lazy patterns]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- In a lazy pattern, we must *not* discharge constraints from the RHS
-- from dictionaries bound in the pattern.  E.g.
--	f ~(C x) = 3
-- We can't discharge the Num constraint from dictionaries bound by
-- the pattern C!  
--
-- So we have to make the constraints from thing_inside "hop around" 
-- the pattern.  Hence the getLLE and extendLIEs later.

371
tc_pat pstate lpat@(LazyPat pat) pat_ty thing_inside
372
373
374
375
376
377
378
  = do	{ (pat', pat_tvs, (res,lie)) 
		<- tc_lpat pat pat_ty pstate $ \ _ ->
		   getLIE (thing_inside pstate)
		-- Ignore refined pstate', revert to pstate
	; extendLIEs lie
	-- getLIE/extendLIEs: see Note [Hopping the LIE in lazy patterns]

379
	-- Check no existentials
380
381
	; if (null pat_tvs) then return ()
	  else lazyPatErr lpat pat_tvs
382
383
384
385
386

	-- Check that the pattern has a lifted type
	; pat_tv <- newBoxyTyVar liftedTypeKind
	; boxyUnify pat_ty (mkTyVarTy pat_tv)

387
388
	; return (LazyPat pat', [], res) }

389
tc_pat pstate (WildPat _) pat_ty thing_inside
390
  = do	{ pat_ty' <- unBoxWildCardType pat_ty	-- Make sure it's filled in with monotypes
391
	; res <- thing_inside pstate
392
393
	; return (WildPat pat_ty', [], res) }

394
395
tc_pat pstate (AsPat (L nm_loc name) pat) pat_ty thing_inside
  = do	{ bndr_id <- setSrcSpan nm_loc (tcPatBndr pstate name pat_ty)
396
	; (pat', tvs, res) <- tcExtendIdEnv1 name bndr_id $
397
			      tc_lpat pat (idType bndr_id) pstate thing_inside
398
399
400
401
402
403
404
405
406
	    -- NB: if we do inference on:
	    --		\ (y@(x::forall a. a->a)) = e
	    -- we'll fail.  The as-pattern infers a monotype for 'y', which then
	    -- fails to unify with the polymorphic type for 'x'.  This could 
	    -- perhaps be fixed, but only with a bit more work.
	    --
	    -- If you fix it, don't forget the bindInstsOfPatIds!
	; return (AsPat (L nm_loc bndr_id) pat', tvs, res) }

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
tc_pat pstate (orig@(ViewPat expr pat _)) overall_pat_ty thing_inside 
  = do	{ -- morally, expr must have type
         -- `forall a1...aN. OPT' -> B` 
         -- where overall_pat_ty is an instance of OPT'.
         -- Here, we infer a rho type for it,
         -- which replaces the leading foralls and constraints
         -- with fresh unification variables.
         (expr',expr'_inferred) <- tcInferRho expr
         -- next, we check that expr is coercible to `overall_pat_ty -> pat_ty`
       ; let expr'_expected = \ pat_ty -> (mkFunTy overall_pat_ty pat_ty)
         -- tcSubExp: expected first, offered second
         -- returns coercion
         -- 
         -- NOTE: this forces pat_ty to be a monotype (because we use a unification 
         -- variable to find it).  this means that in an example like
         -- (view -> f)    where view :: _ -> forall b. b
         -- we will only be able to use view at one instantation in the
         -- rest of the view
425
426
427
	; (expr_coerc, pat_ty) <- tcInfer $ \ pat_ty -> 
		tcSubExp ViewPatOrigin (expr'_expected pat_ty) expr'_inferred

428
429
430
431
432
433
434
         -- pattern must have pat_ty
       ; (pat', tvs, res) <- tc_lpat pat pat_ty pstate thing_inside
         -- this should get zonked later on, but we unBox it here
         -- so that we do the same checks as above
	; annotation_ty <- unBoxViewPatType overall_pat_ty orig        
	; return (ViewPat (mkLHsWrap expr_coerc expr') pat' annotation_ty, tvs, res) }

435
436
437
438
439
-- Type signatures in patterns
-- See Note [Pattern coercions] below
tc_pat pstate (SigPatIn pat sig_ty) pat_ty thing_inside
  = do	{ (inner_ty, tv_binds) <- tcPatSig (patSigCtxt pstate) sig_ty pat_ty
	; (pat', tvs, res) <- tcExtendTyVarEnv2 tv_binds $
440
			      tc_lpat pat inner_ty pstate thing_inside
441
	; return (SigPatOut pat' inner_ty, tvs, res) }
442

443
tc_pat pstate pat@(TypePat ty) pat_ty thing_inside
444
  = failWithTc (badTypePat pat)
445

446
447
------------------------
-- Lists, tuples, arrays
448
tc_pat pstate (ListPat pats _) pat_ty thing_inside
449
  = do	{ (elt_ty, coi) <- boxySplitListTy pat_ty
450
451
	; (pats', pats_tvs, res) <- tcMultiple (\p -> tc_lpat p elt_ty)
					 	pats pstate thing_inside
452
 	; return (mkCoPatCoI coi (ListPat pats' elt_ty) pat_ty, pats_tvs, res) }
453
454

tc_pat pstate (PArrPat pats _) pat_ty thing_inside
455
  = do	{ (elt_ty, coi) <- boxySplitPArrTy pat_ty
456
457
	; (pats', pats_tvs, res) <- tcMultiple (\p -> tc_lpat p elt_ty)
						pats pstate thing_inside 
458
459
	; ifM (null pats) (zapToMonotype pat_ty)  -- c.f. ExplicitPArr in TcExpr
	; return (mkCoPatCoI coi (PArrPat pats' elt_ty) pat_ty, pats_tvs, res) }
460

461
tc_pat pstate (TuplePat pats boxity _) pat_ty thing_inside
462
463
  = do	{ let tc = tupleTyCon boxity (length pats)
        ; (arg_tys, coi) <- boxySplitTyConApp tc pat_ty
464
465
	; (pats', pats_tvs, res) <- tcMultiple tc_lpat_pr (pats `zip` arg_tys)
					       pstate thing_inside
466
467
468
469
470

	-- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
	-- so that we can experiment with lazy tuple-matching.
	-- This is a pretty odd place to make the switch, but
	-- it was easy to do.
471
472
473
	; let pat_ty'          = mkTyConApp tc arg_tys
                                     -- pat_ty /= pat_ty iff coi /= IdCo
              unmangled_result = TuplePat pats' boxity pat_ty'
474
	      possibly_mangled_result
475
476
477
	        | opt_IrrefutableTuples && 
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
	        | otherwise		    = unmangled_result
478

479
480
481
 	; ASSERT( length arg_tys == length pats )      -- Syntactically enforced
	  return (mkCoPatCoI coi possibly_mangled_result pat_ty, pats_tvs, res) 
        }
482
483
484

------------------------
-- Data constructors
485
tc_pat pstate pat_in@(ConPatIn (L con_span con_name) arg_pats) pat_ty thing_inside
486
487
  = do	{ data_con <- tcLookupDataCon con_name
	; let tycon = dataConTyCon data_con
488
	; tcConPat pstate con_span data_con tycon pat_ty arg_pats thing_inside }
489
490
491

------------------------
-- Literal patterns
492
tc_pat pstate (LitPat simple_lit) pat_ty thing_inside
493
494
495
  = do	{ let lit_ty = hsLitType simple_lit
	; coi <- boxyUnify lit_ty pat_ty
			-- coi is of kind: lit_ty ~ pat_ty
496
	; res <- thing_inside pstate
497
498
499
500
	; span <- getSrcSpanM
			-- pattern coercions have to
			-- be of kind: pat_ty ~ lit_ty
			-- hence, sym coi
501
502
	; returnM (mkCoPatCoI (mkSymCoI coi) (LitPat simple_lit) pat_ty, 
                   [], res) }
503
504
505

------------------------
-- Overloaded patterns: n, and n+k
506
tc_pat pstate pat@(NPat over_lit mb_neg eq) pat_ty thing_inside
507
508
509
  = do	{ let orig = LiteralOrigin over_lit
	; lit'    <- tcOverloadedLit orig over_lit pat_ty
	; eq'     <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
510
511
	; mb_neg' <- case mb_neg of
			Nothing  -> return Nothing	-- Positive literal
512
513
			Just neg -> 	-- Negative literal
					-- The 'negate' is re-mappable syntax
514
 			    do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
515
			       ; return (Just neg') }
516
	; res <- thing_inside pstate
517
	; returnM (NPat lit' mb_neg' eq', [], res) }
518

519
520
tc_pat pstate pat@(NPlusKPat (L nm_loc name) lit ge minus) pat_ty thing_inside
  = do	{ bndr_id <- setSrcSpan nm_loc (tcPatBndr pstate name pat_ty)
521
 	; let pat_ty' = idType bndr_id
522
523
	      orig    = LiteralOrigin lit
	; lit' <- tcOverloadedLit orig lit pat_ty'
524

525
526
527
	-- The '>=' and '-' parts are re-mappable syntax
	; ge'    <- tcSyntaxOp orig ge    (mkFunTys [pat_ty', pat_ty'] boolTy)
	; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
528

529
530
	-- The Report says that n+k patterns must be in Integral
	-- We may not want this when using re-mappable syntax, though (ToDo?)
531
	; icls <- tcLookupClass integralClassName
532
	; instStupidTheta orig [mkClassPred icls [pat_ty']]	
533
    
534
	; res <- tcExtendIdEnv1 name bndr_id (thing_inside pstate)
535
	; returnM (NPlusKPat (L nm_loc bndr_id) lit' ge' minus', [], res) }
536

537
tc_pat _ _other_pat _ _ = panic "tc_pat" 	-- ConPatOut, SigPatOut, VarPatOut
538
\end{code}
539

540

541
542
%************************************************************************
%*									*
543
544
	Most of the work for constructors is here
	(the rest is in the ConPatIn case of tc_pat)
545
546
%*									*
%************************************************************************
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

As explained by [Wrappers for data instance tycons] in MkIds.lhs, the
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

In other words, boxySplitTyConAppWithFamily implicitly takes the coercion 

  Co123Map a b v :: {Map (a, b) v :=: :R123Map a b v}

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

Now it might appear seem as if we could have used the existing GADT type
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

In fact, if we have a data instance declaration defining a GADT, eq_spec will
be non-empty and we will get a mixture of global instantiations and local
refinement from a single match.  This neatly reflects that, as soon as we
have constrained the type of the scrutinee to the required type index, all
further type refinement is local to the alternative.

603
\begin{code}
604
605
606
607
--	Running example:
-- MkT :: forall a b c. (a:=:[b]) => b -> c -> T a
-- 	 with scrutinee of type (T ty)

608
609
tcConPat :: PatState -> SrcSpan -> DataCon -> TyCon 
	 -> BoxySigmaType	-- Type of the pattern
610
	 -> HsConPatDetails Name -> (PatState -> TcM a)
611
	 -> TcM (Pat TcId, [TcTyVar], a)
612
tcConPat pstate con_span data_con tycon pat_ty arg_pats thing_inside
613
  = do	{ let (univ_tvs, ex_tvs, eq_spec, eq_theta, dict_theta, arg_tys, _) = dataConFullSig data_con
614
615
616
	      skol_info  = PatSkol data_con
	      origin     = SigOrigin skol_info
	      full_theta = eq_theta ++ dict_theta
617
618

	  -- Instantiate the constructor type variables [a->ty]
619
	  -- This may involve doing a family-instance coercion, and building a wrapper
620
	; (ctxt_res_tys, coi) <- boxySplitTyConAppWithFamily tycon pat_ty
621
622
623
624
625
626
627
628
	; let pat_ty' = mkTyConApp tycon ctxt_res_tys
                                     -- pat_ty /= pat_ty iff coi /= IdCo
              wrap_res_pat res_pat
		= mkCoPatCoI coi (unwrapFamInstScrutinee tycon ctxt_res_tys res_pat) pat_ty

	  -- Add the stupid theta
	; addDataConStupidTheta data_con ctxt_res_tys

629
630
631
	; ex_tvs' <- tcInstSkolTyVars skol_info ex_tvs	
                     -- Get location from monad, not from ex_tvs

632
	; let tenv     = zipTopTvSubst (univ_tvs ++ ex_tvs)
633
				       (ctxt_res_tys ++ mkTyVarTys ex_tvs')
634
635
636
	      arg_tys' = substTys tenv arg_tys

	; if null ex_tvs && null eq_spec && null full_theta
637
638
	  then do { -- The common case; no class bindings etc 
                    -- (see Note [Arrows and patterns])
639
640
641
642
643
		    (arg_pats', inner_tvs, res) <- tcConArgs data_con arg_tys' 
							       arg_pats pstate thing_inside
		  ; let res_pat = ConPatOut { pat_con = L con_span data_con, 
			            	      pat_tvs = [], pat_dicts = [], pat_binds = emptyLHsBinds,
					      pat_args = arg_pats', pat_ty = pat_ty' }
644

645
646
		    ; return (wrap_res_pat res_pat, inner_tvs, res) }

647
648
649
650
	  else do   -- The general case, with existential, and local equality 
                    -- constraints
	{ let eq_preds = [mkEqPred (mkTyVarTy tv, ty) | (tv, ty) <- eq_spec]
	      theta'   = substTheta tenv (full_theta ++ eq_preds)
651
652
653
	      ctxt     = pat_ctxt pstate
	; checkTc (case ctxt of { ProcPat -> False; other -> True })
		  (existentialProcPat data_con)
654
655
656
657
658
659
660
661
662
663
664
665

          -- Need to test for rigidity if *any* constraints in theta as class
          -- constraints may have superclass equality constraints.  However,
          -- we don't want to check for rigidity if we got here only because
          -- ex_tvs was non-null.
--        ; unless (null theta') $
          -- FIXME: AT THE MOMENT WE CHEAT!  We only perform the rigidity test
          --   if we explicit or implicit (by a GADT def) have equality 
          --   constraints.
        ; unless (all (not . isEqPred) theta') $
            checkTc (isRigidTy pat_ty) (nonRigidMatch data_con)

666
	; ((arg_pats', inner_tvs, res), lie_req) <- getLIE $
667
		tcConArgs data_con arg_tys' arg_pats pstate thing_inside
668

669
670
	; loc <- getInstLoc origin
	; dicts <- newDictBndrs loc theta'
671
	; dict_binds <- tcSimplifyCheckPat loc [] emptyRefinement
672
			   ex_tvs' dicts lie_req
673

674
        ; let res_pat = ConPatOut { pat_con = L con_span data_con, 
675
			            pat_tvs = ex_tvs',
676
677
678
			            pat_dicts = map instToVar dicts, 
			            pat_binds = dict_binds,
			            pat_args = arg_pats', pat_ty = pat_ty' }
679
680
	; return (wrap_res_pat res_pat, ex_tvs' ++ inner_tvs, res)
	} }
681
  where
682
    -- Split against the family tycon if the pattern constructor 
683
    -- belongs to a family instance tycon.
684
    boxySplitTyConAppWithFamily tycon pat_ty =
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
685
      traceTc traceMsg >>
686
687
688
      case tyConFamInst_maybe tycon of
        Nothing                   -> boxySplitTyConApp tycon pat_ty
	Just (fam_tycon, instTys) -> 
689
	  do { (scrutinee_arg_tys, coi) <- boxySplitTyConApp fam_tycon pat_ty
690
691
	     ; (_, freshTvs, subst) <- tcInstTyVars (tyConTyVars tycon)
	     ; boxyUnifyList (substTys subst instTys) scrutinee_arg_tys
692
	     ; return (freshTvs, coi)
693
	     }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
694
695
696
697
698
699
      where
        traceMsg = sep [ text "tcConPat:boxySplitTyConAppWithFamily:" <+>
		         ppr tycon <+> ppr pat_ty
		       , text "  family instance:" <+> 
			 ppr (tyConFamInst_maybe tycon)
                       ]
700
701
702
703
704
705
706

    -- Wraps the pattern (which must be a ConPatOut pattern) in a coercion
    -- pattern if the tycon is an instance of a family.
    --
    unwrapFamInstScrutinee :: TyCon -> [Type] -> Pat Id -> Pat Id
    unwrapFamInstScrutinee tycon args pat
      | Just co_con <- tyConFamilyCoercion_maybe tycon 
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
707
708
--      , not (isNewTyCon tycon)       -- newtypes are explicitly unwrapped by
				     -- the desugarer
709
710
711
          -- NB: We can use CoPat directly, rather than mkCoPat, as we know the
          --	 coercion is not the identity; mkCoPat is inconvenient as it
          --	 wants a located pattern.
712
      = CoPat (WpCo $ mkTyConApp co_con args)       -- co fam ty to repr ty
713
714
715
716
717
718
	      (pat {pat_ty = mkTyConApp tycon args})    -- representation type
	      pat_ty					-- family inst type
      | otherwise
      = pat


719
tcConArgs :: DataCon -> [TcSigmaType]
720
	  -> Checker (HsConPatDetails Name) (HsConPatDetails Id)
721

722
tcConArgs data_con arg_tys (PrefixCon arg_pats) pstate thing_inside
723
724
  = do	{ checkTc (con_arity == no_of_args)	-- Check correct arity
		  (arityErr "Constructor" data_con con_arity no_of_args)
725
726
727
	; let pats_w_tys = zipEqual "tcConArgs" arg_pats arg_tys
	; (arg_pats', tvs, res) <- tcMultiple tcConArg pats_w_tys
					      pstate thing_inside 
728
	; return (PrefixCon arg_pats', tvs, res) }
729
730
731
  where
    con_arity  = dataConSourceArity data_con
    no_of_args = length arg_pats
732

733
tcConArgs data_con arg_tys (InfixCon p1 p2) pstate thing_inside
734
735
  = do	{ checkTc (con_arity == 2)	-- Check correct arity
	 	  (arityErr "Constructor" data_con con_arity 2)
736
	; let [arg_ty1,arg_ty2] = arg_tys	-- This can't fail after the arity check
737
738
	; ([p1',p2'], tvs, res) <- tcMultiple tcConArg [(p1,arg_ty1),(p2,arg_ty2)]
					      pstate thing_inside
739
	; return (InfixCon p1' p2', tvs, res) }
740
741
742
  where
    con_arity  = dataConSourceArity data_con

743
744
745
tcConArgs data_con other_args (InfixCon p1 p2) pstate thing_inside
  = pprPanic "tcConArgs" (ppr data_con)	-- InfixCon always has two arguments

746
tcConArgs data_con arg_tys (RecCon (HsRecFields rpats dd)) pstate thing_inside
747
  = do	{ (rpats', tvs, res) <- tcMultiple tc_field rpats pstate thing_inside
748
	; return (RecCon (HsRecFields rpats' dd), tvs, res) }
749
  where
750
    tc_field :: Checker (HsRecField FieldLabel (LPat Name)) (HsRecField TcId (LPat TcId))
751
    tc_field (HsRecField field_lbl pat pun) pstate thing_inside
752
      = do { (sel_id, pat_ty) <- wrapLocFstM find_field_ty field_lbl
753
	   ; (pat', tvs, res) <- tcConArg (pat, pat_ty) pstate thing_inside
754
	   ; return (HsRecField sel_id pat' pun, tvs, res) }
755

756
    find_field_ty :: FieldLabel -> TcM (Id, TcType)
757
758
    find_field_ty field_lbl
	= case [ty | (f,ty) <- field_tys, f == field_lbl] of
759
760
761
762
763
764
765
766
767

		-- No matching field; chances are this field label comes from some
		-- other record type (or maybe none).  As well as reporting an
		-- error we still want to typecheck the pattern, principally to
		-- make sure that all the variables it binds are put into the
		-- environment, else the type checker crashes later:
		--	f (R { foo = (a,b) }) = a+b
		-- If foo isn't one of R's fields, we don't want to crash when
		-- typechecking the "a+b".
768
	   [] -> do { addErrTc (badFieldCon data_con field_lbl)
769
		    ; bogus_ty <- newFlexiTyVarTy liftedTypeKind
770
		    ; return (error "Bogus selector Id", bogus_ty) }
771
772
773
774

		-- The normal case, when the field comes from the right constructor
	   (pat_ty : extras) -> 
		ASSERT( null extras )
775
		do { sel_id <- tcLookupField field_lbl
776
		   ; return (sel_id, pat_ty) }
777

778
    field_tys :: [(FieldLabel, TcType)]
779
780
781
782
    field_tys = zip (dataConFieldLabels data_con) arg_tys
	-- Don't use zipEqual! If the constructor isn't really a record, then
	-- dataConFieldLabels will be empty (and each field in the pattern
	-- will generate an error below).
783
784
785
786
787
788
789

tcConArg :: Checker (LPat Name, BoxySigmaType) (LPat Id)
tcConArg (arg_pat, arg_ty) pstate thing_inside
  = tc_lpat arg_pat arg_ty pstate thing_inside
	-- NB: the tc_lpat will refine pat_ty if necessary
	--     based on the current pstate, which may include
	--     refinements from peer argument patterns to the left
790
791
\end{code}

792
\begin{code}
793
addDataConStupidTheta :: DataCon -> [TcType] -> TcM ()
794
795
-- Instantiate the "stupid theta" of the data con, and throw 
-- the constraints into the constraint set
796
addDataConStupidTheta data_con inst_tys
797
798
799
  | null stupid_theta = return ()
  | otherwise	      = instStupidTheta origin inst_theta
  where
800
801
802
    origin = OccurrenceOf (dataConName data_con)
	-- The origin should always report "occurrence of C"
	-- even when C occurs in a pattern
803
804
805
806
807
    stupid_theta = dataConStupidTheta data_con
    tenv = zipTopTvSubst (dataConUnivTyVars data_con) inst_tys
    inst_theta = substTheta tenv stupid_theta
\end{code}

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
Note [Arrows and patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Oct 07) Arrow noation has the odd property that it involves "holes in the scope". 
For example:
  expr :: Arrow a => a () Int
  expr = proc (y,z) -> do
          x <- term -< y
          expr' -< x

Here the 'proc (y,z)' binding scopes over the arrow tails but not the
arrow body (e.g 'term').  As things stand (bogusly) all the
constraints from the proc body are gathered together, so constraints
from 'term' will be seen by the tcPat for (y,z).  But we must *not*
bind constraints from 'term' here, becuase the desugarer will not make
these bindings scope over 'term'.

The Right Thing is not to confuse these constraints together. But for
now the Easy Thing is to ensure that we do not have existential or
GADT constraints in a 'proc', and to short-cut the constraint
simplification for such vanilla patterns so that it binds no
constraints. Hence the 'fast path' in tcConPat; but it's also a good
plan for ordinary vanilla patterns to bypass the constraint
simplification step.

832

833
834
%************************************************************************
%*									*
835
		Type refinement
836
837
838
839
%*									*
%************************************************************************

\begin{code}
840
841
842
843
844
845
846
847
refineAlt :: DataCon		-- For tracing only
	  -> PatState 
	  -> [TcTyVar]		-- Existentials
	  -> [CoVar]		-- Equational constraints
	  -> BoxySigmaType	-- Pattern type
	  -> TcM PatState

refineAlt con pstate ex_tvs [] pat_ty
848
  | null $ dataConEqTheta con
849
850
851
  = return pstate	-- Common case: no equational constraints

refineAlt con pstate ex_tvs co_vars pat_ty
852
853
854
855
856
  = do	{ opt_gadt <- doptM Opt_GADTs	-- No type-refinement unless GADTs are on
	; if (not opt_gadt) then return pstate
	  else do 

	{ checkTc (isRigidTy pat_ty) (nonRigidMatch con)
857
858
859
860
861
862
863
864
865
866
867
868
869
870
	-- We are matching against a GADT constructor with non-trivial
	-- constraints, but pattern type is wobbly.  For now we fail.
	-- We can make sense of this, however:
	-- Suppose MkT :: forall a b. (a:=:[b]) => b -> T a
	--	(\x -> case x of { MkT v -> v })
	-- We can infer that x must have type T [c], for some wobbly 'c'
	-- and translate to
	--	(\(x::T [c]) -> case x of
	--			  MkT b (g::([c]:=:[b])) (v::b) -> v `cast` sym g
	-- To implement this, we'd first instantiate the equational
	-- constraints with *wobbly* type variables for the existentials;
	-- then unify these constraints to make pat_ty the right shape;
	-- then proceed exactly as in the rigid case

871
872
		-- In the rigid case, we perform type refinement
	; case gadtRefine (pat_reft pstate) ex_tvs co_vars of {
873
874
	    Failed msg     -> failWithTc (inaccessibleAlt msg) ;
	    Succeeded reft -> do { traceTc trace_msg
875
			  	 ; return (pstate { pat_reft = reft, pat_eqs = (pat_eqs pstate || not (null $ dataConEqTheta con)) }) }
876
877
878
879
	 	    -- DO NOT refine the envt right away, because we 
		    -- might be inside a lazy pattern.  Instead, refine pstate
	        where
		    
880
881
882
883
		    trace_msg = text "refineAlt:match" <+> 
				vcat [ ppr con <+> ppr ex_tvs,
				       ppr [(v, tyVarKind v) | v <- co_vars],
				       ppr reft]
884
	} } }
885
886
\end{code}

887
888
889
890
891
892
893
894
895
896
897

%************************************************************************
%*									*
		Overloaded literals
%*									*
%************************************************************************

In tcOverloadedLit we convert directly to an Int or Integer if we
know that's what we want.  This may save some time, by not
temporarily generating overloaded literals, but it won't catch all
cases (the rest are caught in lookupInst).
898
899

\begin{code}
900
901
902
903
tcOverloadedLit :: InstOrigin
		 -> HsOverLit Name
		 -> BoxyRhoType
		 -> TcM (HsOverLit TcId)
904
tcOverloadedLit orig lit@(HsIntegral i fi _) res_ty
905
906
907
908
909
910
911
  | not (fi `isHsVar` fromIntegerName)	-- Do not generate a LitInst for rebindable syntax.  
	-- Reason: If we do, tcSimplify will call lookupInst, which
	--	   will call tcSyntaxName, which does unification, 
	--	   which tcSimplify doesn't like
	-- ToDo: noLoc sadness
  = do	{ integer_ty <- tcMetaTy integerTyConName
	; fi' <- tcSyntaxOp orig fi (mkFunTy integer_ty res_ty)
912
	; return (HsIntegral i (HsApp (noLoc fi') (nlHsLit (HsInteger i integer_ty))) res_ty) }
913
914

  | Just expr <- shortCutIntLit i res_ty 
915
  = return (HsIntegral i expr res_ty)
916
917
918

  | otherwise
  = do 	{ expr <- newLitInst orig lit res_ty
919
	; return (HsIntegral i expr res_ty) }
920

921
tcOverloadedLit orig lit@(HsFractional r fr _) res_ty
922
923
924
925
926
927
928
  | not (fr `isHsVar` fromRationalName)	-- c.f. HsIntegral case
  = do	{ rat_ty <- tcMetaTy rationalTyConName
	; fr' <- tcSyntaxOp orig fr (mkFunTy rat_ty res_ty)
	 	-- Overloaded literals must have liftedTypeKind, because
	 	-- we're instantiating an overloaded function here,
	 	-- whereas res_ty might be openTypeKind. This was a bug in 6.2.2
		-- However this'll be picked up by tcSyntaxOp if necessary
929
	; return (HsFractional r (HsApp (noLoc fr') (nlHsLit (HsRat r rat_ty))) res_ty) }
930
931

  | Just expr <- shortCutFracLit r res_ty 
932
  = return (HsFractional r expr res_ty)
933
934
935

  | otherwise
  = do 	{ expr <- newLitInst orig lit res_ty
936
	; return (HsFractional r expr res_ty) }
937

938
tcOverloadedLit orig lit@(HsIsString s fr _) res_ty
939
940
941
  | not (fr `isHsVar` fromStringName)	-- c.f. HsIntegral case
  = do	{ str_ty <- tcMetaTy stringTyConName
	; fr' <- tcSyntaxOp orig fr (mkFunTy str_ty res_ty)
942
	; return (HsIsString s (HsApp (noLoc fr') (nlHsLit (HsString s))) res_ty) }
943
944

  | Just expr <- shortCutStringLit s res_ty 
945
  = return (HsIsString s expr res_ty)
946
947
948

  | otherwise
  = do 	{ expr <- newLitInst orig lit res_ty
949
	; return (HsIsString s expr res_ty) }
950

951
952
953
954
955
newLitInst :: InstOrigin -> HsOverLit Name -> BoxyRhoType -> TcM (HsExpr TcId)
newLitInst orig lit res_ty	-- Make a LitInst
  = do 	{ loc <- getInstLoc orig
	; res_tau <- zapToMonotype res_ty
	; new_uniq <- newUnique
956
	; let	lit_nm   = mkSystemVarName new_uniq FSLIT("lit")
957
958
		lit_inst = LitInst {tci_name = lit_nm, tci_lit = lit, 
				    tci_ty = res_tau, tci_loc = loc}
959
960
	; extendLIE lit_inst
	; return (HsVar (instToId lit_inst)) }
961
962
\end{code}

963

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
%************************************************************************
%*									*
		Note [Pattern coercions]
%*									*
%************************************************************************

In principle, these program would be reasonable:
	
	f :: (forall a. a->a) -> Int
	f (x :: Int->Int) = x 3

	g :: (forall a. [a]) -> Bool
	g [] = True

In both cases, the function type signature restricts what arguments can be passed
in a call (to polymorphic ones).  The pattern type signature then instantiates this
type.  For example, in the first case,  (forall a. a->a) <= Int -> Int, and we
generate the translated term
	f = \x' :: (forall a. a->a).  let x = x' Int in x 3

From a type-system point of view, this is perfectly fine, but it's *very* seldom useful.
And it requires a significant amount of code to implement, becuase we need to decorate
the translated pattern with coercion functions (generated from the subsumption check 
by tcSub).  

So for now I'm just insisting on type *equality* in patterns.  No subsumption. 

Old notes about desugaring, at a time when pattern coercions were handled:

A SigPat is a type coercion and must be handled one at at time.  We can't
combine them unless the type of the pattern inside is identical, and we don't
bother to check for that.  For example:

	data T = T1 Int | T2 Bool
	f :: (forall a. a -> a) -> T -> t
	f (g::Int->Int)   (T1 i) = T1 (g i)
	f (g::Bool->Bool) (T2 b) = T2 (g b)

We desugar this as follows:

	f = \ g::(forall a. a->a) t::T ->
	    let gi = g Int
	    in case t of { T1 i -> T1 (gi i)
			   other ->
	    let	gb = g Bool
	    in case t of { T2 b -> T2 (gb b)
			   other -> fail }}

Note that we do not treat the first column of patterns as a
column of variables, because the coerced variables (gi, gb)
would be of different types.  So we get rather grotty code.
But I don't think this is a common case, and if it was we could
doubtless improve it.

Meanwhile, the strategy is:
	* treat each SigPat coercion (always non-identity coercions)
		as a separate block
	* deal with the stuff inside, and then wrap a binding round
		the result to bind the new variable (gi, gb, etc)

1024

1025
1026
1027
1028
1029
1030
%************************************************************************
%*									*
\subsection{Errors and contexts}
%*									*
%************************************************************************

1031
\begin{code}
1032
1033
1034
1035
patCtxt :: Pat Name -> Maybe Message	-- Not all patterns are worth pushing a context
patCtxt (VarPat _)  = Nothing
patCtxt (ParPat _)  = Nothing
patCtxt (AsPat _ _) = Nothing
1036
patCtxt pat 	    = Just (hang (ptext SLIT("In the pattern:")) 
1037
			       4 (ppr pat))
1038

1039
1040
-----------------------------------------------

1041
existentialExplode pat
1042
1043
  = hang (vcat [text "My brain just exploded.",
	        text "I can't handle pattern bindings for existentially-quantified constructors.",
1044
	        text "Instead, use a case-expression, or do-notation, to unpack the constructor.",
1045
		text "In the binding group for"])
1046
	4 (ppr pat)
1047

1048
sigPatCtxt pats bound_tvs pat_tys body_ty tidy_env 
1049
1050
1051
1052
1053
1054
  = do	{ pat_tys' <- mapM zonkTcType pat_tys
	; body_ty' <- zonkTcType body_ty
	; let (env1,  tidy_tys)    = tidyOpenTypes tidy_env (map idType show_ids)
	      (env2, tidy_pat_tys) = tidyOpenTypes env1 pat_tys'
	      (env3, tidy_body_ty) = tidyOpenType  env2 body_ty'
	; return (env3,
1055
1056
1057
		 sep [ptext SLIT("When checking an existential match that binds"),
		      nest 4 (vcat (zipWith ppr_id show_ids tidy_tys)),
		      ptext SLIT("The pattern(s) have type(s):") <+> vcat (map ppr tidy_pat_tys),
1058
		      ptext SLIT("The body has type:") <+> ppr tidy_body_ty
1059
		]) }
1060
  where
1061
    bound_ids = collectPatsBinders pats
1062
    show_ids = filter is_interesting bound_ids
1063
    is_interesting id = any (`elemVarSet` varTypeTyVars id) bound_tvs
1064
1065
1066
1067

    ppr_id id ty = ppr id <+> dcolon <+> ppr ty
	-- Don't zonk the types so we get the separate, un-unified versions

1068
badFieldCon :: DataCon -> Name -> SDoc
1069
badFieldCon con field
1070
  = hsep [ptext SLIT("Constructor") <+> quotes (ppr con),
1071
	  ptext SLIT("does not have field"), quotes (ppr field)]
1072
1073
1074

polyPatSig :: TcType -> SDoc
polyPatSig sig_ty
1075
  = hang (ptext SLIT("Illegal polymorphic type signature in pattern:"))
1076
       2 (ppr sig_ty)
1077
1078

badTypePat pat = ptext SLIT("Illegal type pattern") <+> ppr pat
1079

1080
1081
1082
1083
1084
existentialProcPat :: DataCon -> SDoc
existentialProcPat con
  = hang (ptext SLIT("Illegal constructor") <+> quotes (ppr con) <+> ptext SLIT("in a 'proc' pattern"))
       2 (ptext SLIT("Proc patterns cannot use existentials or GADTs"))

1085
1086
lazyPatErr pat tvs
  = failWithTc $
1087
    hang (ptext SLIT("A lazy (~) pattern cannot bind existential type variables"))
1088
       2 (vcat (map pprSkolTvBinding tvs))
1089

1090
1091
1092
1093
nonRigidMatch con
  =  hang (ptext SLIT("GADT pattern match in non-rigid context for") <+> quotes (ppr con))
	2 (ptext SLIT("Tell GHC HQ if you'd like this to unify the context"))

1094
1095
1096
1097
nonRigidResult res_ty
  =  hang (ptext SLIT("GADT pattern match with non-rigid result type") <+> quotes (ppr res_ty))
	2 (ptext SLIT("Tell GHC HQ if you'd like this to unify the context"))

1098
1099
1100
inaccessibleAlt msg
  = hang (ptext SLIT("Inaccessible case alternative:")) 2 msg
\end{code}