TcSimplify.lhs 60.2 KB
Newer Older
1
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
2 3 4 5 6 7 8
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

9
module TcSimplify( 
10
       simplifyInfer, simplifyAmbiguityCheck,
11
       simplifyDefault, simplifyDeriv, 
12 13
       simplifyRule, simplifyTop, simplifyInteractive
  ) where
14

15
#include "HsVersions.h"
16

17
import TcRnMonad
18
import TcErrors
19
import TcMType
20 21
import TcType 
import TcSMonad 
22
import TcInteract 
23
import Inst
24
import Unify	( niFixTvSubst, niSubstTvSet )
25
import Var
26
import VarSet
27
import VarEnv 
28
import TcEvidence
29
import TypeRep
30 31
import Name
import NameEnv	( emptyNameEnv )
32
import Bag
33 34
import ListSetOps
import Util
35 36 37
import PrelInfo
import PrelNames
import Class		( classKey )
38
import BasicTypes       ( RuleName )
39
import Control.Monad    ( when )
40
import Outputable
41
import FastString
42
import TrieMap
43
import DynFlags
44

45 46 47
\end{code}


48 49 50 51 52
*********************************************************************************
*                                                                               * 
*                           External interface                                  *
*                                                                               *
*********************************************************************************
53

54 55 56
\begin{code}
simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
-- Simplify top-level constraints
57 58 59
-- Usually these will be implications,
-- but when there is nothing to quantify we don't wrap
-- in a degenerate implication, so we do that here instead
60
simplifyTop wanteds 
61
  = simplifyCheck (SimplCheck (ptext (sLit "top level"))) wanteds
62

63 64 65 66
------------------
simplifyAmbiguityCheck :: Name -> WantedConstraints -> TcM (Bag EvBind)
simplifyAmbiguityCheck name wanteds
  = simplifyCheck (SimplCheck (ptext (sLit "ambiguity check for") <+> ppr name)) wanteds
67
 
68 69 70 71 72 73 74 75 76
------------------
simplifyInteractive :: WantedConstraints -> TcM (Bag EvBind)
simplifyInteractive wanteds 
  = simplifyCheck SimplInteractive wanteds

------------------
simplifyDefault :: ThetaType	-- Wanted; has no type variables in it
                -> TcM ()	-- Succeeds iff the constraint is soluble
simplifyDefault theta
77
  = do { wanted <- newFlatWanteds DefaultOrigin theta
78 79
       ; _ignored_ev_binds <- simplifyCheck (SimplCheck (ptext (sLit "defaults"))) 
                                            (mkFlatWC wanted)
80 81
       ; return () }
\end{code}
82

83

84
***********************************************************************************
85
*                                                                                 * 
86
*                            Deriving                                             *
87 88
*                                                                                 *
***********************************************************************************
89

90 91
\begin{code}
simplifyDeriv :: CtOrigin
92 93 94 95
              -> PredType
	      -> [TyVar]	
	      -> ThetaType		-- Wanted
	      -> TcM ThetaType	-- Needed
96 97
-- Given  instance (wanted) => C inst_ty 
-- Simplify 'wanted' as much as possibles
98
-- Fail if not possible
99
simplifyDeriv orig pred tvs theta 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
100 101 102 103 104
  = do { tvs_skols <- tcInstSkolTyVars tvs -- Skolemize
      	 	-- The constraint solving machinery 
		-- expects *TcTyVars* not TyVars.  
		-- We use *non-overlappable* (vanilla) skolems
		-- See Note [Overlap and deriving]
105 106

       ; let skol_subst = zipTopTvSubst tvs $ map mkTyVarTy tvs_skols
107
             subst_skol = zipTopTvSubst tvs_skols $ map mkTyVarTy tvs
108
             skol_set   = mkVarSet tvs_skols
109
	     doc = parens $ ptext (sLit "deriving") <+> parens (ppr pred)
110 111 112 113

       ; wanted <- newFlatWanteds orig (substTheta skol_subst theta)

       ; traceTc "simplifyDeriv" (ppr tvs $$ ppr theta $$ ppr wanted)
114 115 116
       ; (residual_wanted, _ev_binds1)
             <- runTcS (SimplInfer doc) NoUntouchables emptyInert emptyWorkList $
                solveWanteds $ mkFlatWC wanted
117

118 119
       ; let (good, bad) = partitionBagWith get_good (wc_flat residual_wanted)
                         -- See Note [Exotic derived instance contexts]
120 121 122
             get_good :: Ct -> Either PredType Ct
             get_good ct | validDerivPred skol_set p = Left p
                         | otherwise                 = Right ct
123
                         where p = ctPred ct
124

125 126 127
       -- We never want to defer these errors because they are errors in the
       -- compiler! Hence the `False` below
       ; _ev_binds2 <- reportUnsolved False (residual_wanted { wc_flat = bad })
128

129 130
       ; let min_theta = mkMinimalBySCs (bagToList good)
       ; return (substTheta subst_skol min_theta) }
131
\end{code}
132

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  data Show a => Show [a] where ..
  data Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance. 
	     Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

158 159 160 161 162 163 164
Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
	data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.
165

166 167 168
One could go further: consider
	data T a b c = MkT (Foo a b c) deriving( Eq )
	instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)
169

170 171
Notice that this instance (just) satisfies the Paterson termination 
conditions.  Then we *could* derive an instance decl like this:
172

173 174 175 176
	instance (C Int a, Eq b, Eq c) => Eq (T a b c) 
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.  
177

178 179 180
However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.
181

182 183
So for now we simply require that the derived instance context
should have only type-variable constraints.
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
Here is another example:
	data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
	instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.

*********************************************************************************
*                                                                                 * 
*                            Inference
*                                                                                 *
***********************************************************************************
214

dreixel's avatar
dreixel committed
215 216 217 218 219 220 221 222 223 224 225 226
Note [Which variables to quantify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose the inferred type of a function is
   T kappa (alpha:kappa) -> Int
where alpha is a type unification variable and 
      kappa is a kind unification variable
Then we want to quantify over *both* alpha and kappa.  But notice that
kappa appears "at top level" of the type, as well as inside the kind
of alpha.  So it should be fine to just look for the "top level"
kind/type variables of the type, without looking transitively into the
kinds of those type variables.

227
\begin{code}
228
simplifyInfer :: Bool
229 230 231
              -> Bool                  -- Apply monomorphism restriction
              -> [(Name, TcTauType)]   -- Variables to be generalised,
                                       -- and their tau-types
232 233 234
              -> WantedConstraints
              -> TcM ([TcTyVar],    -- Quantify over these type variables
                      [EvVar],      -- ... and these constraints
235 236 237
		      Bool,	    -- The monomorphism restriction did something
		      		    --   so the results type is not as general as
				    --   it could be
238
                      TcEvBinds)    -- ... binding these evidence variables
239
simplifyInfer _top_lvl apply_mr name_taus wanteds
240 241 242
  | isEmptyWC wanteds
  = do { gbl_tvs     <- tcGetGlobalTyVars            -- Already zonked
       ; zonked_taus <- zonkTcTypes (map snd name_taus)
dreixel's avatar
dreixel committed
243 244 245 246
       ; let tvs_to_quantify = tyVarsOfTypes zonked_taus `minusVarSet` gbl_tvs
       	     		       -- tvs_to_quantify can contain both kind and type vars
       	                       -- See Note [Which variables to quantify]
       ; qtvs <- zonkQuantifiedTyVars tvs_to_quantify
247
       ; return (qtvs, [], False, emptyTcEvBinds) }
248

249
  | otherwise
250 251 252
  = do { zonked_wanteds <- zonkWC wanteds
       ; zonked_taus    <- zonkTcTypes (map snd name_taus)
       ; gbl_tvs        <- tcGetGlobalTyVars
253
       ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
254

255
       ; traceTc "simplifyInfer {"  $ vcat
256 257 258 259 260
             [ ptext (sLit "names =") <+> ppr (map fst name_taus)
             , ptext (sLit "taus (zonked) =") <+> ppr zonked_taus
             , ptext (sLit "gbl_tvs =") <+> ppr gbl_tvs
             , ptext (sLit "closed =") <+> ppr _top_lvl
             , ptext (sLit "apply_mr =") <+> ppr apply_mr
261
             , ptext (sLit "wanted =") <+> ppr zonked_wanteds
262 263
             ]

264 265
             -- Step 1
             -- Make a guess at the quantified type variables
266 267 268
	     -- Then split the constraints on the baisis of those tyvars
	     -- to avoid unnecessarily simplifying a class constraint
	     -- See Note [Avoid unecessary constraint simplification]
dreixel's avatar
dreixel committed
269
       ; let zonked_tau_tvs = tyVarsOfTypes zonked_taus
270
             proto_qtvs = growWanteds gbl_tvs zonked_wanteds $
271
                          zonked_tau_tvs `minusVarSet` gbl_tvs
272 273 274 275 276 277 278 279 280
             (perhaps_bound, surely_free)
                        = partitionBag (quantifyMe proto_qtvs) (wc_flat zonked_wanteds)

       ; traceTc "simplifyInfer proto"  $ vcat
             [ ptext (sLit "zonked_tau_tvs =") <+> ppr zonked_tau_tvs
             , ptext (sLit "proto_qtvs =") <+> ppr proto_qtvs
             , ptext (sLit "surely_fref =") <+> ppr surely_free
             ]

281
       ; emitFlats surely_free
282 283 284 285
       ; traceTc "sinf"  $ vcat
             [ ptext (sLit "perhaps_bound =") <+> ppr perhaps_bound
             , ptext (sLit "surely_free   =") <+> ppr surely_free
             ]
286

287
            -- Step 2 
288 289 290 291 292 293 294 295 296 297 298
            -- Now simplify the possibly-bound constraints
       ; let ctxt = SimplInfer (ppr (map fst name_taus))
       ; (simpl_results, tc_binds)
             <- runTcS ctxt NoUntouchables emptyInert emptyWorkList $ 
                simplifyWithApprox (zonked_wanteds { wc_flat = perhaps_bound })

            -- Fail fast if there is an insoluble constraint,
            -- unless we are deferring errors to runtime
       ; when (not runtimeCoercionErrors && insolubleWC simpl_results) $ 
         do { _ev_binds <- reportUnsolved False simpl_results 
            ; failM }
299 300 301 302 303 304

            -- Step 3 
            -- Split again simplified_perhaps_bound, because some unifications 
            -- may have happened, and emit the free constraints. 
       ; gbl_tvs        <- tcGetGlobalTyVars
       ; zonked_tau_tvs <- zonkTcTyVarsAndFV zonked_tau_tvs
305
       ; zonked_flats <- zonkCts (wc_flat simpl_results)
306
       ; let init_tvs 	     = zonked_tau_tvs `minusVarSet` gbl_tvs
307 308
             poly_qtvs       = growWantedEVs gbl_tvs zonked_flats init_tvs
	     (pbound, pfree) = partitionBag (quantifyMe poly_qtvs) zonked_flats
309 310

	     -- Monomorphism restriction
311
             mr_qtvs  	     = init_tvs `minusVarSet` constrained_tvs
312
             constrained_tvs = tyVarsOfCts zonked_flats
313 314 315
	     mr_bites        = apply_mr && not (isEmptyBag pbound)

             (qtvs, (bound, free))
316
                | mr_bites  = (mr_qtvs,   (emptyBag, zonked_flats))
317
                | otherwise = (poly_qtvs, (pbound,   pfree))
318
       ; emitFlats free
319

320
       ; if isEmptyVarSet qtvs && isEmptyBag bound
321 322 323
         then ASSERT( isEmptyBag (wc_insol simpl_results) )
              do { traceTc "} simplifyInfer/no quantification" empty
                 ; emitImplications (wc_impl simpl_results)
324
                 ; return ([], [], mr_bites, EvBinds tc_binds) }
325 326 327
         else do

            -- Step 4, zonk quantified variables 
328
       { let minimal_flat_preds = mkMinimalBySCs $ 
329
                                  map ctPred $ bagToList bound
330 331
             skol_info = InferSkol [ (name, mkSigmaTy [] minimal_flat_preds ty)
                                   | (name, ty) <- name_taus ]
332 333 334 335
                        -- Don't add the quantified variables here, because
                        -- they are also bound in ic_skols and we want them to be
                        -- tidied uniformly

dreixel's avatar
dreixel committed
336
       ; qtvs_to_return <- zonkQuantifiedTyVars qtvs
337 338 339 340 341

            -- Step 5
            -- Minimize `bound' and emit an implication
       ; minimal_bound_ev_vars <- mapM TcMType.newEvVar minimal_flat_preds
       ; ev_binds_var <- newTcEvBinds
342 343
       ; mapBagM_ (\(EvBind evar etrm) -> addTcEvBind ev_binds_var evar etrm) 
           tc_binds
344
       ; lcl_env <- getLclTypeEnv
dreixel's avatar
dreixel committed
345
       ; gloc <- getCtLoc skol_info
346 347
       ; let implic = Implic { ic_untch    = NoUntouchables
                             , ic_env      = lcl_env
348
                             , ic_skols    = qtvs_to_return
349 350 351 352 353 354 355 356 357
                             , ic_given    = minimal_bound_ev_vars
                             , ic_wanted   = simpl_results { wc_flat = bound }
                             , ic_insol    = False
                             , ic_binds    = ev_binds_var
                             , ic_loc      = gloc }
       ; emitImplication implic
       ; traceTc "} simplifyInfer/produced residual implication for quantification" $
             vcat [ ptext (sLit "implic =") <+> ppr implic
                       -- ic_skols, ic_given give rest of result
358
                  , ptext (sLit "qtvs =") <+> ppr qtvs_to_return
359
                  , ptext (sLit "spb =") <+> ppr zonked_flats
360 361 362 363
                  , ptext (sLit "bound =") <+> ppr bound ]



364 365
       ; return ( qtvs_to_return, minimal_bound_ev_vars
                , mr_bites,  TcEvBinds ev_binds_var) } }
366
\end{code}
367 368


369 370
Note [Minimize by Superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
371

372 373 374 375 376 377 378
When we quantify over a constraint, in simplifyInfer we need to
quantify over a constraint that is minimal in some sense: For
instance, if the final wanted constraint is (Eq alpha, Ord alpha),
we'd like to quantify over Ord alpha, because we can just get Eq alpha
from superclass selection from Ord alpha. This minimization is what
mkMinimalBySCs does. Then, simplifyInfer uses the minimal constraint
to check the original wanted.
379

380
\begin{code}
381

382
simplifyWithApprox :: WantedConstraints -> TcS WantedConstraints
383
-- Post: returns only wanteds (no deriveds)
384 385
simplifyWithApprox wanted
 = do { traceTcS "simplifyApproxLoop" (ppr wanted)
386

387 388 389 390 391 392 393 394 395
      ; let all_flats = wc_flat wanted `unionBags` keepWanted (wc_insol wanted) 
      ; solveInteractCts $ bagToList all_flats
      ; unsolved_implics <- simpl_loop 1 (wc_impl wanted)

      ; let (residual_implics,floats) = approximateImplications unsolved_implics

      -- Solve extra stuff for real: notice that all the extra unsolved constraints will 
      -- be in the inerts of the monad, so we are OK
      ; traceTcS "simplifyApproxLoop" $ text "Calling solve_wanteds!"
396 397 398 399 400
      ; wants_or_ders <- solve_wanteds (WC { wc_flat  = floats -- They are floated so they are not in the evvar cache
                                           , wc_impl  = residual_implics
                                           , wc_insol = emptyBag })
      ; return $ 
        wants_or_ders { wc_flat = keepWanted (wc_flat wants_or_ders) } }
401

402 403

approximateImplications :: Bag Implication -> (Bag Implication, Cts)
404 405 406
-- Extracts any nested constraints that don't mention the skolems
approximateImplications impls
  = do_bag (float_implic emptyVarSet) impls
407
  where 
408 409 410 411 412
    do_bag :: forall a b c. (a -> (Bag b, Bag c)) -> Bag a -> (Bag b, Bag c)
    do_bag f = foldrBag (plus . f) (emptyBag, emptyBag)
    plus :: forall b c. (Bag b, Bag c) -> (Bag b, Bag c) -> (Bag b, Bag c)
    plus (a1,b1) (a2,b2) = (a1 `unionBags` a2, b1 `unionBags` b2)

413
    float_implic :: TyVarSet -> Implication -> (Bag Implication, Cts)
414 415 416
    float_implic skols imp
      = (unitBag (imp { ic_wanted = wanted' }), floats)
      where
417
        (wanted', floats) = float_wc (skols `extendVarSetList` ic_skols imp) (ic_wanted imp)
418 419 420 421 422 423 424

    float_wc skols wc@(WC { wc_flat = flat, wc_impl = implic })
      = (wc { wc_flat = flat', wc_impl = implic' }, floats1 `unionBags` floats2)
      where
        (flat',   floats1) = do_bag (float_flat   skols) flat
        (implic', floats2) = do_bag (float_implic skols) implic

425 426 427 428
    float_flat :: TcTyVarSet -> Ct -> (Cts, Cts)
    float_flat skols ct
      | tyVarsOfCt ct `disjointVarSet` skols = (emptyBag, unitBag ct)
      | otherwise                            = (unitBag ct, emptyBag)
429
\end{code}
430

431
\begin{code}
432 433
-- (growX gbls wanted tvs) grows a seed 'tvs' against the 
-- X-constraint 'wanted', nuking the 'gbls' at each stage
434 435
-- It's conservative in that if the seed could *possibly*
-- grow to include a type variable, then it does
436

437 438 439
growWanteds :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWanteds gbl_tvs wc = fixVarSet (growWC gbl_tvs wc)

440
growWantedEVs :: TyVarSet -> Cts -> TyVarSet -> TyVarSet
441 442
growWantedEVs gbl_tvs ws tvs
  | isEmptyBag ws = tvs
443
  | otherwise     = fixVarSet (growPreds gbl_tvs ctPred ws) tvs
444

445 446 447
--------  Helper functions, do not do fixpoint ------------------------
growWC :: TyVarSet -> WantedConstraints -> TyVarSet -> TyVarSet
growWC gbl_tvs wc = growImplics gbl_tvs             (wc_impl wc) .
448 449
                    growPreds   gbl_tvs ctPred (wc_flat wc) .
                    growPreds   gbl_tvs ctPred (wc_insol wc)
450

451 452 453 454 455
growImplics :: TyVarSet -> Bag Implication -> TyVarSet -> TyVarSet
growImplics gbl_tvs implics tvs
  = foldrBag grow_implic tvs implics
  where
    grow_implic implic tvs
456
      = grow tvs `delVarSetList` ic_skols implic
457 458 459 460 461 462 463 464
      where
        grow = growWC gbl_tvs (ic_wanted implic) .
               growPreds gbl_tvs evVarPred (listToBag (ic_given implic))
               -- We must grow from givens too; see test IPRun

growPreds :: TyVarSet -> (a -> PredType) -> Bag a -> TyVarSet -> TyVarSet
growPreds gbl_tvs get_pred items tvs
  = foldrBag extend tvs items
465
  where
466 467
    extend item tvs = tvs `unionVarSet`
                      (growPredTyVars (get_pred item) tvs `minusVarSet` gbl_tvs)
468 469 470

--------------------
quantifyMe :: TyVarSet      -- Quantifying over these
471
	   -> Ct
472
	   -> Bool	    -- True <=> quantify over this wanted
473
quantifyMe qtvs ct
474
  | isIPPred pred = True  -- Note [Inheriting implicit parameters]
batterseapower's avatar
batterseapower committed
475
  | otherwise	  = tyVarsOfType pred `intersectsVarSet` qtvs
476
  where
477
    pred = ctPred ct
478
\end{code}
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
Note [Avoid unecessary constraint simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When inferring the type of a let-binding, with simplifyInfer,
try to avoid unnecessariliy simplifying class constraints.
Doing so aids sharing, but it also helps with delicate 
situations like
   instance C t => C [t] where ..
   f :: C [t] => ....
   f x = let g y = ...(constraint C [t])... 
         in ...
When inferring a type for 'g', we don't want to apply the
instance decl, because then we can't satisfy (C t).  So we
just notice that g isn't quantified over 't' and partition
the contraints before simplifying.

This only half-works, but then let-generalisation only half-works.


498 499
Note [Inheriting implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
500 501 502
Consider this:

	f x = (x::Int) + ?y
503

504 505 506
where f is *not* a top-level binding.
From the RHS of f we'll get the constraint (?y::Int).
There are two types we might infer for f:
507

508 509 510
	f :: Int -> Int

(so we get ?y from the context of f's definition), or
511 512 513

	f :: (?y::Int) => Int -> Int

514 515 516 517 518 519
At first you might think the first was better, becuase then
?y behaves like a free variable of the definition, rather than
having to be passed at each call site.  But of course, the WHOLE
IDEA is that ?y should be passed at each call site (that's what
dynamic binding means) so we'd better infer the second.

520 521
BOTTOM LINE: when *inferring types* you *must* quantify 
over implicit parameters. See the predicate isFreeWhenInferring.
522

523

524 525 526 527 528
*********************************************************************************
*                                                                                 * 
*                             RULES                                               *
*                                                                                 *
***********************************************************************************
529

530 531
Note [Simplifying RULE lhs constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
532
On the LHS of transformation rules we only simplify only equalities,
533 534 535 536
but not dictionaries.  We want to keep dictionaries unsimplified, to
serve as the available stuff for the RHS of the rule.  We *do* want to
simplify equalities, however, to detect ill-typed rules that cannot be
applied.
537

538 539 540
Implementation: the TcSFlags carried by the TcSMonad controls the
amount of simplification, so simplifyRuleLhs just sets the flag
appropriately.
541

542 543 544 545 546 547 548 549 550 551
Example.  Consider the following left-hand side of a rule
	f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
	d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
	forall x::a, y::a, z::a, d1::Ord a.
	  f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want	
	forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
	  f ((==) d2 x y) ((>) d1 y z) = ...
552

553
Here is another example:
554 555
	fromIntegral :: (Integral a, Num b) => a -> b
	{-# RULES "foo"  fromIntegral = id :: Int -> Int #-}
556 557
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
558
	forall dIntegralInt.
559
	   fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
560
because the scsel will mess up RULE matching.  Instead we want
561
	forall dIntegralInt, dNumInt.
562
	  fromIntegral Int Int dIntegralInt dNumInt = id Int
563

564 565 566 567 568 569 570
Even if we have 
	g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
	forall x::a, y::a, z::a, d1::Eq a
	  f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
571

572 573
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.  
574

575 576 577 578 579
HOWEVER, under a nested implication things are different
Consider
  f :: (forall a. Eq a => a->a) -> Bool -> ...
  {-# RULES "foo" forall (v::forall b. Eq b => b->b).
       f b True = ...
580
    #-}
581 582 583
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the agument type of g.  So we 
revert to SimplCheck when going under an implication.  
584 585

\begin{code}
586 587 588 589 590 591 592 593 594
simplifyRule :: RuleName 
             -> [TcTyVar]		-- Explicit skolems
             -> WantedConstraints	-- Constraints from LHS
             -> WantedConstraints	-- Constraints from RHS
             -> TcM ([EvVar], 		-- LHS dicts
                     TcEvBinds,		-- Evidence for LHS
                     TcEvBinds)		-- Evidence for RHS
-- See Note [Simplifying RULE lhs constraints]
simplifyRule name tv_bndrs lhs_wanted rhs_wanted
595 596 597 598 599 600 601
  = do { loc        <- getCtLoc (RuleSkol name)
       ; zonked_lhs <- zonkWC lhs_wanted
       ; let untch = NoUntouchables
	     	 -- We allow ourselves to unify environment 
		 -- variables; hence *no untouchables*

       ; (lhs_results, lhs_binds)
602 603
              <- runTcS (SimplRuleLhs name) untch emptyInert emptyWorkList $
                 solveWanteds zonked_lhs
604 605 606 607 608 609 610

       ; traceTc "simplifyRule" $
         vcat [ text "zonked_lhs"   <+> ppr zonked_lhs 
              , text "lhs_results" <+> ppr lhs_results
              , text "lhs_binds"    <+> ppr lhs_binds 
              , text "rhs_wanted"   <+> ppr rhs_wanted ]

611 612

       -- Don't quantify over equalities (judgement call here)
613
       ; let (eqs, dicts) = partitionBag (isEqPred . ctPred)
614
                                         (wc_flat lhs_results)
615
             lhs_dicts    = map cc_id (bagToList dicts)
616 617 618 619 620 621
                                 -- Dicts and implicit parameters

           -- Fail if we have not got down to unsolved flats
       ; ev_binds_var <- newTcEvBinds
       ; emitImplication $ Implic { ic_untch  = untch
                                  , ic_env    = emptyNameEnv
622
                                  , ic_skols  = tv_bndrs
623 624 625 626 627
                                  , ic_given  = lhs_dicts
                                  , ic_wanted = lhs_results { wc_flat = eqs }
                                  , ic_insol  = insolubleWC lhs_results
                                  , ic_binds  = ev_binds_var
                                  , ic_loc    = loc }
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	     -- Notice that we simplify the RHS with only the explicitly
	     -- introduced skolems, allowing the RHS to constrain any 
	     -- unification variables.
	     -- Then, and only then, we call zonkQuantifiedTypeVariables
	     -- Example   foo :: Ord a => a -> a
	     --		  foo_spec :: Int -> Int
	     --		  {-# RULE "foo"  foo = foo_spec #-}
	     --	    Here, it's the RHS that fixes the type variable

	     -- So we don't want to make untouchable the type
	     -- variables in the envt of the RHS, because they include
	     -- the template variables of the RULE

	     -- Hence the rather painful ad-hoc treatement here
       ; rhs_binds_var@(EvBindsVar evb_ref _)  <- newTcEvBinds
644 645
       ; let doc = ptext (sLit "rhs of rule") <+> doubleQuotes (ftext name)
       ; rhs_binds1 <- simplifyCheck (SimplCheck doc) $
646 647 648 649 650
            WC { wc_flat = emptyBag
               , wc_insol = emptyBag
               , wc_impl = unitBag $
                    Implic { ic_untch   = NoUntouchables
                            , ic_env    = emptyNameEnv
651
                            , ic_skols  = tv_bndrs
652 653 654 655 656
                            , ic_given  = lhs_dicts
                            , ic_wanted = rhs_wanted
                            , ic_insol  = insolubleWC rhs_wanted
                            , ic_binds  = rhs_binds_var
                            , ic_loc    = loc } }
657 658 659 660 661
       ; rhs_binds2 <- readTcRef evb_ref

       ; return ( lhs_dicts
                , EvBinds lhs_binds 
                , EvBinds (rhs_binds1 `unionBags` evBindMapBinds rhs_binds2)) }
662 663 664
\end{code}


665 666 667 668 669
*********************************************************************************
*                                                                                 * 
*                                 Main Simplifier                                 *
*                                                                                 *
***********************************************************************************
670 671

\begin{code}
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
simplifyCheck :: SimplContext
	      -> WantedConstraints	-- Wanted
              -> TcM (Bag EvBind)
-- Solve a single, top-level implication constraint
-- e.g. typically one created from a top-level type signature
-- 	    f :: forall a. [a] -> [a]
--          f x = rhs
-- We do this even if the function has no polymorphism:
--    	    g :: Int -> Int

--          g y = rhs
-- (whereas for *nested* bindings we would not create
--  an implication constraint for g at all.)
--
-- Fails if can't solve something in the input wanteds
simplifyCheck ctxt wanteds
688
  = do { wanteds <- zonkWC wanteds
689 690 691 692

       ; traceTc "simplifyCheck {" (vcat
             [ ptext (sLit "wanted =") <+> ppr wanteds ])

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
       ; (unsolved, eb1)
           <- runTcS ctxt NoUntouchables emptyInert emptyWorkList $ 
              solveWanteds wanteds

       ; traceTc "simplifyCheck }" $ ptext (sLit "unsolved =") <+> ppr unsolved

       -- See Note [Deferring coercion errors to runtime]
       ; runtimeCoercionErrors <- doptM Opt_DeferTypeErrors
       ; eb2 <- reportUnsolved runtimeCoercionErrors unsolved 
       
       ; return (eb1 `unionBags` eb2) }
\end{code}

Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:

  module Main where
713

714 715
  a :: Int
  a = 'a'
716

717
  main = print "b"
718

719 720
Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in TcUnify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into

  co :: Int ~ Char
  co = ...

  a :: Int
  a = 'a' `cast` co

The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.

It does this by keeping track of which errors correspond to which coercion
in TcErrors (with ErrEnv). TcErrors.reportTidyWanteds does not print the errors
and does not fail if -fwarn-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.

\begin{code}
solveWanteds :: WantedConstraints -> TcS WantedConstraints
746 747
-- Returns: residual constraints, plus evidence bindings 
-- NB: When we are called from TcM there are no inerts to pass down to TcS
748 749
solveWanteds wanted
  = do { wc_out <- solve_wanteds wanted
750 751
       ; let wc_ret = wc_out { wc_flat = keepWanted (wc_flat wc_out) } 
                      -- Discard Derived
752
       ; return wc_ret }
753 754 755 756

solve_wanteds :: WantedConstraints
              -> TcS WantedConstraints  -- NB: wc_flats may be wanted *or* derived now
solve_wanteds wanted@(WC { wc_flat = flats, wc_impl = implics, wc_insol = insols }) 
757 758 759
  = do { traceTcS "solveWanteds {" (ppr wanted)

                 -- Try the flat bit
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
760 761 762 763 764
                 -- Discard from insols all the derived/given constraints
                 -- because they will show up again when we try to solve
                 -- everything else.  Solving them a second time is a bit
                 -- of a waste, but the code is simple, and the program is
                 -- wrong anyway!
765

766
       ; let all_flats = flats `unionBags` keepWanted insols
767
       ; solveInteractCts $ bagToList all_flats
768

769 770 771
       -- solve_wanteds iterates when it is able to float equalities 
       -- out of one or more of the implications. 
       ; unsolved_implics <- simpl_loop 1 implics
772

773 774 775
       ; (insoluble_flats,unsolved_flats) <- extractUnsolvedTcS 

       ; bb <- getTcEvBindsMap
776
       ; tb <- getTcSTyBindsMap
777

778
       ; traceTcS "solveWanteds }" $
779
                 vcat [ text "unsolved_flats   =" <+> ppr unsolved_flats
780
                      , text "unsolved_implics =" <+> ppr unsolved_implics
781
                      , text "current evbinds  =" <+> ppr (evBindMapBinds bb)
782 783 784
                      , text "current tybinds  =" <+> vcat (map ppr (varEnvElts tb))
                      ]

785
       ; (subst, remaining_unsolved_flats) <- solveCTyFunEqs unsolved_flats
786
                -- See Note [Solving Family Equations]
787 788
                -- NB: remaining_flats has already had subst applied

789 790 791 792 793 794 795 796 797 798 799 800 801 802
       ; return $ 
         WC { wc_flat  = mapBag (substCt subst) remaining_unsolved_flats
            , wc_impl  = mapBag (substImplication subst) unsolved_implics
            , wc_insol = mapBag (substCt subst) insoluble_flats }
       }

simpl_loop :: Int
           -> Bag Implication
           -> TcS (Bag Implication)
simpl_loop n implics
  | n > 10 
  = traceTcS "solveWanteds: loop!" empty >> return implics
  | otherwise 
  = do { (implic_eqs, unsolved_implics) <- solveNestedImplications implics
803

804 805
       ; inerts <- getTcSInerts
       ; let ((_,unsolved_flats),_) = extractUnsolved inerts
806

807 808 809
       ; ecache_pre <- getTcSEvVarCacheMap
       ; let pr = ppr ((\k z m -> foldTM k m z) (:) [] ecache_pre)
       ; traceTcS "ecache_pre"  $ pr
dimitris's avatar
dimitris committed
810

811 812 813
       ; improve_eqs <- if not (isEmptyBag implic_eqs)
                        then return implic_eqs
                        else applyDefaultingRules unsolved_flats
814

815 816 817
       ; ecache_post <- getTcSEvVarCacheMap
       ; let po = ppr ((\k z m -> foldTM k m z) (:) [] ecache_post)
       ; traceTcS "ecache_po"  $ po
dimitris's avatar
dimitris committed
818

819 820 821 822
       ; traceTcS "solveWanteds: simpl_loop end" $
             vcat [ text "improve_eqs      =" <+> ppr improve_eqs
                  , text "unsolved_flats   =" <+> ppr unsolved_flats
                  , text "unsolved_implics =" <+> ppr unsolved_implics ]
823

824 825 826
       ; if isEmptyBag improve_eqs then return unsolved_implics 
         else do { solveInteractCts $ bagToList improve_eqs
                 ; simpl_loop (n+1) unsolved_implics } }
827

828 829 830 831 832 833 834 835 836 837
solveNestedImplications :: Bag Implication
                        -> TcS (Cts, Bag Implication)
-- Precondition: the TcS inerts may contain unsolved flats which have 
-- to be converted to givens before we go inside a nested implication.
solveNestedImplications implics
  | isEmptyBag implics
  = return (emptyBag, emptyBag)
  | otherwise 
  = do { inerts <- getTcSInerts
       ; let ((_insoluble_flats, unsolved_flats),thinner_inerts) = extractUnsolved inerts 
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
       ; (implic_eqs, unsolved_implics)
           <- doWithInert thinner_inerts $ 
              do { let pushed_givens = givens_from_wanteds unsolved_flats
                       tcs_untouchables = filterVarSet isFlexiTcsTv $ 
                                          tyVarsOfCts unsolved_flats
                 -- See Note [Preparing inert set for implications]
	         -- Push the unsolved wanteds inwards, but as givens
                 ; traceTcS "solveWanteds: preparing inerts for implications {" $ 
                   vcat [ppr tcs_untouchables, ppr pushed_givens]
                 ; solveInteractCts pushed_givens 
                 ; traceTcS "solveWanteds: } now doing nested implications {" empty
                 ; flatMapBagPairM (solveImplication tcs_untouchables) implics }

       -- ... and we are back in the original TcS inerts 
       -- Notice that the original includes the _insoluble_flats so it was safe to ignore
       -- them in the beginning of this function.
855 856 857 858 859 860
       ; traceTcS "solveWanteds: done nested implications }" $
                  vcat [ text "implic_eqs ="       <+> ppr implic_eqs
                       , text "unsolved_implics =" <+> ppr unsolved_implics ]

       ; return (implic_eqs, unsolved_implics) }

861 862 863 864 865 866 867 868 869 870
  where givens_from_wanteds = foldrBag get_wanted []
        get_wanted cc rest_givens
            | pushable_wanted cc
            = let this_given = cc { cc_flavor = mkGivenFlavor (cc_flavor cc) UnkSkol }
              in this_given : rest_givens
            | otherwise = rest_givens 

        pushable_wanted :: Ct -> Bool 
        pushable_wanted cc 
         | isWantedCt cc 
871
         = isEqPred (ctPred cc) -- see Note [Preparing inert set for implications]
872 873 874 875 876 877 878 879 880 881
         | otherwise = False 

solveImplication :: TcTyVarSet     -- Untouchable TcS unification variables
                 -> Implication    -- Wanted
                 -> TcS (Cts,      -- All wanted or derived floated equalities: var = type
                         Bag Implication) -- Unsolved rest (always empty or singleton)
-- Precondition: The TcS monad contains an empty worklist and given-only inerts 
-- which after trying to solve this implication we must restore to their original value
solveImplication tcs_untouchables
     imp@(Implic { ic_untch  = untch
882 883 884
                 , ic_binds  = ev_binds
                 , ic_skols  = skols 
                 , ic_given  = givens
885
                 , ic_wanted = wanteds
886
                 , ic_loc    = loc })
887
  = nestImplicTcS ev_binds (untch, tcs_untouchables) $
888 889
    recoverTcS (return (emptyBag, emptyBag)) $
       -- Recover from nested failures.  Even the top level is
890
       -- just a bunch of implications, so failing at the first one is bad
891 892 893
    do { traceTcS "solveImplication {" (ppr imp) 

         -- Solve flat givens
894
       ; solveInteractGiven loc givens 
895 896

         -- Simplify the wanteds
897 898 899
       ; WC { wc_flat = unsolved_flats
            , wc_impl = unsolved_implics
            , wc_insol = insols } <- solve_wanteds wanteds
900 901 902 903

       ; let (res_flat_free, res_flat_bound)
                 = floatEqualities skols givens unsolved_flats
             final_flat = keepWanted res_flat_bound
904

905 906
       ; let res_wanted = WC { wc_flat  = final_flat
                             , wc_impl  = unsolved_implics
907
                             , wc_insol = insols }
908

909 910 911
             res_implic = unitImplication $
                          imp { ic_wanted = res_wanted
                              , ic_insol  = insolubleWC res_wanted }
912

913 914
       ; evbinds <- getTcEvBindsMap

915 916
       ; traceTcS "solveImplication end }" $ vcat
             [ text "res_flat_free =" <+> ppr res_flat_free
917
             , text "implication evbinds = " <+> ppr (evBindMapBinds evbinds)
918
             , text "res_implic =" <+> ppr res_implic ]
919

920
       ; return (res_flat_free, res_implic) }
921
    -- and we are back to the original inerts
922 923


924
floatEqualities :: [TcTyVar] -> [EvVar] -> Cts -> (Cts, Cts)
925 926 927 928
-- Post: The returned FlavoredEvVar's are only Wanted or Derived
-- and come from the input wanted ev vars or deriveds 
floatEqualities skols can_given wantders
  | hasEqualities can_given = (emptyBag, wantders)
929
          -- Note [Float Equalities out of Implications]
930 931
  | otherwise = partitionBag is_floatable wantders
  
932 933
  where skol_set = mkVarSet skols
        is_floatable :: Ct -> Bool
934
        is_floatable ct
935
          | ct_predty <- ctPred ct
936
          , isEqPred ct_predty
937
          = skol_set `disjointVarSet` tvs_under_fsks ct_predty
938
        is_floatable _ct = False
939 940 941 942 943 944 945 946 947 948 949

        tvs_under_fsks :: Type -> TyVarSet
        -- ^ NB: for type synonyms tvs_under_fsks does /not/ expand the synonym
        tvs_under_fsks (TyVarTy tv)     
          | not (isTcTyVar tv)               = unitVarSet tv
          | FlatSkol ty <- tcTyVarDetails tv = tvs_under_fsks ty
          | otherwise                        = unitVarSet tv
        tvs_under_fsks (TyConApp _ tys) = unionVarSets (map tvs_under_fsks tys)
        tvs_under_fsks (FunTy arg res)  = tvs_under_fsks arg `unionVarSet` tvs_under_fsks res
        tvs_under_fsks (AppTy fun arg)  = tvs_under_fsks fun `unionVarSet` tvs_under_fsks arg
        tvs_under_fsks (ForAllTy tv ty) -- The kind of a coercion binder 
950
        	     	       	        -- can mention type variables!
951 952 953 954 955
          | isTyVar tv		      = inner_tvs `delVarSet` tv
          | otherwise  {- Coercion -} = -- ASSERT( not (tv `elemVarSet` inner_tvs) )
                                        inner_tvs `unionVarSet` tvs_under_fsks (tyVarKind tv)
          where
            inner_tvs = tvs_under_fsks ty
956
\end{code}
957

958 959 960 961
Note [Preparing inert set for implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before solving the nested implications, we convert any unsolved flat wanteds
to givens, and add them to the inert set.  Reasons:
962 963

  a) In checking mode, suppresses unnecessary errors.  We already have
964
     on unsolved-wanted error; adding it to the givens prevents any 
965
     consequential errors from showing up
966

967 968 969 970
  b) More importantly, in inference mode, we are going to quantify over this
     constraint, and we *don't* want to quantify over any constraints that
     are deducible from it.

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
  c) Flattened type-family equalities must be exposed to the nested
     constraints.  Consider
	F b ~ alpha, (forall c.  F b ~ alpha)
     Obviously this is soluble with [alpha := F b].  But the
     unification is only done by solveCTyFunEqs, right at the end of
     solveWanteds, and if we aren't careful we'll end up with an
     unsolved goal inside the implication.  We need to "push" the
     as-yes-unsolved (F b ~ alpha) inwards, as a *given*, so that it
     can be used to solve the inner (F b
     ~ alpha).  See Trac #4935.

  d) There are other cases where interactions between wanteds that can help
     to solve a constraint. For example

  	class C a b | a -> b

  	(C Int alpha), (forall d. C d blah => C Int a)

     If we push the (C Int alpha) inwards, as a given, it can produce
     a fundep (alpha~a) and this can float out again and be used to
     fix alpha.  (In general we can't float class constraints out just
     in case (C d blah) might help to solve (C Int a).)

994 995 996 997 998 999 1000 1001
The unsolved wanteds are *canonical* but they may not be *inert*,
because when made into a given they might interact with other givens.
Hence the call to solveInteract.  Example:

 Original inert set = (d :_g D a) /\ (co :_w  a ~ [beta]) 

We were not able to solve (a ~w [beta]) but we can't just assume it as
given because the resulting set is not inert. Hence we have to do a
1002 1003
'solveInteract' step first. 

dimitris's avatar
dimitris committed
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
Finally, note that we convert them to [Given] and NOT [Given/Solved].
The reason is that Given/Solved are weaker than Givens and may be discarded.
As an example consider the inference case, where we may have, the following 
original constraints: 
     [Wanted] F Int ~ Int
             (F Int ~ a => F Int ~ a)
If we convert F Int ~ Int to [Given/Solved] instead of Given, then the next 
given (F Int ~ a) is going to cause the Given/Solved to be ignored, casting 
the (F Int ~ a) insoluble. Hence we should really convert the residual 
wanteds to plain old Given. 

We need only push in unsolved equalities both in checking mode and inference mode: 

  (1) In checking mode we should not push given dictionaries in because of
example LongWayOverlapping.hs, where we might get strange overlap
errors between far-away constraints in the program.  But even in
checking mode, we must still push type family equations. Consider:

   type instance F True a b = a 
   type instance F False a b = b

   [w] F c a b ~ gamma 
   (c ~ True) => a ~ gamma 
   (c ~ False) => b ~ gamma

Since solveCTyFunEqs happens at the very end of solving, the only way to solve
the two implications is temporarily consider (F c a b ~ gamma) as Given (NB: not 
merely Given/Solved because it has to interact with the top-level instance 
environment) and push it inside the implications. Now, when we come out again at
the end, having solved the implications solveCTyFunEqs will solve this equality.

  (2) In inference mode, we recheck the final constraint in checking mode and
hence we will be able to solve inner implications from top-level quantified
constraints nonetheless.


1040 1041
Note [Extra TcsTv untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1042 1043 1044 1045 1046
Furthemore, we record the inert set simplifier-generated unification
variables of the TcsTv kind (such as variables from instance that have
been applied, or unification flattens). These variables must be passed
to the implications as extra untouchable variables. Otherwise we have
the danger of double unifications. Example (from trac ticket #4494):
1047 1048 1049

   (F Int ~ uf)  /\  (forall a. C a => F Int ~ beta) 

1050 1051 1052
In this example, beta is touchable inside the implication. The first
solveInteract step leaves 'uf' ununified. Then we move inside the
implication where a new constraint
1053
       uf  ~  beta  
1054 1055 1056 1057 1058 1059