Type.lhs 50.5 KB
Newer Older
1
2
3
%
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%
4
\section[Type]{Type - public interface}
5

6

7
8
\begin{code}
module Type (
9
        -- re-exports from TypeRep
10
	TyThing(..), Type, PredType(..), ThetaType, 
11
	funTyCon,
12

13
14
	-- Kinds
        Kind, SimpleKind, KindVar,
15
        kindFunResult, splitKindFunTys, splitKindFunTysN,
16
17
18
19
20
21
22
23
24
25
26

        liftedTypeKindTyCon, openTypeKindTyCon, unliftedTypeKindTyCon,
        argTypeKindTyCon, ubxTupleKindTyCon,

        liftedTypeKind, unliftedTypeKind, openTypeKind,
        argTypeKind, ubxTupleKind,

        tySuperKind, coSuperKind, 

        isLiftedTypeKind, isUnliftedTypeKind, isOpenTypeKind,
        isUbxTupleKind, isArgTypeKind, isKind, isTySuperKind, 
27
        isCoSuperKind, isSuperKind, isCoercionKind, isEqPred,
28
29
30
31
	mkArrowKind, mkArrowKinds,

        isSubArgTypeKind, isSubOpenTypeKind, isSubKind, defaultKind, eqKind,
        isSubKindCon,
32

33
34
	-- Re-exports from TyCon
	PrimRep(..),
35

36
37
	mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, isTyVarTy,

38
39
	mkAppTy, mkAppTys, splitAppTy, splitAppTys, 
	splitAppTy_maybe, repSplitAppTy_maybe,
40

41
42
	mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, 
	splitFunTys, splitFunTysN,
43
	funResultTy, funArgTy, zipFunTys, isFunTy,
44

45
	mkTyConApp, mkTyConTy, 
46
	tyConAppTyCon, tyConAppArgs, 
47
48
	splitTyConApp_maybe, splitTyConApp, 
        splitNewTyConApp_maybe, splitNewTyConApp,
49

50
	repType, typePrimRep, coreView, tcView, kindView,
51

52
	mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, 
53
	applyTy, applyTys, isForAllTy, dropForAlls,
54

55
	-- Source types
56
	predTypeRep, mkPredTy, mkPredTys,
57

58
	-- Newtypes
59
	splitRecNewType_maybe, newTyConInstRhs,
60

61
	-- Lifting and boxity
62
63
	isUnLiftedType, isUnboxedTupleType, isAlgType, isPrimitiveType,
	isStrictType, isStrictPred, 
64

65
	-- Free variables
66
	tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta,
67
	typeKind, addFreeTyVars,
68

69
	-- Tidying up for printing
70
71
72
73
74
	tidyType,      tidyTypes,
	tidyOpenType,  tidyOpenTypes,
	tidyTyVarBndr, tidyFreeTyVars,
	tidyOpenTyVar, tidyOpenTyVars,
	tidyTopType,   tidyPred,
75
	tidyKind,
76

77
	-- Comparison
78
79
	coreEqType, tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, 
	tcEqPred, tcCmpPred, tcEqTypeX, 
80

81
	-- Seq
82
	seqType, seqTypes,
83

84
	-- Type substitutions
85
86
	TvSubstEnv, emptyTvSubstEnv,	-- Representation widely visible
	TvSubst(..), emptyTvSubst,	-- Representation visible to a few friends
87
	mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst,
88
	getTvSubstEnv, setTvSubstEnv, getTvInScope, extendTvInScope,
89
 	extendTvSubst, extendTvSubstList, isInScope, composeTvSubst, zipTyEnv,
90
91

	-- Performing substitution on types
92
	substTy, substTys, substTyWith, substTheta, 
93
	substPred, substTyVar, substTyVarBndr, deShadowTy, lookupTyVar,
94

95
	-- Pretty-printing
96
	pprType, pprParendType, pprTyThingCategory,
97
	pprPred, pprTheta, pprThetaArrow, pprClassPred, pprKind, pprParendKind
98
    ) where
99

100
101
#include "HsVersions.h"

102
103
104
105
106
-- We import the representation and primitive functions from TypeRep.
-- Many things are reexported, but not the representation!

import TypeRep

107
-- friends:
108
import Var	( Var, TyVar, tyVarKind, tyVarName, 
109
		  setTyVarName, setTyVarKind, mkWildCoVar )
110
111
112
import VarEnv
import VarSet

113
import OccName	( tidyOccName )
114
import Name	( NamedThing(..), tidyNameOcc )
115
import Class	( Class, classTyCon )
116
import PrelNames( openTypeKindTyConKey, unliftedTypeKindTyConKey, 
117
                  ubxTupleKindTyConKey, argTypeKindTyConKey )
118
import TyCon	( TyCon, isRecursiveTyCon, isPrimTyCon,
119
		  isUnboxedTupleTyCon, isUnLiftedTyCon,
120
		  isFunTyCon, isNewTyCon, isClosedNewTyCon, 
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
121
		  newTyConRep, newTyConRhs, 
122
		  isAlgTyCon, tyConArity, isSuperKindTyCon,
123
		  tcExpandTyCon_maybe, coreExpandTyCon_maybe,
124
	          tyConKind, PrimRep(..), tyConPrimRep, tyConUnique,
125
                  isCoercionTyCon
126
127
		)

128
-- others
129
import StaticFlags	( opt_DictsStrict )
130
import Util		( mapAccumL, seqList, lengthIs, snocView, thenCmp, isEqual, all2 )
131
import Outputable
132
import UniqSet		( sizeUniqSet )		-- Should come via VarSet
133
import Maybe		( isJust )
134
135
\end{code}

136

137
138
139
140
141
142
143
144
145
146
147
%************************************************************************
%*									*
		Type representation
%*									*
%************************************************************************

In Core, we "look through" non-recursive newtypes and PredTypes.

\begin{code}
{-# INLINE coreView #-}
coreView :: Type -> Maybe Type
148
-- Strips off the *top layer only* of a type to give 
149
150
151
-- its underlying representation type. 
-- Returns Nothing if there is nothing to look through.
--
152
-- In the case of newtypes, it returns
153
154
155
156
157
158
159
160
161
162
163
164
--	*either* a vanilla TyConApp (recursive newtype, or non-saturated)
--	*or*     the newtype representation (otherwise), meaning the
--			type written in the RHS of the newtype decl,
--			which may itself be a newtype
--
-- Example: newtype R = MkR S
--	    newtype S = MkS T
--	    newtype T = MkT (T -> T)
--   expandNewTcApp on R gives Just S
--	            on S gives Just T
--		    on T gives Nothing	 (no expansion)

165
166
167
-- By being non-recursive and inlined, this case analysis gets efficiently
-- joined onto the case analysis that the caller is already doing
coreView (NoteTy _ ty) 	   = Just ty
168
169
170
coreView (PredTy p)
  | isEqPred p             = Nothing
  | otherwise    	   = Just (predTypeRep p)
171
172
173
174
175
176
177
coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys 
			   = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
				-- Its important to use mkAppTys, rather than (foldl AppTy),
				-- because the function part might well return a 
				-- partially-applied type constructor; indeed, usually will!
coreView ty		   = Nothing

178
179


180
181
182
183
184
185
186
187
-----------------------------------------------
{-# INLINE tcView #-}
tcView :: Type -> Maybe Type
-- Same, but for the type checker, which just looks through synonyms
tcView (NoteTy _ ty) 	 = Just ty
tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys 
			 = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys')
tcView ty		 = Nothing
188
189
190
191
192
193
194
195

-----------------------------------------------
{-# INLINE kindView #-}
kindView :: Kind -> Maybe Kind
-- C.f. coreView, tcView
-- For the moment, we don't even handle synonyms in kinds
kindView (NoteTy _ k) = Just k
kindView other	      = Nothing
196
197
198
\end{code}


199
200
201
202
203
%************************************************************************
%*									*
\subsection{Constructor-specific functions}
%*									*
%************************************************************************
sof's avatar
sof committed
204
205


206
207
208
---------------------------------------------------------------------
				TyVarTy
				~~~~~~~
209
\begin{code}
210
mkTyVarTy  :: TyVar   -> Type
211
mkTyVarTy  = TyVarTy
212

213
mkTyVarTys :: [TyVar] -> [Type]
214
mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy
215

216
getTyVar :: String -> Type -> TyVar
217
218
219
getTyVar msg ty = case getTyVar_maybe ty of
		    Just tv -> tv
		    Nothing -> panic ("getTyVar: " ++ msg)
220

221
isTyVarTy :: Type -> Bool
222
223
224
isTyVarTy ty = isJust (getTyVar_maybe ty)

getTyVar_maybe :: Type -> Maybe TyVar
225
226
227
getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty'
getTyVar_maybe (TyVarTy tv) 	 	    = Just tv  
getTyVar_maybe other	         	    = Nothing
228

229
230
231
\end{code}


232
233
234
235
236
237
---------------------------------------------------------------------
				AppTy
				~~~~~
We need to be pretty careful with AppTy to make sure we obey the 
invariant that a TyConApp is always visibly so.  mkAppTy maintains the
invariant: use it.
238

239
\begin{code}
240
mkAppTy orig_ty1 orig_ty2
241
  = mk_app orig_ty1
242
  where
243
    mk_app (NoteTy _ ty1)    = mk_app ty1
244
    mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ [orig_ty2])
245
    mk_app ty1		     = AppTy orig_ty1 orig_ty2
246
	-- Note that the TyConApp could be an 
247
248
249
250
251
252
253
	-- under-saturated type synonym.  GHC allows that; e.g.
	--	type Foo k = k a -> k a
	--	type Id x = x
	--	foo :: Foo Id -> Foo Id
	--
	-- Here Id is partially applied in the type sig for Foo,
	-- but once the type synonyms are expanded all is well
254

255
mkAppTys :: Type -> [Type] -> Type
256
257
mkAppTys orig_ty1 []	    = orig_ty1
	-- This check for an empty list of type arguments
258
	-- avoids the needless loss of a type synonym constructor.
259
260
261
	-- For example: mkAppTys Rational []
	--   returns to (Ratio Integer), which has needlessly lost
	--   the Rational part.
262
mkAppTys orig_ty1 orig_tys2
263
  = mk_app orig_ty1
264
  where
265
    mk_app (NoteTy _ ty1)    = mk_app ty1
266
267
    mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ orig_tys2)
				-- mkTyConApp: see notes with mkAppTy
268
    mk_app ty1		     = foldl AppTy orig_ty1 orig_tys2
269

270
-------------
271
splitAppTy_maybe :: Type -> Maybe (Type, Type)
272
273
274
splitAppTy_maybe ty | Just ty' <- coreView ty
		    = splitAppTy_maybe ty'
splitAppTy_maybe ty = repSplitAppTy_maybe ty
275

276
277
278
279
280
281
282
283
284
285
-------------
repSplitAppTy_maybe :: Type -> Maybe (Type,Type)
-- Does the AppTy split, but assumes that any view stuff is already done
repSplitAppTy_maybe (FunTy ty1 ty2)   = Just (TyConApp funTyCon [ty1], ty2)
repSplitAppTy_maybe (AppTy ty1 ty2)   = Just (ty1, ty2)
repSplitAppTy_maybe (TyConApp tc tys) = case snocView tys of
						Just (tys', ty') -> Just (TyConApp tc tys', ty')
						Nothing		 -> Nothing
repSplitAppTy_maybe other = Nothing
-------------
286
splitAppTy :: Type -> (Type, Type)
287
288
289
splitAppTy ty = case splitAppTy_maybe ty of
			Just pr -> pr
			Nothing -> panic "splitAppTy"
290

291
-------------
292
splitAppTys :: Type -> (Type, [Type])
293
splitAppTys ty = split ty ty []
294
  where
295
    split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args
296
    split orig_ty (AppTy ty arg)        args = split ty ty (arg:args)
297
    split orig_ty (TyConApp tc tc_args) args = (TyConApp tc [], tc_args ++ args)
298
    split orig_ty (FunTy ty1 ty2)       args = ASSERT( null args )
299
					       (TyConApp funTyCon [], [ty1,ty2])
300
    split orig_ty ty		        args = (orig_ty, args)
301

302
303
\end{code}

304
305
306
307
308

---------------------------------------------------------------------
				FunTy
				~~~~~

309
\begin{code}
310
mkFunTy :: Type -> Type -> Type
311
mkFunTy (PredTy (EqPred ty1 ty2)) res = mkForAllTy (mkWildCoVar (PredTy (EqPred ty1 ty2))) res
312
mkFunTy arg res = FunTy arg res
313

314
mkFunTys :: [Type] -> Type -> Type
315
mkFunTys tys ty = foldr mkFunTy ty tys
316

317
318
319
isFunTy :: Type -> Bool 
isFunTy ty = isJust (splitFunTy_maybe ty)

320
splitFunTy :: Type -> (Type, Type)
321
splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty'
322
splitFunTy (FunTy arg res)   = (arg, res)
323
splitFunTy other	     = pprPanic "splitFunTy" (ppr other)
324

325
splitFunTy_maybe :: Type -> Maybe (Type, Type)
326
splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty'
327
328
splitFunTy_maybe (FunTy arg res)   = Just (arg, res)
splitFunTy_maybe other	           = Nothing
329

330
splitFunTys :: Type -> ([Type], Type)
331
splitFunTys ty = split [] ty ty
332
  where
333
    split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty'
334
335
    split args orig_ty (FunTy arg res) 	 = split (arg:args) res res
    split args orig_ty ty                = (reverse args, orig_ty)
336

337
338
339
340
341
342
343
splitFunTysN :: Int -> Type -> ([Type], Type)
-- Split off exactly n arg tys
splitFunTysN 0 ty = ([], ty)
splitFunTysN n ty = case splitFunTy ty of { (arg, res) ->
		    case splitFunTysN (n-1) res of { (args, res) ->
		    (arg:args, res) }}

344
345
346
zipFunTys :: Outputable a => [a] -> Type -> ([(a,Type)], Type)
zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty
  where
347
    split acc []     nty ty  	           = (reverse acc, nty)
348
349
    split acc xs     nty ty 
	  | Just ty' <- coreView ty 	   = split acc xs nty ty'
350
    split acc (x:xs) nty (FunTy arg res)   = split ((x,arg):acc) xs res res
351
    split acc (x:xs) nty ty                = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty)
352
353
    
funResultTy :: Type -> Type
354
funResultTy ty | Just ty' <- coreView ty = funResultTy ty'
355
funResultTy (FunTy arg res)   = res
356
funResultTy ty		      = pprPanic "funResultTy" (ppr ty)
357
358

funArgTy :: Type -> Type
359
funArgTy ty | Just ty' <- coreView ty = funArgTy ty'
360
funArgTy (FunTy arg res)   = arg
361
funArgTy ty		   = pprPanic "funArgTy" (ppr ty)
362
363
364
\end{code}


365
366
367
---------------------------------------------------------------------
				TyConApp
				~~~~~~~~
368
@mkTyConApp@ is a key function, because it builds a TyConApp, FunTy or PredTy,
369
as apppropriate.
370

371
\begin{code}
372
mkTyConApp :: TyCon -> [Type] -> Type
373
mkTyConApp tycon tys
374
  | isFunTyCon tycon, [ty1,ty2] <- tys
375
  = FunTy ty1 ty2
376

377
  | otherwise
378
  = TyConApp tycon tys
379

380
mkTyConTy :: TyCon -> Type
381
mkTyConTy tycon = mkTyConApp tycon []
382
383
384
385
386

-- splitTyConApp "looks through" synonyms, because they don't
-- mean a distinct type, but all other type-constructor applications
-- including functions are returned as Just ..

387
tyConAppTyCon :: Type -> TyCon
388
tyConAppTyCon ty = fst (splitTyConApp ty)
389
390

tyConAppArgs :: Type -> [Type]
391
tyConAppArgs ty = snd (splitTyConApp ty)
392
393
394
395

splitTyConApp :: Type -> (TyCon, [Type])
splitTyConApp ty = case splitTyConApp_maybe ty of
			Just stuff -> stuff
396
			Nothing	   -> pprPanic "splitTyConApp" (ppr ty)
397

398
splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
399
splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty'
400
splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
401
splitTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
402
splitTyConApp_maybe other	      = Nothing
403
404
405
406
407
408
409
410
411
412
413
414
415
416

-- Sometimes we do NOT want to look throught a newtype.  When case matching
-- on a newtype we want a convenient way to access the arguments of a newty
-- constructor so as to properly form a coercion.
splitNewTyConApp :: Type -> (TyCon, [Type])
splitNewTyConApp ty = case splitNewTyConApp_maybe ty of
			Just stuff -> stuff
			Nothing	   -> pprPanic "splitNewTyConApp" (ppr ty)
splitNewTyConApp_maybe :: Type -> Maybe (TyCon, [Type])
splitNewTyConApp_maybe ty | Just ty' <- tcView ty = splitNewTyConApp_maybe ty'
splitNewTyConApp_maybe (TyConApp tc tys) = Just (tc, tys)
splitNewTyConApp_maybe (FunTy arg res)   = Just (funTyCon, [arg,res])
splitNewTyConApp_maybe other	      = Nothing

417
418
419
420
421
422
-- get instantiated newtype rhs, the arguments had better saturate 
-- the constructor
newTyConInstRhs :: TyCon -> [Type] -> Type
newTyConInstRhs tycon tys =
    let (tvs, ty) = newTyConRhs tycon in substTyWith tvs tys ty

sof's avatar
sof committed
423
\end{code}
424

425

426
427
428
429
430
431
432
433
---------------------------------------------------------------------
				SynTy
				~~~~~

Notes on type synonyms
~~~~~~~~~~~~~~~~~~~~~~
The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try
to return type synonyms whereever possible. Thus
434

435
436
437
438
439
440
441
442
	type Foo a = a -> a

we want 
	splitFunTys (a -> Foo a) = ([a], Foo a)
not			           ([a], a -> a)

The reason is that we then get better (shorter) type signatures in 
interfaces.  Notably this plays a role in tcTySigs in TcBinds.lhs.
443
444


445
446
		Representation types
		~~~~~~~~~~~~~~~~~~~~
447
448
repType looks through 
	(a) for-alls, and
449
450
451
	(b) synonyms
	(c) predicates
	(d) usage annotations
452
	(e) all newtypes, including recursive ones, but not newtype families
453
It's useful in the back end.
454
455
456

\begin{code}
repType :: Type -> Type
457
-- Only applied to types of kind *; hence tycons are saturated
458
repType ty | Just ty' <- coreView ty = repType ty'
459
460
repType (ForAllTy _ ty)  = repType ty
repType (TyConApp tc tys)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
461
  | isClosedNewTyCon tc  = -- Recursive newtypes are opaque to coreView
462
463
464
			   -- but we must expand them here.  Sure to
			   -- be saturated because repType is only applied
			   -- to types of kind *
465
			   ASSERT( {- isRecursiveTyCon tc && -} tys `lengthIs` tyConArity tc )
466
467
468
469
470
471
472
473
			   repType (new_type_rep tc tys)
repType ty = ty

-- new_type_rep doesn't ask any questions: 
-- it just expands newtype, whether recursive or not
new_type_rep new_tycon tys = ASSERT( tys `lengthIs` tyConArity new_tycon )
			     case newTyConRep new_tycon of
				 (tvs, rep_ty) -> substTyWith tvs tys rep_ty
474

475
476
-- ToDo: this could be moved to the code generator, using splitTyConApp instead
-- of inspecting the type directly.
477
478
479
480
typePrimRep :: Type -> PrimRep
typePrimRep ty = case repType ty of
		   TyConApp tc _ -> tyConPrimRep tc
		   FunTy _ _	 -> PtrRep
481
		   AppTy _ _	 -> PtrRep	-- See note below
482
		   TyVarTy _	 -> PtrRep
483
		   other	 -> pprPanic "typePrimRep" (ppr ty)
484
485
486
487
488
	-- Types of the form 'f a' must be of kind *, not *#, so
	-- we are guaranteed that they are represented by pointers.
	-- The reason is that f must have kind *->*, not *->*#, because
	-- (we claim) there is no way to constrain f's kind any other
	-- way.
489

490
491
492
\end{code}


493
494
495
---------------------------------------------------------------------
				ForAllTy
				~~~~~~~~
496
497

\begin{code}
498
mkForAllTy :: TyVar -> Type -> Type
499
500
mkForAllTy tyvar ty
  = mkForAllTys [tyvar] ty
501

502
mkForAllTys :: [TyVar] -> Type -> Type
503
mkForAllTys tyvars ty = foldr ForAllTy ty tyvars
504
505
506
507
508

isForAllTy :: Type -> Bool
isForAllTy (NoteTy _ ty)  = isForAllTy ty
isForAllTy (ForAllTy _ _) = True
isForAllTy other_ty	  = False
509

510
splitForAllTy_maybe :: Type -> Maybe (TyVar, Type)
511
splitForAllTy_maybe ty = splitFAT_m ty
512
  where
513
514
515
    splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty'
    splitFAT_m (ForAllTy tyvar ty)	    = Just(tyvar, ty)
    splitFAT_m _			    = Nothing
sof's avatar
sof committed
516

517
splitForAllTys :: Type -> ([TyVar], Type)
518
splitForAllTys ty = split ty ty []
519
   where
520
     split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
521
522
     split orig_ty (ForAllTy tv ty)  tvs = split ty ty (tv:tvs)
     split orig_ty t		     tvs = (reverse tvs, orig_ty)
523
524
525

dropForAlls :: Type -> Type
dropForAlls ty = snd (splitForAllTys ty)
526
527
\end{code}

528
-- (mkPiType now in CoreUtils)
529

530
531
532
533
534
535
536
applyTy, applyTys
~~~~~~~~~~~~~~~~~
Instantiate a for-all type with one or more type arguments.
Used when we have a polymorphic function applied to type args:
	f t1 t2
Then we use (applyTys type-of-f [t1,t2]) to compute the type of
the expression. 
537

538
\begin{code}
539
applyTy :: Type -> Type -> Type
540
541
542
applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg
applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty
applyTy other		 arg = panic "applyTy"
543

544
applyTys :: Type -> [Type] -> Type
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
-- This function is interesting because 
--	a) the function may have more for-alls than there are args
--	b) less obviously, it may have fewer for-alls
-- For case (b) think of 
--	applyTys (forall a.a) [forall b.b, Int]
-- This really can happen, via dressing up polymorphic types with newtype
-- clothing.  Here's an example:
--	newtype R = R (forall a. a->a)
--	foo = case undefined :: R of
--		R f -> f ()

applyTys orig_fun_ty []      = orig_fun_ty
applyTys orig_fun_ty arg_tys 
  | n_tvs == n_args 	-- The vastly common case
  = substTyWith tvs arg_tys rho_ty
  | n_tvs > n_args 	-- Too many for-alls
  = substTyWith (take n_args tvs) arg_tys 
		(mkForAllTys (drop n_args tvs) rho_ty)
  | otherwise		-- Too many type args
564
  = ASSERT2( n_tvs > 0, ppr orig_fun_ty )	-- Zero case gives infnite loop!
565
566
567
568
569
570
    applyTys (substTyWith tvs (take n_tvs arg_tys) rho_ty)
	     (drop n_tvs arg_tys)
  where
    (tvs, rho_ty) = splitForAllTys orig_fun_ty 
    n_tvs = length tvs
    n_args = length arg_tys     
571
\end{code}
572

573

574
575
%************************************************************************
%*									*
576
\subsection{Source types}
577
578
%*									*
%************************************************************************
579

580
581
A "source type" is a type that is a separate type as far as the type checker is
concerned, but which has low-level representation as far as the back end is concerned.
582

583
Source types are always lifted.
584

585
The key function is predTypeRep which gives the representation of a source type:
586
587

\begin{code}
588
mkPredTy :: PredType -> Type
589
mkPredTy pred = PredTy pred
590
591

mkPredTys :: ThetaType -> [Type]
592
593
594
595
596
mkPredTys preds = map PredTy preds

predTypeRep :: PredType -> Type
-- Convert a PredType to its "representation type";
-- the post-type-checking type used by all the Core passes of GHC.
597
-- Unwraps only the outermost level; for example, the result might
598
-- be a newtype application
599
600
predTypeRep (IParam _ ty)     = ty
predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys
601
	-- Result might be a newtype application, but the consumer will
602
	-- look through that too if necessary
603
predTypeRep (EqPred ty1 ty2) = pprPanic "predTypeRep" (ppr (EqPred ty1 ty2))
604
\end{code}
605
606


607
608
609
610
611
%************************************************************************
%*									*
		NewTypes
%*									*
%************************************************************************
612

613
614
615
\begin{code}
splitRecNewType_maybe :: Type -> Maybe Type
-- Sometimes we want to look through a recursive newtype, and that's what happens here
616
-- It only strips *one layer* off, so the caller will usually call itself recursively
617
-- Only applied to types of kind *, hence the newtype is always saturated
618
619
splitRecNewType_maybe ty | Just ty' <- coreView ty = splitRecNewType_maybe ty'
splitRecNewType_maybe (TyConApp tc tys)
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
620
  | isClosedNewTyCon tc
621
622
623
624
  = ASSERT( tys `lengthIs` tyConArity tc )	-- splitRecNewType_maybe only be applied 
						-- 	to *types* (of kind *)
    ASSERT( isRecursiveTyCon tc ) 		-- Guaranteed by coreView
    case newTyConRhs tc of
625
626
627
	(tvs, rep_ty) -> ASSERT( length tvs == length tys )
			 Just (substTyWith tvs tys rep_ty)
	
628
splitRecNewType_maybe other = Nothing
629
630
631



632
633
\end{code}

634

635
636
637
638
639
640
641
642
643
%************************************************************************
%*									*
\subsection{Kinds and free variables}
%*									*
%************************************************************************

---------------------------------------------------------------------
		Finding the kind of a type
		~~~~~~~~~~~~~~~~~~~~~~~~~~
644
\begin{code}
645
typeKind :: Type -> Kind
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
typeKind (TyConApp tycon tys) = ASSERT( not (isCoercionTyCon tycon) )
				   -- We should be looking for the coercion kind,
				   -- not the type kind
				foldr (\_ k -> kindFunResult k) (tyConKind tycon) tys
typeKind (NoteTy _ ty)	      = typeKind ty
typeKind (PredTy pred)	      = predKind pred
typeKind (AppTy fun arg)      = kindFunResult (typeKind fun)
typeKind (ForAllTy tv ty)     = typeKind ty
typeKind (TyVarTy tyvar)      = tyVarKind tyvar
typeKind (FunTy arg res)
    -- Hack alert.  The kind of (Int -> Int#) is liftedTypeKind (*), 
    --              not unliftedTypKind (#)
    -- The only things that can be after a function arrow are
    --   (a) types (of kind openTypeKind or its sub-kinds)
    --   (b) kinds (of super-kind TY) (e.g. * -> (* -> *))
    | isTySuperKind k         = k
    | otherwise               = ASSERT( isSubOpenTypeKind k) liftedTypeKind 
    where
      k = typeKind res

predKind :: PredType -> Kind
predKind (EqPred {}) = coSuperKind	-- A coercion kind!
predKind (ClassP {}) = liftedTypeKind	-- Class and implicitPredicates are
predKind (IParam {}) = liftedTypeKind 	-- always represented by lifted types
670
671
672
\end{code}


673
674
675
---------------------------------------------------------------------
		Free variables of a type
		~~~~~~~~~~~~~~~~~~~~~~~~
676
\begin{code}
677
tyVarsOfType :: Type -> TyVarSet
678
-- NB: for type synonyms tyVarsOfType does *not* expand the synonym
679
tyVarsOfType (TyVarTy tv)		= unitVarSet tv
680
tyVarsOfType (TyConApp tycon tys)	= tyVarsOfTypes tys
681
tyVarsOfType (NoteTy (FTVNote tvs) ty2) = tvs
682
tyVarsOfType (PredTy sty)		= tyVarsOfPred sty
683
684
tyVarsOfType (FunTy arg res)		= tyVarsOfType arg `unionVarSet` tyVarsOfType res
tyVarsOfType (AppTy fun arg)		= tyVarsOfType fun `unionVarSet` tyVarsOfType arg
685
tyVarsOfType (ForAllTy tyvar ty)	= delVarSet (tyVarsOfType ty) tyvar
686

687
tyVarsOfTypes :: [Type] -> TyVarSet
688
689
tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys

690
tyVarsOfPred :: PredType -> TyVarSet
691
692
693
tyVarsOfPred (IParam _ ty)    = tyVarsOfType ty
tyVarsOfPred (ClassP _ tys)   = tyVarsOfTypes tys
tyVarsOfPred (EqPred ty1 ty2) = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
694
695

tyVarsOfTheta :: ThetaType -> TyVarSet
696
tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet
697

698
-- Add a Note with the free tyvars to the top of the type
699
addFreeTyVars :: Type -> Type
700
701
addFreeTyVars ty@(NoteTy (FTVNote _) _)      = ty
addFreeTyVars ty			     = NoteTy (FTVNote (tyVarsOfType ty)) ty
702
\end{code}
703

704

705
706
707
708
709
%************************************************************************
%*									*
\subsection{TidyType}
%*									*
%************************************************************************
710

711
712
tidyTy tidies up a type for printing in an error message, or in
an interface file.
713

714
It doesn't change the uniques at all, just the print names.
715
716

\begin{code}
717
718
719
tidyTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar)
tidyTyVarBndr (tidy_env, subst) tyvar
  = case tidyOccName tidy_env (getOccName name) of
720
      (tidy', occ') -> 	((tidy', subst'), tyvar')
721
722
723
		    where
			subst' = extendVarEnv subst tyvar tyvar'
			tyvar' = setTyVarName tyvar name'
724
			name'  = tidyNameOcc name occ'
725
726
  where
    name = tyVarName tyvar
727

728
729
730
tidyFreeTyVars :: TidyEnv -> TyVarSet -> TidyEnv
-- Add the free tyvars to the env in tidy form,
-- so that we can tidy the type they are free in
731
732
733
734
735
736
737
738
739
740
741
tidyFreeTyVars env tyvars = fst (tidyOpenTyVars env (varSetElems tyvars))

tidyOpenTyVars :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar])
tidyOpenTyVars env tyvars = mapAccumL tidyOpenTyVar env tyvars

tidyOpenTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar)
-- Treat a new tyvar as a binder, and give it a fresh tidy name
tidyOpenTyVar env@(tidy_env, subst) tyvar
  = case lookupVarEnv subst tyvar of
	Just tyvar' -> (env, tyvar')		-- Already substituted
	Nothing	    -> tidyTyVarBndr env tyvar	-- Treat it as a binder
742

743
744
745
tidyType :: TidyEnv -> Type -> Type
tidyType env@(tidy_env, subst) ty
  = go ty
746
  where
747
748
749
    go (TyVarTy tv)	    = case lookupVarEnv subst tv of
				Nothing  -> TyVarTy tv
				Just tv' -> TyVarTy tv'
750
751
    go (TyConApp tycon tys) = let args = map go tys
			      in args `seqList` TyConApp tycon args
sof's avatar
sof committed
752
    go (NoteTy note ty)     = (NoteTy $! (go_note note)) $! (go ty)
753
    go (PredTy sty)	    = PredTy (tidyPred env sty)
sof's avatar
sof committed
754
755
756
    go (AppTy fun arg)	    = (AppTy $! (go fun)) $! (go arg)
    go (FunTy fun arg)	    = (FunTy $! (go fun)) $! (go arg)
    go (ForAllTy tv ty)	    = ForAllTy tvp $! (tidyType envp ty)
757
			      where
758
			        (envp, tvp) = tidyTyVarBndr env tv
759
760
761

    go_note note@(FTVNote ftvs) = note	-- No need to tidy the free tyvars

762
tidyTypes env tys = map (tidyType env) tys
763

764
765
766
tidyPred :: TidyEnv -> PredType -> PredType
tidyPred env (IParam n ty)     = IParam n (tidyType env ty)
tidyPred env (ClassP clas tys) = ClassP clas (tidyTypes env tys)
767
tidyPred env (EqPred ty1 ty2)  = EqPred (tidyType env ty1) (tidyType env ty2)
768
769
770
\end{code}


771
@tidyOpenType@ grabs the free type variables, tidies them
772
773
774
775
776
777
778
and then uses @tidyType@ to work over the type itself

\begin{code}
tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type)
tidyOpenType env ty
  = (env', tidyType env' ty)
  where
779
    env' = tidyFreeTyVars env (tyVarsOfType ty)
780
781
782
783
784
785

tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type])
tidyOpenTypes env tys = mapAccumL tidyOpenType env tys

tidyTopType :: Type -> Type
tidyTopType ty = tidyType emptyTidyEnv ty
786
787
\end{code}

788
\begin{code}
789

790
tidyKind :: TidyEnv -> Kind -> (TidyEnv, Kind)
791
tidyKind env k = tidyOpenType env k
792
793
794

\end{code}

795

796
797
%************************************************************************
%*									*
798
\subsection{Liftedness}
799
800
801
%*									*
%************************************************************************

802
\begin{code}
803
isUnLiftedType :: Type -> Bool
804
805
806
807
808
809
	-- isUnLiftedType returns True for forall'd unlifted types:
	--	x :: forall a. Int#
	-- I found bindings like these were getting floated to the top level.
	-- They are pretty bogus types, mind you.  It would be better never to
	-- construct them

810
isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty'
811
812
813
isUnLiftedType (ForAllTy tv ty)  = isUnLiftedType ty
isUnLiftedType (TyConApp tc _)   = isUnLiftedTyCon tc
isUnLiftedType other		 = False	
814

815
isUnboxedTupleType :: Type -> Bool
816
817
818
isUnboxedTupleType ty = case splitTyConApp_maybe ty of
			   Just (tc, ty_args) -> isUnboxedTupleTyCon tc
			   other	      -> False
819

820
-- Should only be applied to *types*; hence the assert
821
isAlgType :: Type -> Bool
822
isAlgType ty = case splitTyConApp_maybe ty of
sof's avatar
sof committed
823
			Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
824
825
					      isAlgTyCon tc
			other		   -> False
826
827
\end{code}

828
829
830
831
832
833
834
835
@isStrictType@ computes whether an argument (or let RHS) should
be computed strictly or lazily, based only on its type.
Works just like isUnLiftedType, except that it has a special case 
for dictionaries.  Since it takes account of ClassP, you might think
this function should be in TcType, but isStrictType is used by DataCon,
which is below TcType in the hierarchy, so it's convenient to put it here.

\begin{code}
836
837
isStrictType (PredTy pred)     = isStrictPred pred
isStrictType ty | Just ty' <- coreView ty = isStrictType ty'
838
839
840
841
842
843
isStrictType (ForAllTy tv ty)  = isStrictType ty
isStrictType (TyConApp tc _)   = isUnLiftedTyCon tc
isStrictType other	       = False	

isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas))
isStrictPred other	     = False
844
845
846
847
848
849
850
851
852
853
854
855
	-- We may be strict in dictionary types, but only if it 
	-- has more than one component.
	-- [Being strict in a single-component dictionary risks
	--  poking the dictionary component, which is wrong.]
\end{code}

\begin{code}
isPrimitiveType :: Type -> Bool
-- Returns types that are opaque to Haskell.
-- Most of these are unlifted, but now that we interact with .NET, we
-- may have primtive (foreign-imported) types that are lifted
isPrimitiveType ty = case splitTyConApp_maybe ty of
sof's avatar
sof committed
856
			Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc )
857
858
859
860
					      isPrimTyCon tc
			other		   -> False
\end{code}

861

862
863
864
865
866
867
868
869
870
871
872
873
%************************************************************************
%*									*
\subsection{Sequencing on types
%*									*
%************************************************************************

\begin{code}
seqType :: Type -> ()
seqType (TyVarTy tv) 	  = tv `seq` ()
seqType (AppTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (FunTy t1 t2) 	  = seqType t1 `seq` seqType t2
seqType (NoteTy note t2)  = seqNote note `seq` seqType t2
874
seqType (PredTy p) 	  = seqPred p
875
876
877
878
879
880
881
882
883
seqType (TyConApp tc tys) = tc `seq` seqTypes tys
seqType (ForAllTy tv ty)  = tv `seq` seqType ty

seqTypes :: [Type] -> ()
seqTypes []       = ()
seqTypes (ty:tys) = seqType ty `seq` seqTypes tys

seqNote :: TyNote -> ()
seqNote (FTVNote set) = sizeUniqSet set `seq` ()
884

885
seqPred :: PredType -> ()
886
887
888
seqPred (ClassP c tys)   = c `seq` seqTypes tys
seqPred (IParam n ty)    = n `seq` seqType ty
seqPred (EqPred ty1 ty2) = seqType ty1 `seq` seqType ty2
889
890
891
892
893
\end{code}


%************************************************************************
%*									*
894
		Equality for Core types 
895
	(We don't use instances so that we know where it happens)
896
897
898
%*									*
%************************************************************************

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
Note that eqType works right even for partial applications of newtypes.
See Note [Newtype eta] in TyCon.lhs

\begin{code}
coreEqType :: Type -> Type -> Bool
coreEqType t1 t2
  = eq rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))

    eq env (TyVarTy tv1)       (TyVarTy tv2)     = rnOccL env tv1 == rnOccR env tv2
    eq env (ForAllTy tv1 t1)   (ForAllTy tv2 t2) = eq (rnBndr2 env tv1 tv2) t1 t2
    eq env (AppTy s1 t1)       (AppTy s2 t2)     = eq env s1 s2 && eq env t1 t2
    eq env (FunTy s1 t1)       (FunTy s2 t2)     = eq env s1 s2 && eq env t1 t2
    eq env (TyConApp tc1 tys1) (TyConApp tc2 tys2) 
	| tc1 == tc2, all2 (eq env) tys1 tys2 = True
			-- The lengths should be equal because
			-- the two types have the same kind
	-- NB: if the type constructors differ that does not 
	--     necessarily mean that the types aren't equal
	--     (synonyms, newtypes)
	-- Even if the type constructors are the same, but the arguments
	-- differ, the two types could be the same (e.g. if the arg is just
	-- ignored in the RHS).  In both these cases we fall through to an 
	-- attempt to expand one side or the other.

	-- Now deal with newtypes, synonyms, pred-tys
926
927
    eq env t1 t2 | Just t1' <- coreView t1 = eq env t1' t2 
		 | Just t2' <- coreView t2 = eq env t1 t2' 
928
929
930
931

	-- Fall through case; not equal!
    eq env t1 t2 = False
\end{code}
932

933

934
935
936
937
938
939
%************************************************************************
%*									*
		Comparision for source types 
	(We don't use instances so that we know where it happens)
%*									*
%************************************************************************
940

941
942
943
Note that 
	tcEqType, tcCmpType 
do *not* look through newtypes, PredTypes
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

\begin{code}
tcEqType :: Type -> Type -> Bool
tcEqType t1 t2 = isEqual $ cmpType t1 t2

tcEqTypes :: [Type] -> [Type] -> Bool
tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2

tcCmpType :: Type -> Type -> Ordering
tcCmpType t1 t2 = cmpType t1 t2

tcCmpTypes :: [Type] -> [Type] -> Ordering
tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2

tcEqPred :: PredType -> PredType -> Bool
tcEqPred p1 p2 = isEqual $ cmpPred p1 p2

tcCmpPred :: PredType -> PredType -> Ordering
tcCmpPred p1 p2 = cmpPred p1 p2

tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool
tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2
\end{code}

Now here comes the real worker

970
\begin{code}
971
972
973
974
975
976
977
978
979
980
981
982
983
984
cmpType :: Type -> Type -> Ordering
cmpType t1 t2 = cmpTypeX rn_env t1 t2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2))

cmpTypes :: [Type] -> [Type] -> Ordering
cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2))

cmpPred :: PredType -> PredType -> Ordering
cmpPred p1 p2 = cmpPredX rn_env p1 p2
  where
    rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfPred p1 `unionVarSet` tyVarsOfPred p2))
985

986
cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering	-- Main workhorse
987
988
cmpTypeX env t1 t2 | Just t1' <- tcView t1 = cmpTypeX env t1' t2
		   | Just t2' <- tcView t2 = cmpTypeX env t1 t2'
989

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
cmpTypeX env (TyVarTy tv1)       (TyVarTy tv2)       = rnOccL env tv1 `compare` rnOccR env tv2
cmpTypeX env (ForAllTy tv1 t1)   (ForAllTy tv2 t2)   = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2
cmpTypeX env (AppTy s1 t1)       (AppTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (FunTy s1 t1)       (FunTy s2 t2)       = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2
cmpTypeX env (PredTy p1)         (PredTy p2)         = cmpPredX env p1 p2
cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` cmpTypesX env tys1 tys2
cmpTypeX env t1			(NoteTy _ t2)	     = cmpTypeX env t1 t2

    -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy < PredTy
cmpTypeX env (AppTy _ _) (TyVarTy _) = GT
    
cmpTypeX env (FunTy _ _) (TyVarTy _) = GT
cmpTypeX env (FunTy _ _) (AppTy _ _) = GT
    
cmpTypeX env (TyConApp _ _) (TyVarTy _) = GT
cmpTypeX env (TyConApp _ _) (AppTy _ _) = GT
cmpTypeX env (TyConApp _ _) (FunTy _ _) = GT
    
cmpTypeX env (ForAllTy _ _) (TyVarTy _)    = GT
cmpTypeX env (ForAllTy _ _) (AppTy _ _)    = GT
cmpTypeX env (ForAllTy _ _) (FunTy _ _)    = GT
cmpTypeX env (ForAllTy _ _) (TyConApp _ _) = GT

cmpTypeX env (PredTy _)   t2		= GT

cmpTypeX env _ _ = LT

-------------
cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
cmpTypesX env []        []        = EQ
1020
cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
cmpTypesX env []        tys       = LT
cmpTypesX env ty        []        = GT

-------------
cmpPredX :: RnEnv2 -> PredType -> PredType -> Ordering
cmpPredX env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` cmpTypeX env ty1 ty2
	-- Compare types as well as names for implicit parameters
	-- This comparison is used exclusively (I think) for the
	-- finite map built in TcSimplify
cmpPredX env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` cmpTypesX env tys1 tys2
1031
cmpPredX env (IParam _ _)     (ClassP _ _)     = LT
1032
cmpPredX env (ClassP _ _)     (IParam _ _)     = GT
1033
cmpPredX env (EqPred ty1 ty2) (EqPred ty1' ty2') = (cmpTypeX env ty1 ty1') `thenCmp` (cmpTypeX env ty2 ty2')
1034
1035
1036
1037
1038
1039
1040
1041
\end{code}

PredTypes are used as a FM key in TcSimplify, 
so we take the easy path and make them an instance of Ord

\begin{code}
instance Eq  PredType where { (==)    = tcEqPred }
instance Ord PredType where { compare = tcCmpPred }
1042
1043
\end{code}

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

%************************************************************************
%*									*
		Type substitutions
%*									*
%************************************************************************

\begin{code}
data TvSubst 		
  = TvSubst InScopeSet 	-- The in-scope type variables
1054
	    TvSubstEnv	-- The substitution itself
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
			-- See Note [Apply Once]

{- ----------------------------------------------------------
	 	Note [Apply Once]

We use TvSubsts to instantiate things, and we might instantiate
	forall a b. ty
\with the types
	[a, b], or [b, a].
So the substition might go [a->b, b->a].  A similar situation arises in Core
when we find a beta redex like
	(/\ a /\ b -> e) b a
Then we also end up with a substition that permutes type variables. Other
variations happen to; for example [a -> (a, b)].  

	***************************************************
	*** So a TvSubst must be applied precisely once ***
	***************************************************

A TvSubst is not idempotent, but, unlike the non-idempotent substitution
we use during unifications, it must not be repeatedly applied.
-------------------------------------------------------------- -}


type TvSubstEnv = TyVarEnv Type
	-- A TvSubstEnv is used both inside a TvSubst (with the apply-once
	-- invariant discussed in Note [Apply Once]), and also independently
	-- in the middle of matching, and unification (see Types.Unify)
	-- So you have to look at the context to know if it's idempotent or
	-- apply-once or whatever
1085
1086
emptyTvSubstEnv :: TvSubstEnv
emptyTvSubstEnv = emptyVarEnv
1087

1088
1089
1090
composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv
-- (compose env1 env2)(x) is env1(env2(x)); i.e. apply env2 then env1
-- It assumes that both are idempotent
1091
-- Typically, env1 is the refinement to a base substitution env2
1092
1093
1094
1095
1096
composeTvSubst in_scope env1 env2
  = env1 `plusVarEnv` mapVarEnv (substTy subst1) env2
	-- First apply env1 to the range of env2
	-- Then combine the two, making sure that env1 loses if
	-- both bind the same variable; that's why env1 is the
1097
	--  *left* argument to plusVarEnv, because the right arg wins
1098
1099
1100
  where
    subst1 = TvSubst in_scope env1

1101
emptyTvSubst = TvSubst emptyInScopeSet emptyVarEnv
1102

1103
1104
1105
isEmptyTvSubst :: TvSubst -> Bool
isEmptyTvSubst (TvSubst _ env) = isEmptyVarEnv env

1106
1107
1108
mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst
mkTvSubst = TvSubst

1109
1110
1111
1112
1113
1114
1115
1116
1117
getTvSubstEnv :: TvSubst -> TvSubstEnv
getTvSubstEnv (TvSubst _ env) = env

getTvInScope :: TvSubst -> InScopeSet
getTvInScope (TvSubst in_scope _) = in_scope

isInScope :: Var -> TvSubst -> Bool
isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope

1118
1119
1120
notElemTvSubst :: TyVar -> TvSubst -> Bool
notElemTvSubst tv (TvSubst _ env) = not (tv `elemVarEnv` env)

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst
setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env

extendTvInScope :: TvSubst -> [Var] -> TvSubst
extendTvInScope (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env

extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst
extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty)

extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst
extendTvSubstList (TvSubst in_scope env) tvs tys 
  = TvSubst in_scope (extendVarEnvList env (tvs `zip` tys))

1134
-- mkOpenTvSubst and zipOpenTvSubst generate the in-scope set from
1135
1136
1137
-- the types given; but it's just a thunk so with a bit of luck
-- it'll never be evaluated

1138
1139
mkOpenTvSubst :: TvSubstEnv -> TvSubst
mkOpenTvSubst env = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env
1140

1141
1142
zipOpenTvSubst :: [TyVar] -> [Type] -> TvSubst
zipOpenTvSubst tyvars tys 
1143
1144
1145
1146
1147
#ifdef DEBUG
  | length tyvars /= length tys
  = pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
  | otherwise
#endif
1148
1149
1150
1151
1152
1153
1154
1155
1156
  = TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys)

-- mkTopTvSubst is called when doing top-level substitutions.
-- Here we expect that the free vars of the range of the
-- substitution will be empty.
mkTopTvSubst :: [(TyVar, Type)] -> TvSubst
mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs)

zipTopTvSubst :: [TyVar] -> [Type] -> TvSubst
1157
1158
1159
1160
1161
1162
1163
zipTopTvSubst tyvars tys 
#ifdef DEBUG
  | length tyvars /= length tys
  = pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst
  | otherwise
#endif
  = TvSubst emptyInScopeSet (zipTyEnv tyvars tys)
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178