Parser.y.pp 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41

import FastString
import Maybes		( orElse )
42
import Monad            ( when )
43
import Outputable
44
import GLAEXTS
45 46 47
}

{-
48 49 50 51 52 53 54 55 56 57 58
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

59
-----------------------------------------------------------------------------
60
Conflicts: 36 shift/reduce (1.25)
61

62
10 for abiguity in 'if x then y else z + 1'		[State 178]
63 64 65
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

66
1 for ambiguity in 'if x then y else z :: T'		[State 178]
67 68
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

69
4 for ambiguity in 'if x then y else z -< e'		[State 178]
70
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
71 72 73 74 75 76 77 78 79 80
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
81

82
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
83 84
	(e::a) `b` c, or 
	(e :: (a `b` c))
85
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
86
    Same duplication between states 11 and 253 as the previous case
87

88
1 for ambiguity in 'let ?x ...'				[State 329]
89 90 91 92
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

93
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
94 95 96 97
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

98
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
117
     -- This doesn't seem to work anymore -=chak
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

180
 'forall'	{ L _ ITforall }		-- GHC extension keywords
181 182 183 184 185 186 187 188
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
189
 'iso'		{ L _ ITiso }
190
 'family'	{ L _ ITfamily }
191 192 193 194 195 196
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

197 198 199
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension
 IPSPLITVARID  	{ L _ (ITsplitipvarid _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
 		    
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
287
%name parseType ctype
288
%partial parseHeader header
289
%tokentype { (Located Token) }
290 291
%%

292 293 294 295 296 297 298 299
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

300 301 302 303 304 305 306 307 308 309 310 311 312
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc ->
313
		   return (L loc (HsModule (Just $2) $4 (fst $6) (snd $6) $3)) }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
				(fst $2) (snd $2) Nothing)) }

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule (Just $2) $4 $6 [] $3)) }
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing)) }

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

353 354 355 356 357 358 359
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

360 361 362 363 364
exportlist  :: { [LIE RdrName] }
	: ','					{ [] }
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
365 366
	:  export				{ [$1] }
	|  export ',' exportlist		{ $1 : $3 }
367 368 369 370 371 372 373 374 375 376 377 378 379
	|  {- empty -}				{ [] }

   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
380 381
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
382

383 384 385 386 387 388 389 390
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
391
qcname 	:: { Located RdrName }	-- Variable or data constructor
392 393
	:  qvar				{ $1 }
	|  qcon				{ $1 }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
419
maybeas :: { Located (Maybe ModuleName) }
420 421 422 423 424 425 426 427
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
428 429
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

450
topdecls :: { OrdList (LHsDecl RdrName) }
451
	: topdecls ';' topdecl		{ $1 `appOL` $3 }
452
	| topdecls ';'			{ $1 }
453
	| topdecl			{ $1 }
454

455
topdecl :: { OrdList (LHsDecl RdrName) }
456
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
457
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
458
	| 'instance' inst_type where
459 460 461
		{ let (binds, sigs, ats) = cvBindsAndSigs (unLoc $3)
		  in unitOL (L (comb3 $1 $2 $3) 
			    (InstD (InstDecl $2 binds sigs ats))) }
462 463 464 465
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
466 467
      	| decl					{ unLoc $1 }

468 469 470 471 472 473
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

474 475 476 477 478 479
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
	: 'class' tycl_hdr fds where
		{% do { let { (binds, sigs, ats)           = 
			        cvBindsAndSigs (unLoc $4)
480
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
481
                      ; checkTyVars tparms      -- only type vars allowed
482
		      ; checkKindSigs ats
483 484 485 486
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
					        (unLoc $3) sigs binds ats) } }

487
-- Type declarations (toplevel)
488 489
--
ty_decl :: { LTyClDecl RdrName }
490 491 492 493 494 495
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
496 497
	        --
		-- Note the use of type for the head; this allows
498 499 500 501 502 503 504 505 506 507
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs Nothing $4)) 
                      } }

           -- type family declarations
        | 'type' 'family' opt_iso type '::' kind
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
508
		--
509 510 511 512 513 514 515 516 517 518 519 520 521 522
 		{% do { (tc, tvs, _) <- checkSynHdr $4 False
		      ; return (L (comb3 $1 $4 $6) 
				  (TyFunction tc tvs $3 (unLoc $6)))
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
523

524
          -- ordinary data type or newtype declaration
525
	| data_or_newtype tycl_hdr constrs deriving
526
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
527
                      ; checkTyVars tparms    -- no type pattern
528 529 530 531
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
532 533
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
534

535
          -- ordinary GADT declaration
536
        | data_or_newtype tycl_hdr opt_kind_sig 
537
		 'where' gadt_constrlist
538
		 deriving
539
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
540
                      ; checkTyVars tparms    -- can have type pats
541 542
		      ; return $
			  L (comb4 $1 $2 $4 $5)
543 544 545
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) $3
			      (reverse (unLoc $5)) (unLoc $6)) } }

546
          -- data/newtype family
547 548 549 550 551 552 553 554
        | data_or_newtype 'family' tycl_hdr '::' kind
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                      ; checkTyVars tparms    -- no type pattern
		      ; return $
			  L (comb3 $1 $2 $5)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (Just (unLoc $5)) [] Nothing) } }

555
          -- data/newtype instance declaration
556 557 558 559 560 561 562 563 564 565
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

566
          -- GADT instance declaration
567 568 569 570 571 572 573 574 575
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			       $4 (reverse (unLoc $6)) (unLoc $7)) } }
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
-- Associate type declarations
--
at_decl :: { LTyClDecl RdrName }
           -- type family declarations
        : 'type' opt_iso type '::' kind
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; return (L (comb3 $1 $3 $5) 
				  (TyFunction tc tvs $2 (unLoc $5)))
		      } }

           -- type instance declarations
        | 'type' opt_iso type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { when $2 $ 
			  parseError (comb2 $1 $>) "Misplaced iso keyword"
		      ; (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }

          -- data/newtype family
        | data_or_newtype tycl_hdr '::' kind
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; checkTyVars tparms    -- no type pattern
		      ; return $
			  L (comb3 $1 $2 $4)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (Just (unLoc $4)) [] Nothing) } }

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			     $3 (reverse (unLoc $5)) (unLoc $6)) } }

633 634 635 636
opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

637 638 639 640
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

641 642
opt_kind_sig :: { Maybe Kind }
	: 				{ Nothing }
643
	| '::' kind			{ Just (unLoc $2) }
644

645
-- tycl_hdr parses the header of a class or data type decl,
646 647 648 649
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
650
--      T Int [a]			-- for associated types
651
-- Rather a lot of inlining here, else we get reduce/reduce errors
652 653 654
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
655
		       [LHsType RdrName]) }
656
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
657 658 659 660 661
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

-----------------------------------------------------------------------------
-- Nested declarations

662 663 664
-- Type declaration or value declaration
--
tydecl  :: { Located (OrdList (LHsDecl RdrName)) }
665
tydecl  : at_decl		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	| decl                          { $1 }

tydecls	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: tydecls ';' tydecl		{ LL (unLoc $1 `appOL` unLoc $3) }
	| tydecls ';'			{ LL (unLoc $1) }
	| tydecl			{ $1 }
	| {- empty -}			{ noLoc nilOL }


tydecllist 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'            tydecls '}'	{ LL (unLoc $2) }
	|     vocurly    tydecls close	{ $2 }

-- Form of the body of class and instance declarations
--
where 	:: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' tydecllist		{ LL (unLoc $2) }
	| {- empty -}			{ noLoc nilOL }

688
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
689
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
690
	| decls ';'			{ LL (unLoc $1) }
691
	| decl				{ $1 }
692
	| {- empty -}			{ noLoc nilOL }
693 694


695
decllist :: { Located (OrdList (LHsDecl RdrName)) }
696 697 698
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

699 700
-- Binding groups other than those of class and instance declarations
--
701
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
702
						-- No type declarations
703 704 705
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
706

707
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
708
						-- No type declarations
709
	: 'where' binds			{ LL (unLoc $2) }
710
	| {- empty -}			{ noLoc emptyLocalBinds }
711 712 713 714 715


-----------------------------------------------------------------------------
-- Transformation Rules

716
rules	:: { OrdList (LHsDecl RdrName) }
717
	:  rules ';' rule			{ $1 `snocOL` $3 }
718
        |  rules ';'				{ $1 }
719 720
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
721

722
rule  	:: { LHsDecl RdrName }
723
	: STRING activation rule_forall infixexp '=' exp
724 725
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
726
				  $3 $4 placeHolderNames $6 placeHolderNames) }
727

728 729 730
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

751
deprecations :: { OrdList (LHsDecl RdrName) }
752
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
753
	| deprecations ';' 			{ $1 }
754 755
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
756 757

-- SUP: TEMPORARY HACK, not checking for `module Foo'
758
deprecation :: { OrdList (LHsDecl RdrName) }
759
	: depreclist STRING
760 761
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
762 763 764 765 766 767


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
768
fdecl : 'import' callconv safety fspec
769
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
770
      | 'import' callconv        fspec		
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
       : STRING var '::' sigtype      { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtype      { LL (noLoc nilFS, $1, $3) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

804
sigtypes1 :: { [LHsType RdrName] }
805
	: sigtype			{ [ $1 ] }
806
	| sigtype ',' sigtypes1		{ $1 : $3 }
807 808 809 810 811 812 813 814 815 816 817 818

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

819 820 821 822
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
838
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
839 840 841 842 843
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
844
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
845
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
846 847 848 849 850 851 852

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
853
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
854
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
855
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
856
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
857 858
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
859
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
860
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
861 862 863 864 865 866 867 868
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
869
	: sigtype			{% checkInstType $1 }
870

871 872 873 874
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

875 876 877 878 879
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
880 881
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
882 883 884 885 886 887 888

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
889 890
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

911
kind	:: { Located Kind }
912
	: akind			{ $1 }
913
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
914

915 916 917 918
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
919 920 921 922 923


-----------------------------------------------------------------------------
-- Datatype declarations

924 925 926 927 928 929
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
930
        | gadt_constrs ';' 		{ $1 }
931 932
        | gadt_constr                   { L1 [$1] } 

933 934 935 936 937 938
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

939
gadt_constr :: { LConDecl RdrName }
940
        : con '::' sigtype
941 942 943
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
944
        -- XXX revisit audreyt
945 946 947 948 949 950 951 952 953 954 955 956
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3)) }
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6)) }
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4)) }
-}

957 958 959 960 961 962 963 964 965 966 967 968

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
        | '=' constrs1                  { LL (unLoc $2) }

constrs1 :: { Located [LConDecl RdrName] }
	: constrs1 '|' constr		{ LL ($3 : unLoc $1) }
	| constr			{ L1 [$1] }

constr :: { LConDecl RdrName }
	: forall context '=>' constr_stuff	
		{ let (con,details) = unLoc $4 in 
969
		  LL (ConDecl con Explicit (unLoc $1) $2 details ResTyH98) }
970 971
	| forall constr_stuff
		{ let (con,details) = unLoc $2 in 
972
		  LL (ConDecl con Explicit (unLoc $1) (noLoc []) details ResTyH98) }
973 974 975 976 977 978

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
979 980 981 982 983 984 985
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
986 987 988
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
989
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
990

991 992 993 994
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

995 996 997 998 999
fielddecls :: { [([Located RdrName], LBangType RdrName)] }
	: fielddecl ',' fielddecls	{ unLoc $1 : $3 }
	| fielddecl			{ [unLoc $1] }

fielddecl :: { Located ([Located RdrName], LBangType RdrName) }
1000
	: sig_vars '::' ctype		{ LL (reverse (unLoc $1), $3) }
1001

1002 1003 1004 1005
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1006 1007
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1008 1009 1010
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1011 1012
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1039
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1040
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1041 1042 1043 1044
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
					        return (LL $ unitOL $ LL $ ValD $ 
							PatBind (LL $ BangPat pat) (unLoc $3)
								placeHolderType placeHolderNames) } }
1045
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1046
						return (LL $ unitOL (LL $ ValD r)) } }
1047 1048

rhs	:: { Located (GRHSs RdrName) }
1049 1050
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1051 1052 1053 1054 1055 1056

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
1057
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1058

1059
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
1060 1061
	: infixexp '::' sigtype
				{% do s <- checkValSig $1 $3; 
1062
				      return (LL $ unitOL (LL $ SigD s)) }
1063 1064
		-- See the above notes for why we need infixexp here
	| var ',' sig_vars '::' sigtype	
1065
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
1066
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
1067 1068
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
1069
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
1070
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
1071
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
1072
					    | t <- $4] }
1073
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
1074
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
1075
					    | t <- $5] }
1076
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
1077
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
1078 1079 1080 1081 1082 1083

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
1084 1085 1086 1087
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
1088 1089 1090 1091 1092 1093 1094 1095 1096
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
1097
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
1098
					    (GRHSs (unguardedRHS $6) emptyLocalBinds
1099
							)])) }
1100 1101
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
1102
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
1103 1104 1105
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
1106 1107
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
1108
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
1109 1110
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1140
--	| '!' aexp			{ LL $ EBangPat $2 }
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1164
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
1165 1166 1167 1168 1169 1170 1171
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
1172
	-- Template Haskell Extension
1173
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
1174
					(L1 $ HsVar (mkUnqual varName 
1175 1176 1177
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

1178
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1179
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1199 1200 1201 1202 1203 1204
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1205

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1206 1207 1208 1209 1210 1211
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1212
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1213 1214
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1215 1216 1217 1218 1219 1220 1221 1222 1223


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1224
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1225
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1226 1227 1228 1229 1230
	| texp '..'		{ LL $ ArithSeq noPostTcExpr (From $1) }
	| texp ',' exp '..' 	{ LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
	| texp '..' exp	 	{ LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
	| texp ',' exp '..' exp	{ LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| texp pquals		{ sL (comb2 $1 $>) $ mkHsDo ListComp (reverse (unLoc $2)) $1 }
1231 1232

lexps :: { Located [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1233 1234
	: lexps ',' texp 		{ LL ($3 : unLoc $1) }
	| texp ',' texp			{ LL [$3,$1] }
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

-----------------------------------------------------------------------------
-- List Comprehensions

pquals :: { Located [LStmt RdrName] }	-- Either a singleton ParStmt, 
					-- or a reversed list of Stmts
	: pquals1			{ case unLoc $1 of
					    [qs] -> L1 qs
					    qss  -> L1 [L1 (ParStmt stmtss)]
						 where
						    stmtss = [ (reverse qs, undefined) 
						    	     | qs <- qss ]
					}
			
pquals1 :: { Located [[LStmt RdrName]] }
	: pquals1 '|' quals		{ LL (unLoc $3 : unLoc $1) }
	| '|' quals			{ L (getLoc $2) [unLoc $2] }

quals :: { Located [LStmt RdrName] }
	: quals ',' qual		{ LL ($3 : unLoc $1) }
	| qual				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { LHsExpr RdrName }
	: 				{ noLoc (ExplicitPArr placeHolderType []) }
	| exp				{ L1 $ ExplicitPArr placeHolderType [$1] }
	| lexps 			{ L1 $ ExplicitPArr placeHolderType 
						       (reverse (unLoc $1)) }
1270 1271 1272
	| exp '..' exp	 		{ LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
	| exp ',' exp '..' exp		{ LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| exp pquals			{ sL (comb2 $1 $>) $ mkHsDo PArrComp (reverse (unLoc $2)) $1 }
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

-- We are reusing `lexps' and `pquals' from the list case.

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located [LMatch RdrName] }
	: '{'            alts '}'	{ LL (reverse (unLoc $2)) }
	|     vocurly    alts  close	{ L (getLoc $2) (reverse (unLoc $2)) }

alts    :: { Located [LMatch RdrName] }
        : alts1				{ L1 (unLoc $1) }
	| ';' alts			{ LL (unLoc $2) }

alts1 	:: { Located [LMatch RdrName] }
	: alts1 ';' alt			{ LL ($3 : unLoc $1) }
	| alts1 ';'			{ LL (unLoc $1) }
	| alt				{ L1 [$1] }

alt 	:: { LMatch RdrName }
	: infixexp opt_sig alt_rhs	{%  checkPattern $1 >>= \p ->
			    		    return (LL (Match [p] $2 (unLoc $3))) }
1295 1296
	| '!' infixexp opt_sig alt_rhs	{%  checkPattern $2 >>= \p ->
			    		    return (LL (Match [LL $ BangPat p] $3 (unLoc $4))) }
1297 1298

alt_rhs :: { Located (GRHSs RdrName) }
1299
	: ralt wherebinds		{ LL (GRHSs (unLoc $1) (unLoc $2)) }
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

ralt :: { Located [LGRHS RdrName] }
	: '->' exp			{ LL (unguardedRHS $2) }
	| gdpats			{ L1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName] }
	: gdpats gdpat			{ LL ($2 : unLoc $1) }
	| gdpat				{ L1 [$1] }

gdpat	:: { LGRHS RdrName }
1310
	: '|' quals '->' exp	 	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1311 1312 1313 1314 1315 1316 1317 1318 1319

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located [LStmt RdrName] }
	: '{'         	stmts '}'	{ LL (unLoc $2) }
	|     vocurly   stmts close	{ $2 }

--	do { ;; s ; s ; ; s ;; }
1320
-- The last Stmt should be an expression, but that's hard to enforce
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
	: stmt stmts_help		{ LL ($1 : unLoc $2) }
	| ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

stmts_help :: { Located [LStmt RdrName] } -- might be empty
	: ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

-- For typing stmts at the GHCi prompt, where 
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
	: stmt				{ Just $1 }
	| {- nothing -}			{ Nothing }

stmt  :: { LStmt RdrName }
	: qual				{ $1 }
	| infixexp '->' exp		{% checkPattern $3 >>= \p ->
1342 1343
					   return (LL $ mkBindStmt p $1) }
  	| 'rec' stmtlist		{ LL $ mkRecStmt (unLoc $2) }
1344 1345

qual  :: { LStmt RdrName }
1346
	: exp '<-' exp			{% checkPattern $1 >>= \p ->
1347 1348
					   return (LL $ mkBindStmt p $3) }
	| exp				{ L1 $ mkExprStmt $1 }
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
  	| 'let' binds			{ LL $ LetStmt (unLoc $2) }

-----------------------------------------------------------------------------
-- Record Field Update/Construction

fbinds 	:: { HsRecordBinds RdrName }
	: fbinds1			{ $1 }
  	| {- empty -}			{ [] }

fbinds1	:: { HsRecordBinds RdrName }
	: fbinds1 ',' fbind		{ $3 : $1 }
	| fbind				{ [$1] }
  
fbind	:: { (Located RdrName, LHsExpr RdrName) }
	: qvar '=' exp			{ ($1,$3) }

-----------------------------------------------------------------------------
-- Implicit Parameter Bindings

dbinds 	:: { Located [LIPBind RdrName] }
	: dbinds ';' dbind		{ LL ($3 : unLoc $1) }
	| dbinds ';'			{ LL (unLoc $1) }
	| dbind				{ L1 [$1] }
--	| {- empty -}			{ [] }

dbind	:: { LIPBind RdrName }
dbind	: ipvar '=' exp			{ LL (IPBind (unLoc $1) $3) }

1377 1378 1379
ipvar	:: { Located (IPName RdrName) }
	: IPDUPVARID		{ L1 (Dupable (mkUnqual varName (getIPDUPVARID $1))) }
	| IPSPLITVARID		{ L1 (Linear  (mkUnqual varName (getIPSPLITVARID $1))) }
1380

1381 1382
-----------------------------------------------------------------------------
-- Deprecations
1383 1384 1385 1386 1387 1388 1389

depreclist :: { Located [RdrName] }
depreclist : deprec_var			{ L1 [unLoc $1] }
	   | deprec_var ',' depreclist	{ LL (unLoc $1 : unLoc $3) }

deprec_var :: { Located RdrName }
deprec_var : var			{ $1 }
1390
	   | con			{ $1 }
1391

1392 1393
-----------------------------------------
-- Data constructors
1394 1395 1396
qcon	:: { Located RdrName }
	: qconid		{ $1 }
	| '(' qconsym ')'	{ LL (unLoc $2) }
1397 1398
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
-- The case of '[:' ':]' is part of the production `parr'
1399

1400 1401 1402 1403
con	:: { Located RdrName }
	: conid			{ $1 }
	| '(' consym ')'	{ LL (unLoc $2) }
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
1404

1405 1406 1407 1408
sysdcon	:: { Located DataCon }	-- Wired in data constructors
	: '(' ')'		{ LL unitDataCon }
	| '(' commas ')'	{ LL $ tupleCon Boxed $2 }
	| '[' ']'		{ LL nilDataCon }
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

conop :: { Located RdrName }
	: consym		{ $1 }	
	| '`' conid '`'		{ LL (unLoc $2) }

qconop :: { Located RdrName }
	: qconsym		{ $1 }
	| '`' qconid '`'	{ LL (unLoc $2) }

-----------------------------------------------------------------------------
-- Type constructors

gtycon 	:: { Located RdrName }	-- A "general" qualified tycon
	: oqtycon			{ $1 }
	| '(' ')'			{ LL $ getRdrName unitTyCon }
	| '(' commas ')'		{ LL $ getRdrName (tupleTyCon Boxed $2) }
	| '(' '->' ')'			{ LL $ getRdrName funTyCon }
	| '[' ']'			{ LL $ listTyCon_RDR }
	| '[:' ':]'			{ LL $ parrTyCon_RDR }

oqtycon :: { Located RdrName }	-- An "ordinary" qualified tycon
	: qtycon			{ $1 }
 	| '(' qtyconsym ')'		{ LL (unLoc $2) }

qtyconop :: { Located RdrName }	-- Qualified or unqualified
	: qtyconsym			{ $1 }
	| '`' qtycon '`'		{ LL (unLoc $2) }

qtycon :: { Located RdrName }	-- Qualified or unqualified
	: QCONID			{ L1 $! mkQual tcClsName (getQCONID $1) }
	| tycon				{ $1 }

tycon 	:: { Located RdrName }	-- Unqualified
	: CONID				{ L1 $! mkUnqual tcClsName (getCONID $1) }

qtyconsym :: { Located RdrName }
	: QCONSYM			{ L1 $! mkQual tcClsName (getQCONSYM $1) }
	| tyconsym			{ $1 }

tyconsym :: { Located RdrName }
	: CONSYM			{ L1 $! mkUnqual tcClsName (getCONSYM $1) }

-----------------------------------------------------------------------------
1452
-- Operators
1453 1454 1455 1456 1457

op	:: { Located RdrName }   -- used in infix decls
	: varop			{ $1 }
	| conop 		{ $1 }

1458 1459 1460 1461
varop	:: { Located RdrName }
	: varsym		{ $1 }
	| '`' varid '`'		{ LL (unLoc $2) }

1462 1463 1464 1465 1466 1467 1468 1469
qop	:: { LHsExpr RdrName }   -- used in sections
	: qvarop		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

qopm	:: { LHsExpr RdrName }   -- used in sections
	: qvaropm		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

1470 1471 1472
qvarop :: { Located RdrName }
	: qvarsym		{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1473

1474 1475 1476
qvaropm :: { Located RdrName }
	: qvarsym_no_minus	{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1477

1478 1479
-----------------------------------------------------------------------------
-- Type variables
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489
tyvar   :: { Located RdrName }
tyvar   : tyvarid		{ $1 }
	| '(' tyvarsym ')'	{ LL (unLoc $2) }

tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`'	{ LL (unLoc $2) }
	| tyvarsym		{ $1 }

tyvarid	:: { Located RdrName }
1490 1491 1492 1493 1494 1495
	: VARID			{ L1 $! mkUnqual tvName (getVARID $1) }
	| special_id		{ L1 $! mkUnqual tvName (unLoc $1) }
	| 'unsafe' 		{ L1 $! mkUnqual tvName FSLIT("unsafe") }
	| 'safe' 		{ L1 $! mkUnqual tvName FSLIT("safe") }
	| 'threadsafe' 		{ L1 $! mkUnqual tvName FSLIT("threadsafe") }

1496 1497 1498 1499 1500 1501
tyvarsym :: { Located RdrName }
-- Does not include "!", because that is used for strictness marks
--	         or ".", because that separates the quantified type vars from the rest
--		 or "*", because that's used for kinds
tyvarsym : VARSYM		{ L1 $! mkUnqual tvName (getVARSYM $1) }

1502 1503 1504
-----------------------------------------------------------------------------
-- Variables 

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
var 	:: { Located RdrName }
	: varid			{ $1 }