RetainerProfile.c 71.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2001
 * Author: Sungwoo Park
 *
 * Retainer profiling.
 *
 * ---------------------------------------------------------------------------*/

#ifdef PROFILING

12 13 14 15 16 17 18
// Turn off inlining when debugging - it obfuscates things
#ifdef DEBUG
#define INLINE
#else
#define INLINE inline
#endif

Simon Marlow's avatar
Simon Marlow committed
19
#include "PosixSource.h"
20
#include "Rts.h"
Simon Marlow's avatar
Simon Marlow committed
21

22 23 24 25 26 27
#include "RtsUtils.h"
#include "RetainerProfile.h"
#include "RetainerSet.h"
#include "Schedule.h"
#include "Printer.h"
#include "Weak.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "sm/Sanity.h"
29 30 31
#include "Profiling.h"
#include "Stats.h"
#include "ProfHeap.h"
32
#include "Apply.h"
33
#include "Stable.h" /* markStableTables */
Simon Marlow's avatar
Simon Marlow committed
34
#include "sm/Storage.h" // for END_OF_STATIC_LIST
35 36 37 38 39 40 41 42 43 44 45 46 47 48

/*
  Note: what to change in order to plug-in a new retainer profiling scheme?
    (1) type retainer in ../includes/StgRetainerProf.h
    (2) retainer function R(), i.e., getRetainerFrom()
    (3) the two hashing functions, hashKeySingleton() and hashKeyAddElement(),
        in RetainerSet.h, if needed.
    (4) printRetainer() and printRetainerSetShort() in RetainerSet.c.
 */

/* -----------------------------------------------------------------------------
 * Declarations...
 * -------------------------------------------------------------------------- */

49
static nat retainerGeneration;  // generation
50

51
static nat numObjectVisited;    // total number of objects visited
52 53 54 55 56 57 58 59 60 61
static nat timesAnyObjectVisited; // number of times any objects are visited

/*
  The rs field in the profile header of any object points to its retainer
  set in an indirect way: if flip is 0, it points to the retainer set;
  if flip is 1, it points to the next byte after the retainer set (even
  for NULL pointers). Therefore, with flip 1, (rs ^ 1) is the actual
  pointer. See retainerSetOf().
 */

62
StgWord flip = 0;     // flip bit
63 64 65 66 67
                      // must be 0 if DEBUG_RETAINER is on (for static closures)

#define setRetainerSetToNull(c)   \
  (c)->header.prof.hp.rs = (RetainerSet *)((StgWord)NULL | flip)

68
static void retainStack(StgClosure *, retainer, StgPtr, StgPtr);
69
static void retainClosure(StgClosure *, StgClosure *, retainer);
70 71 72 73 74 75 76 77 78 79 80 81 82 83
#ifdef DEBUG_RETAINER
static void belongToHeap(StgPtr p);
#endif

#ifdef DEBUG_RETAINER
/*
  cStackSize records how many times retainStack() has been invoked recursively,
  that is, the number of activation records for retainStack() on the C stack.
  maxCStackSize records its max value.
  Invariants:
    cStackSize <= maxCStackSize
 */
static nat cStackSize, maxCStackSize;

84 85
static nat sumOfNewCost;        // sum of the cost of each object, computed
                                // when the object is first visited
86 87 88 89
static nat sumOfNewCostExtra;   // for those objects not visited during
                                // retainer profiling, e.g., MUT_VAR
static nat costArray[N_CLOSURE_TYPES];

90 91 92
nat sumOfCostLinear;            // sum of the costs of all object, computed
                                // when linearly traversing the heap after
                                // retainer profiling
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
nat costArrayLinear[N_CLOSURE_TYPES];
#endif

/* -----------------------------------------------------------------------------
 * Retainer stack - header
 *   Note:
 *     Although the retainer stack implementation could be separated *
 *     from the retainer profiling engine, there does not seem to be
 *     any advantage in doing that; retainer stack is an integral part
 *     of retainer profiling engine and cannot be use elsewhere at
 *     all.
 * -------------------------------------------------------------------------- */

typedef enum {
    posTypeStep,
    posTypePtrs,
    posTypeSRT,
110
    posTypeLargeSRT,
111 112 113 114 115 116 117 118 119 120
} nextPosType;

typedef union {
    // fixed layout or layout specified by a field in the closure
    StgWord step;

    // layout.payload
    struct {
    // See StgClosureInfo in InfoTables.h
#if SIZEOF_VOID_P == 8
121 122
        StgWord32 pos;
        StgWord32 ptrs;
123
#else
124 125
        StgWord16 pos;
        StgWord16 ptrs;
126
#endif
127
        StgPtr payload;
128 129 130 131
    } ptrs;

    // SRT
    struct {
132 133
        StgClosure **srt;
        StgWord    srt_bitmap;
134
    } srt;
135 136 137

    // Large SRT
    struct {
138 139
        StgLargeSRT *srt;
        StgWord offset;
140
    } large_srt;
141

142 143 144 145 146 147 148 149 150
} nextPos;

typedef struct {
    nextPosType type;
    nextPos next;
} stackPos;

typedef struct {
    StgClosure *c;
151
    retainer c_child_r;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    stackPos info;
} stackElement;

/*
  Invariants:
    firstStack points to the first block group.
    currentStack points to the block group currently being used.
    currentStack->free == stackLimit.
    stackTop points to the topmost byte in the stack of currentStack.
    Unless the whole stack is empty, stackTop must point to the topmost
    object (or byte) in the whole stack. Thus, it is only when the whole stack
    is empty that stackTop == stackLimit (not during the execution of push()
    and pop()).
    stackBottom == currentStack->start.
    stackLimit == currentStack->start + BLOCK_SIZE_W * currentStack->blocks.
  Note:
    When a current stack becomes empty, stackTop is set to point to
    the topmost element on the previous block group so as to satisfy
    the invariants described above.
 */
sof's avatar
sof committed
172
static bdescr *firstStack = NULL;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static bdescr *currentStack;
static stackElement *stackBottom, *stackTop, *stackLimit;

/*
  currentStackBoundary is used to mark the current stack chunk.
  If stackTop == currentStackBoundary, it means that the current stack chunk
  is empty. It is the responsibility of the user to keep currentStackBoundary
  valid all the time if it is to be employed.
 */
static stackElement *currentStackBoundary;

/*
  stackSize records the current size of the stack.
  maxStackSize records its high water mark.
  Invariants:
    stackSize <= maxStackSize
  Note:
    stackSize is just an estimate measure of the depth of the graph. The reason
    is that some heap objects have only a single child and may not result
    in a new element being pushed onto the stack. Therefore, at the end of
    retainer profiling, maxStackSize + maxCStackSize is some value no greater
    than the actual depth of the graph.
 */
#ifdef DEBUG_RETAINER
static int stackSize, maxStackSize;
#endif

// number of blocks allocated for one stack
#define BLOCKS_IN_STACK 1

/* -----------------------------------------------------------------------------
 * Add a new block group to the stack.
 * Invariants:
 *  currentStack->link == s.
 * -------------------------------------------------------------------------- */
208
static INLINE void
209 210 211 212 213 214 215 216 217 218 219 220 221 222
newStackBlock( bdescr *bd )
{
    currentStack = bd;
    stackTop     = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    stackBottom  = (stackElement *)bd->start;
    stackLimit   = (stackElement *)stackTop;
    bd->free     = (StgPtr)stackLimit;
}

/* -----------------------------------------------------------------------------
 * Return to the previous block group.
 * Invariants:
 *   s->link == currentStack.
 * -------------------------------------------------------------------------- */
223
static INLINE void
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
returnToOldStack( bdescr *bd )
{
    currentStack = bd;
    stackTop = (stackElement *)bd->free;
    stackBottom = (stackElement *)bd->start;
    stackLimit = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    bd->free = (StgPtr)stackLimit;
}

/* -----------------------------------------------------------------------------
 *  Initializes the traverse stack.
 * -------------------------------------------------------------------------- */
static void
initializeTraverseStack( void )
{
    if (firstStack != NULL) {
240
        freeChain(firstStack);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    }

    firstStack = allocGroup(BLOCKS_IN_STACK);
    firstStack->link = NULL;
    firstStack->u.back = NULL;

    newStackBlock(firstStack);
}

/* -----------------------------------------------------------------------------
 * Frees all the block groups in the traverse stack.
 * Invariants:
 *   firstStack != NULL
 * -------------------------------------------------------------------------- */
static void
closeTraverseStack( void )
{
    freeChain(firstStack);
    firstStack = NULL;
}

/* -----------------------------------------------------------------------------
 * Returns rtsTrue if the whole stack is empty.
 * -------------------------------------------------------------------------- */
265
static INLINE rtsBool
266 267 268 269 270
isEmptyRetainerStack( void )
{
    return (firstStack == currentStack) && stackTop == stackLimit;
}

sof's avatar
sof committed
271 272 273
/* -----------------------------------------------------------------------------
 * Returns size of stack
 * -------------------------------------------------------------------------- */
274
#ifdef DEBUG
275
W_
276
retainerStackBlocks( void )
sof's avatar
sof committed
277 278
{
    bdescr* bd;
279
    W_ res = 0;
sof's avatar
sof committed
280

281
    for (bd = firstStack; bd != NULL; bd = bd->link)
sof's avatar
sof committed
282 283 284 285
      res += bd->blocks;

    return res;
}
286
#endif
sof's avatar
sof committed
287

288 289 290 291
/* -----------------------------------------------------------------------------
 * Returns rtsTrue if stackTop is at the stack boundary of the current stack,
 * i.e., if the current stack chunk is empty.
 * -------------------------------------------------------------------------- */
292
static INLINE rtsBool
293 294 295 296 297 298 299 300 301 302
isOnBoundary( void )
{
    return stackTop == currentStackBoundary;
}

/* -----------------------------------------------------------------------------
 * Initializes *info from ptrs and payload.
 * Invariants:
 *   payload[] begins with ptrs pointers followed by non-pointers.
 * -------------------------------------------------------------------------- */
303
static INLINE void
304 305 306 307 308 309 310 311 312 313 314
init_ptrs( stackPos *info, nat ptrs, StgPtr payload )
{
    info->type              = posTypePtrs;
    info->next.ptrs.pos     = 0;
    info->next.ptrs.ptrs    = ptrs;
    info->next.ptrs.payload = payload;
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
315
static INLINE StgClosure *
316 317 318
find_ptrs( stackPos *info )
{
    if (info->next.ptrs.pos < info->next.ptrs.ptrs) {
319
        return (StgClosure *)info->next.ptrs.payload[info->next.ptrs.pos++];
320
    } else {
321
        return NULL;
322 323 324 325 326 327
    }
}

/* -----------------------------------------------------------------------------
 *  Initializes *info from SRT information stored in *infoTable.
 * -------------------------------------------------------------------------- */
328
static INLINE void
329
init_srt_fun( stackPos *info, StgFunInfoTable *infoTable )
330
{
331
    if (infoTable->i.srt_bitmap == (StgHalfWord)(-1)) {
332 333 334
        info->type = posTypeLargeSRT;
        info->next.large_srt.srt = (StgLargeSRT *)GET_FUN_SRT(infoTable);
        info->next.large_srt.offset = 0;
335
    } else {
336 337 338
        info->type = posTypeSRT;
        info->next.srt.srt = (StgClosure **)GET_FUN_SRT(infoTable);
        info->next.srt.srt_bitmap = infoTable->i.srt_bitmap;
339
    }
340 341
}

342
static INLINE void
343 344
init_srt_thunk( stackPos *info, StgThunkInfoTable *infoTable )
{
345
    if (infoTable->i.srt_bitmap == (StgHalfWord)(-1)) {
346 347 348
        info->type = posTypeLargeSRT;
        info->next.large_srt.srt = (StgLargeSRT *)GET_SRT(infoTable);
        info->next.large_srt.offset = 0;
349
    } else {
350 351 352
        info->type = posTypeSRT;
        info->next.srt.srt = (StgClosure **)GET_SRT(infoTable);
        info->next.srt.srt_bitmap = infoTable->i.srt_bitmap;
353
    }
354 355 356 357 358
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
359
static INLINE StgClosure *
360 361 362
find_srt( stackPos *info )
{
    StgClosure *c;
363
    StgWord bitmap;
364

365
    if (info->type == posTypeSRT) {
366 367 368 369
        // Small SRT bitmap
        bitmap = info->next.srt.srt_bitmap;
        while (bitmap != 0) {
            if ((bitmap & 1) != 0) {
370
#if defined(COMPILING_WINDOWS_DLL)
371 372 373 374
                if ((unsigned long)(*(info->next.srt.srt)) & 0x1)
                    c = (* (StgClosure **)((unsigned long)*(info->next.srt.srt)) & ~0x1);
                else
                    c = *(info->next.srt.srt);
375
#else
376
                c = *(info->next.srt.srt);
377
#endif
378 379 380 381 382 383 384 385 386 387
                bitmap = bitmap >> 1;
                info->next.srt.srt++;
                info->next.srt.srt_bitmap = bitmap;
                return c;
            }
            bitmap = bitmap >> 1;
            info->next.srt.srt++;
        }
        // bitmap is now zero...
        return NULL;
388 389
    }
    else {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        // Large SRT bitmap
        nat i = info->next.large_srt.offset;
        StgWord bitmap;

        // Follow the pattern from GC.c:scavenge_large_srt_bitmap().
        bitmap = info->next.large_srt.srt->l.bitmap[i / BITS_IN(W_)];
        bitmap = bitmap >> (i % BITS_IN(StgWord));
        while (i < info->next.large_srt.srt->l.size) {
            if ((bitmap & 1) != 0) {
                c = ((StgClosure **)info->next.large_srt.srt->srt)[i];
                i++;
                info->next.large_srt.offset = i;
                return c;
            }
            i++;
            if (i % BITS_IN(W_) == 0) {
                bitmap = info->next.large_srt.srt->l.bitmap[i / BITS_IN(W_)];
            } else {
                bitmap = bitmap >> 1;
            }
        }
        // reached the end of this bitmap.
        info->next.large_srt.offset = i;
        return NULL;
414 415 416 417 418 419 420 421 422 423 424 425 426 427
    }
}

/* -----------------------------------------------------------------------------
 *  push() pushes a stackElement representing the next child of *c
 *  onto the traverse stack. If *c has no child, *first_child is set
 *  to NULL and nothing is pushed onto the stack. If *c has only one
 *  child, *c_chlid is set to that child and nothing is pushed onto
 *  the stack.  If *c has more than two children, *first_child is set
 *  to the first child and a stackElement representing the second
 *  child is pushed onto the stack.

 *  Invariants:
 *     *c_child_r is the most recent retainer of *c's children.
428
 *     *c is not any of TSO, AP, PAP, AP_STACK, which means that
429 430 431
 *        there cannot be any stack objects.
 *  Note: SRTs are considered to  be children as well.
 * -------------------------------------------------------------------------- */
432
static INLINE void
433
push( StgClosure *c, retainer c_child_r, StgClosure **first_child )
434 435 436 437 438
{
    stackElement se;
    bdescr *nbd;      // Next Block Descriptor

#ifdef DEBUG_RETAINER
439
    // debugBelch("push(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
440 441 442
#endif

    ASSERT(get_itbl(c)->type != TSO);
443
    ASSERT(get_itbl(c)->type != AP_STACK);
444 445 446 447 448 449 450 451 452 453

    //
    // fill in se
    //

    se.c = c;
    se.c_child_r = c_child_r;

    // fill in se.info
    switch (get_itbl(c)->type) {
454
        // no child, no SRT
455 456 457
    case CONSTR_0_1:
    case CONSTR_0_2:
    case ARR_WORDS:
458 459
        *first_child = NULL;
        return;
460

461
        // one child (fixed), no SRT
462 463
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
464 465
        *first_child = ((StgMutVar *)c)->var;
        return;
466
    case THUNK_SELECTOR:
467 468
        *first_child = ((StgSelector *)c)->selectee;
        return;
469
    case BLACKHOLE:
470 471
        *first_child = ((StgInd *)c)->indirectee;
        return;
472 473
    case CONSTR_1_0:
    case CONSTR_1_1:
474 475
        *first_child = c->payload[0];
        return;
476

477 478 479
        // For CONSTR_2_0 and MVAR, we use se.info.step to record the position
        // of the next child. We do not write a separate initialization code.
        // Also we do not have to initialize info.type;
480

481 482
        // two children (fixed), no SRT
        // need to push a stackElement, but nothing to store in se.info
483
    case CONSTR_2_0:
484 485 486 487
        *first_child = c->payload[0];         // return the first pointer
        // se.info.type = posTypeStep;
        // se.info.next.step = 2;            // 2 = second
        break;
488

489 490
        // three children (fixed), no SRT
        // need to push a stackElement
491 492
    case MVAR_CLEAN:
    case MVAR_DIRTY:
493 494 495 496 497 498 499 500
        // head must be TSO and the head of a linked list of TSOs.
        // Shoule it be a child? Seems to be yes.
        *first_child = (StgClosure *)((StgMVar *)c)->head;
        // se.info.type = posTypeStep;
        se.info.next.step = 2;            // 2 = second
        break;

        // three children (fixed), no SRT
501
    case WEAK:
502 503 504 505
        *first_child = ((StgWeak *)c)->key;
        // se.info.type = posTypeStep;
        se.info.next.step = 2;
        break;
506

507
        // layout.payload.ptrs, no SRT
508
    case TVAR:
509
    case CONSTR:
510
    case PRIM:
511
    case MUT_PRIM:
512 513
    case BCO:
    case CONSTR_STATIC:
514 515 516 517 518 519 520 521
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;   // no child
        break;

        // StgMutArrPtr.ptrs, no SRT
522 523
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
524
    case MUT_ARR_PTRS_FROZEN:
525
    case MUT_ARR_PTRS_FROZEN0:
526 527 528 529 530 531 532 533
        init_ptrs(&se.info, ((StgMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;

        // StgMutArrPtr.ptrs, no SRT
534 535 536 537
    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
    case SMALL_MUT_ARR_PTRS_FROZEN:
    case SMALL_MUT_ARR_PTRS_FROZEN0:
538 539 540 541 542 543
        init_ptrs(&se.info, ((StgSmallMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgSmallMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;
544

545 546 547
    // layout.payload.ptrs, SRT
    case FUN:           // *c is a heap object.
    case FUN_2_0:
548 549 550 551 552 553
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs, (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto fun_srt_only;
        break;
554

555 556
    case THUNK:
    case THUNK_2_0:
557 558 559 560 561 562 563 564 565
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)((StgThunk *)c)->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto thunk_srt_only;
        break;

        // 1 fixed child, SRT
566 567
    case FUN_1_0:
    case FUN_1_1:
568 569 570 571
        *first_child = c->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_fun(&se.info, get_fun_itbl(c));
        break;
572

573 574
    case THUNK_1_0:
    case THUNK_1_1:
575 576 577 578
        *first_child = ((StgThunk *)c)->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_thunk(&se.info, get_thunk_itbl(c));
        break;
579 580

    case FUN_STATIC:      // *c is a heap object.
581
        ASSERT(get_itbl(c)->srt_bitmap != 0);
582 583
    case FUN_0_1:
    case FUN_0_2:
584 585
    fun_srt_only:
        init_srt_fun(&se.info, get_fun_itbl(c));
586 587 588 589
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;
590 591 592

    // SRT only
    case THUNK_STATIC:
593
        ASSERT(get_itbl(c)->srt_bitmap != 0);
594 595
    case THUNK_0_1:
    case THUNK_0_2:
596 597
    thunk_srt_only:
        init_srt_thunk(&se.info, get_thunk_itbl(c));
598 599 600 601 602
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;

603
    case TREC_CHUNK:
604 605 606
        *first_child = (StgClosure *)((StgTRecChunk *)c)->prev_chunk;
        se.info.next.step = 0;  // entry no.
        break;
607

608
        // cannot appear
609
    case PAP:
610 611
    case AP:
    case AP_STACK:
612
    case TSO:
613
    case STACK:
614 615
    case IND_STATIC:
    case CONSTR_NOCAF_STATIC:
616
        // stack objects
617 618
    case UPDATE_FRAME:
    case CATCH_FRAME:
619
    case UNDERFLOW_FRAME:
620 621 622 623
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
624
        // invalid objects
625 626 627
    case IND:
    case INVALID_OBJECT:
    default:
628 629
        barf("Invalid object *c in push()");
        return;
630 631 632 633
    }

    if (stackTop - 1 < stackBottom) {
#ifdef DEBUG_RETAINER
634
        // debugBelch("push() to the next stack.\n");
635
#endif
636 637 638 639 640 641 642 643 644 645 646 647 648
        // currentStack->free is updated when the active stack is switched
        // to the next stack.
        currentStack->free = (StgPtr)stackTop;

        if (currentStack->link == NULL) {
            nbd = allocGroup(BLOCKS_IN_STACK);
            nbd->link = NULL;
            nbd->u.back = currentStack;
            currentStack->link = nbd;
        } else
            nbd = currentStack->link;

        newStackBlock(nbd);
649 650 651 652 653 654 655 656
    }

    // adjust stackTop (acutal push)
    stackTop--;
    // If the size of stackElement was huge, we would better replace the
    // following statement by either a memcpy() call or a switch statement
    // on the type of the element. Currently, the size of stackElement is
    // small enough (5 words) that this direct assignment seems to be enough.
657 658 659 660 661 662

    // ToDo: The line below leads to the warning:
    //    warning: 'se.info.type' may be used uninitialized in this function
    // This is caused by the fact that there are execution paths through the
    // large switch statement above where some cases do not initialize this
    // field. Is this really harmless? Can we avoid the warning?
663 664 665 666 667 668
    *stackTop = se;

#ifdef DEBUG_RETAINER
    stackSize++;
    if (stackSize > maxStackSize) maxStackSize = stackSize;
    // ASSERT(stackSize >= 0);
669
    // debugBelch("stackSize = %d\n", stackSize);
670 671 672 673 674 675 676 677 678 679 680 681 682
#endif
}

/* -----------------------------------------------------------------------------
 *  popOff() and popOffReal(): Pop a stackElement off the traverse stack.
 *  Invariants:
 *    stackTop cannot be equal to stackLimit unless the whole stack is
 *    empty, in which case popOff() is not allowed.
 *  Note:
 *    You can think of popOffReal() as a part of popOff() which is
 *    executed at the end of popOff() in necessary. Since popOff() is
 *    likely to be executed quite often while popOffReal() is not, we
 *    separate popOffReal() from popOff(), which is declared as an
683
 *    INLINE function (for the sake of execution speed).  popOffReal()
684 685 686 687 688 689 690 691
 *    is called only within popOff() and nowhere else.
 * -------------------------------------------------------------------------- */
static void
popOffReal(void)
{
    bdescr *pbd;    // Previous Block Descriptor

#ifdef DEBUG_RETAINER
692
    // debugBelch("pop() to the previous stack.\n");
693 694 695 696 697 698
#endif

    ASSERT(stackTop + 1 == stackLimit);
    ASSERT(stackBottom == (stackElement *)currentStack->start);

    if (firstStack == currentStack) {
699 700 701
        // The stack is completely empty.
        stackTop++;
        ASSERT(stackTop == stackLimit);
702
#ifdef DEBUG_RETAINER
703 704 705 706 707 708
        stackSize--;
        if (stackSize > maxStackSize) maxStackSize = stackSize;
        /*
          ASSERT(stackSize >= 0);
          debugBelch("stackSize = %d\n", stackSize);
        */
709
#endif
710
        return;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    }

    // currentStack->free is updated when the active stack is switched back
    // to the previous stack.
    currentStack->free = (StgPtr)stackLimit;

    // find the previous block descriptor
    pbd = currentStack->u.back;
    ASSERT(pbd != NULL);

    returnToOldStack(pbd);

#ifdef DEBUG_RETAINER
    stackSize--;
    if (stackSize > maxStackSize) maxStackSize = stackSize;
    /*
      ASSERT(stackSize >= 0);
728
      debugBelch("stackSize = %d\n", stackSize);
729 730 731 732
    */
#endif
}

733
static INLINE void
734 735
popOff(void) {
#ifdef DEBUG_RETAINER
736
    // debugBelch("\tpopOff(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
737 738 739 740 741 742 743
#endif

    ASSERT(stackTop != stackLimit);
    ASSERT(!isEmptyRetainerStack());

    // <= (instead of <) is wrong!
    if (stackTop + 1 < stackLimit) {
744
        stackTop++;
745
#ifdef DEBUG_RETAINER
746 747 748 749 750 751
        stackSize--;
        if (stackSize > maxStackSize) maxStackSize = stackSize;
        /*
          ASSERT(stackSize >= 0);
          debugBelch("stackSize = %d\n", stackSize);
        */
752
#endif
753
        return;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    }

    popOffReal();
}

/* -----------------------------------------------------------------------------
 *  Finds the next object to be considered for retainer profiling and store
 *  its pointer to *c.
 *  Test if the topmost stack element indicates that more objects are left,
 *  and if so, retrieve the first object and store its pointer to *c. Also,
 *  set *cp and *r appropriately, both of which are stored in the stack element.
 *  The topmost stack element then is overwritten so as for it to now denote
 *  the next object.
 *  If the topmost stack element indicates no more objects are left, pop
 *  off the stack element until either an object can be retrieved or
 *  the current stack chunk becomes empty, indicated by rtsTrue returned by
 *  isOnBoundary(), in which case *c is set to NULL.
 *  Note:
 *    It is okay to call this function even when the current stack chunk
 *    is empty.
 * -------------------------------------------------------------------------- */
775
static INLINE void
776
pop( StgClosure **c, StgClosure **cp, retainer *r )
777 778 779 780
{
    stackElement *se;

#ifdef DEBUG_RETAINER
781
    // debugBelch("pop(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", stackTop, currentStackBoundary);
782 783 784
#endif

    do {
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        if (isOnBoundary()) {     // if the current stack chunk is depleted
            *c = NULL;
            return;
        }

        se = stackTop;

        switch (get_itbl(se->c)->type) {
            // two children (fixed), no SRT
            // nothing in se.info
        case CONSTR_2_0:
            *c = se->c->payload[1];
            *cp = se->c;
            *r = se->c_child_r;
            popOff();
            return;

            // three children (fixed), no SRT
            // need to push a stackElement
804 805
        case MVAR_CLEAN:
        case MVAR_DIRTY:
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
            if (se->info.next.step == 2) {
                *c = (StgClosure *)((StgMVar *)se->c)->tail;
                se->info.next.step++;             // move to the next step
                // no popOff
            } else {
                *c = ((StgMVar *)se->c)->value;
                popOff();
            }
            *cp = se->c;
            *r = se->c_child_r;
            return;

            // three children (fixed), no SRT
        case WEAK:
            if (se->info.next.step == 2) {
                *c = ((StgWeak *)se->c)->value;
                se->info.next.step++;
                // no popOff
            } else {
                *c = ((StgWeak *)se->c)->finalizer;
                popOff();
            }
            *cp = se->c;
            *r = se->c_child_r;
            return;

        case TREC_CHUNK: {
            // These are pretty complicated: we have N entries, each
            // of which contains 3 fields that we want to follow.  So
            // we divide the step counter: the 2 low bits indicate
            // which field, and the rest of the bits indicate the
            // entry number (starting from zero).
            TRecEntry *entry;
            nat entry_no = se->info.next.step >> 2;
            nat field_no = se->info.next.step & 3;
            if (entry_no == ((StgTRecChunk *)se->c)->next_entry_idx) {
                *c = NULL;
                popOff();
                return;
            }
            entry = &((StgTRecChunk *)se->c)->entries[entry_no];
            if (field_no == 0) {
                *c = (StgClosure *)entry->tvar;
            } else if (field_no == 1) {
                *c = entry->expected_value;
            } else {
                *c = entry->new_value;
            }
            *cp = se->c;
            *r = se->c_child_r;
            se->info.next.step++;
            return;
        }
859

860 861
        case TVAR:
        case CONSTR:
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        case PRIM:
        case MUT_PRIM:
        case BCO:
        case CONSTR_STATIC:
            // StgMutArrPtr.ptrs, no SRT
        case MUT_ARR_PTRS_CLEAN:
        case MUT_ARR_PTRS_DIRTY:
        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
            *c = find_ptrs(&se->info);
            if (*c == NULL) {
                popOff();
                break;
            }
            *cp = se->c;
            *r = se->c_child_r;
            return;

            // layout.payload.ptrs, SRT
        case FUN:         // always a heap object
        case FUN_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
                    *cp = se->c;
                    *r = se->c_child_r;
                    return;
                }
                init_srt_fun(&se->info, get_fun_itbl(se->c));
            }
            goto do_srt;

        case THUNK:
        case THUNK_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
                    *cp = se->c;
                    *r = se->c_child_r;
                    return;
                }
                init_srt_thunk(&se->info, get_thunk_itbl(se->c));
            }
            goto do_srt;

            // SRT
        do_srt:
        case THUNK_STATIC:
        case FUN_STATIC:
        case FUN_0_1:
        case FUN_0_2:
        case THUNK_0_1:
        case THUNK_0_2:
        case FUN_1_0:
        case FUN_1_1:
        case THUNK_1_0:
        case THUNK_1_1:
            *c = find_srt(&se->info);
            if (*c != NULL) {
                *cp = se->c;
                *r = se->c_child_r;
                return;
            }
            popOff();
            break;

            // no child (fixed), no SRT
        case CONSTR_0_1:
        case CONSTR_0_2:
        case ARR_WORDS:
            // one child (fixed), no SRT
        case MUT_VAR_CLEAN:
        case MUT_VAR_DIRTY:
        case THUNK_SELECTOR:
        case CONSTR_1_1:
            // cannot appear
        case PAP:
        case AP:
        case AP_STACK:
        case TSO:
942 943
        case STACK:
        case IND_STATIC:
944 945
        case CONSTR_NOCAF_STATIC:
            // stack objects
946
        case UPDATE_FRAME:
947
        case CATCH_FRAME:
948 949
        case UNDERFLOW_FRAME:
        case STOP_FRAME:
950 951 952 953 954 955 956 957 958 959
        case RET_BCO:
        case RET_SMALL:
        case RET_BIG:
            // invalid objects
        case IND:
        case INVALID_OBJECT:
        default:
            barf("Invalid object *c in pop()");
            return;
        }
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    } while (rtsTrue);
}

/* -----------------------------------------------------------------------------
 * RETAINER PROFILING ENGINE
 * -------------------------------------------------------------------------- */

void
initRetainerProfiling( void )
{
    initializeAllRetainerSet();
    retainerGeneration = 0;
}

/* -----------------------------------------------------------------------------
 *  This function must be called before f-closing prof_file.
 * -------------------------------------------------------------------------- */
void
endRetainerProfiling( void )
{
#ifdef SECOND_APPROACH
    outputAllRetainerSet(prof_file);
#endif
}

/* -----------------------------------------------------------------------------
 *  Returns the actual pointer to the retainer set of the closure *c.
 *  It may adjust RSET(c) subject to flip.
 *  Side effects:
 *    RSET(c) is initialized to NULL if its current value does not
 *    conform to flip.
 *  Note:
 *    Even though this function has side effects, they CAN be ignored because
 *    subsequent calls to retainerSetOf() always result in the same return value
 *    and retainerSetOf() is the only way to retrieve retainerSet of a given
 *    closure.
 *    We have to perform an XOR (^) operation each time a closure is examined.
 *    The reason is that we do not know when a closure is visited last.
 * -------------------------------------------------------------------------- */
999
static INLINE void
1000 1001 1002
maybeInitRetainerSet( StgClosure *c )
{
    if (!isRetainerSetFieldValid(c)) {
1003
        setRetainerSetToNull(c);
1004 1005 1006 1007 1008 1009
    }
}

/* -----------------------------------------------------------------------------
 * Returns rtsTrue if *c is a retainer.
 * -------------------------------------------------------------------------- */
1010
static INLINE rtsBool
1011 1012 1013
isRetainer( StgClosure *c )
{
    switch (get_itbl(c)->type) {
1014 1015 1016 1017
        //
        //  True case
        //
        // TSOs MUST be retainers: they constitute the set of roots.
1018
    case TSO:
1019
    case STACK:
1020

1021
        // mutable objects
1022
    case MUT_PRIM:
1023 1024
    case MVAR_CLEAN:
    case MVAR_DIRTY:
1025
    case TVAR:
1026 1027
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
1028 1029
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
1030

1031
        // thunks are retainers.
1032 1033 1034 1035 1036 1037 1038
    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_2_0:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_SELECTOR:
1039 1040
    case AP:
    case AP_STACK:
1041

1042
        // Static thunks, or CAFS, are obviously retainers.
1043 1044
    case THUNK_STATIC:

1045 1046
        // WEAK objects are roots; there is separate code in which traversing
        // begins from WEAK objects.
1047
    case WEAK:
1048
        return rtsTrue;
1049

1050 1051 1052
        //
        // False case
        //
1053

1054
        // constructors
1055 1056 1057 1058 1059 1060
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
1061
        // functions
1062 1063 1064 1065 1066 1067
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
1068
        // partial applications
1069
    case PAP:
1070
        // indirection
Ian Lynagh's avatar
Ian Lynagh committed
1071 1072 1073 1074
    // IND_STATIC used to be an error, but at the moment it can happen
    // as isAlive doesn't look through IND_STATIC as it ignores static
    // closures. See trac #3956 for a program that hit this error.
    case IND_STATIC:
1075
    case BLACKHOLE:
1076
        // static objects
1077 1078
    case CONSTR_STATIC:
    case FUN_STATIC:
1079
        // misc
1080
    case PRIM:
1081 1082
    case BCO:
    case ARR_WORDS:
1083
        // STM
1084
    case TREC_CHUNK:
1085 1086 1087
        // immutable arrays
    case MUT_ARR_PTRS_FROZEN:
    case MUT_ARR_PTRS_FROZEN0:
1088
        return rtsFalse;
1089

1090 1091 1092 1093 1094
        //
        // Error case
        //
        // CONSTR_NOCAF_STATIC
        // cannot be *c, *cp, *r in the retainer profiling loop.
1095
    case CONSTR_NOCAF_STATIC:
1096 1097
        // Stack objects are invalid because they are never treated as
        // legal objects during retainer profiling.
1098 1099
    case UPDATE_FRAME:
    case CATCH_FRAME:
1100
    case UNDERFLOW_FRAME:
1101 1102 1103 1104
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
1105
        // other cases
1106 1107 1108
    case IND:
    case INVALID_OBJECT:
    default:
1109 1110
        barf("Invalid object in isRetainer(): %d", get_itbl(c)->type);
        return rtsFalse;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    }
}

/* -----------------------------------------------------------------------------
 *  Returns the retainer function value for the closure *c, i.e., R(*c).
 *  This function does NOT return the retainer(s) of *c.
 *  Invariants:
 *    *c must be a retainer.
 *  Note:
 *    Depending on the definition of this function, the maintenance of retainer
 *    sets can be made easier. If most retainer sets are likely to be created
 *    again across garbage collections, refreshAllRetainerSet() in
1123
 *    RetainerSet.c can simply do nothing.
1124 1125 1126 1127
 *    If this is not the case, we can free all the retainer sets and
 *    re-initialize the hash table.
 *    See refreshAllRetainerSet() in RetainerSet.c.
 * -------------------------------------------------------------------------- */
1128
static INLINE retainer
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
getRetainerFrom( StgClosure *c )
{
    ASSERT(isRetainer(c));

#if defined(RETAINER_SCHEME_INFO)
    // Retainer scheme 1: retainer = info table
    return get_itbl(c);
#elif defined(RETAINER_SCHEME_CCS)
    // Retainer scheme 2: retainer = cost centre stack
    return c->header.prof.ccs;
#elif defined(RETAINER_SCHEME_CC)
    // Retainer scheme 3: retainer = cost centre
    return c->header.prof.ccs->cc;
#endif
}

/* -----------------------------------------------------------------------------
 *  Associates the retainer set *s with the closure *c, that is, *s becomes
 *  the retainer set of *c.
 *  Invariants:
 *    c != NULL
 *    s != NULL
 * -------------------------------------------------------------------------- */
1152
static INLINE void
1153
associate( StgClosure *c, RetainerSet *s )
1154 1155 1156 1157 1158 1159
{
    // StgWord has the same size as pointers, so the following type
    // casting is okay.
    RSET(c) = (RetainerSet *)((StgWord)s | flip);
}

1160 1161 1162 1163 1164 1165
/* -----------------------------------------------------------------------------
   Call retainClosure for each of the closures covered by a large bitmap.
   -------------------------------------------------------------------------- */

static void
retain_large_bitmap (StgPtr p, StgLargeBitmap *large_bitmap, nat size,
1166
                     StgClosure *c, retainer c_child_r)
1167 1168 1169
{
    nat i, b;
    StgWord bitmap;
1170

1171 1172 1173
    b = 0;
    bitmap = large_bitmap->bitmap[b];
    for (i = 0; i < size; ) {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        if ((bitmap & 1) == 0) {
            retainClosure((StgClosure *)*p, c, c_child_r);
        }
        i++;
        p++;
        if (i % BITS_IN(W_) == 0) {
            b++;
            bitmap = large_bitmap->bitmap[b];
        } else {
            bitmap = bitmap >> 1;
        }
1185 1186 1187
    }
}

1188
static INLINE StgPtr
1189
retain_small_bitmap (StgPtr p, nat size, StgWord bitmap,
1190
                     StgClosure *c, retainer c_child_r)
1191 1192
{
    while (size > 0) {
1193 1194 1195 1196 1197 1198
        if ((bitmap & 1) == 0) {
            retainClosure((StgClosure *)*p, c, c_child_r);
        }
        p++;
        bitmap = bitmap >> 1;
        size--;
1199 1200 1201 1202
    }
    return p;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/* -----------------------------------------------------------------------------
 * Call retainClosure for each of the closures in an SRT.
 * ------------------------------------------------------------------------- */

static void
retain_large_srt_bitmap (StgLargeSRT *srt, StgClosure *c, retainer c_child_r)
{
    nat i, b, size;
    StgWord bitmap;
    StgClosure **p;
1213

1214 1215 1216 1217 1218
    b = 0;
    p = (StgClosure **)srt->srt;
    size   = srt->l.size;
    bitmap = srt->l.bitmap[b];
    for (i = 0; i < size; ) {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        if ((bitmap & 1) != 0) {
            retainClosure((StgClosure *)*p, c, c_child_r);
        }
        i++;
        p++;
        if (i % BITS_IN(W_) == 0) {
            b++;
            bitmap = srt->l.bitmap[b];
        } else {
            bitmap = bitmap >> 1;
        }
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    }
}

static INLINE void
retainSRT (StgClosure **srt, nat srt_bitmap, StgClosure *c, retainer c_child_r)
{
  nat bitmap;
  StgClosure **p;

  bitmap = srt_bitmap;
  p = srt;

1242
  if (bitmap == (StgHalfWord)(-1)) {
1243 1244 1245 1246 1247 1248
      retain_large_srt_bitmap( (StgLargeSRT *)srt, c, c_child_r );
      return;
  }

  while (bitmap != 0) {
      if ((bitmap & 1) != 0) {
1249
#if defined(COMPILING_WINDOWS_DLL)
1250 1251 1252 1253 1254 1255
          if ( (unsigned long)(*srt) & 0x1 ) {
              retainClosure(* (StgClosure**) ((unsigned long) (*srt) & ~0x1),
                            c, c_child_r);
          } else {
              retainClosure(*srt,c,c_child_r);
          }
1256
#else
1257
          retainClosure(*srt,c,c_child_r);
1258 1259 1260 1261 1262 1263 1264
#endif
      }
      p++;
      bitmap = bitmap >> 1;
  }
}

1265 1266 1267 1268 1269 1270
/* -----------------------------------------------------------------------------
 *  Process all the objects in the stack chunk from stackStart to stackEnd
 *  with *c and *c_child_r being their parent and their most recent retainer,
 *  respectively. Treat stackOptionalFun as another child of *c if it is
 *  not NULL.
 *  Invariants:
1271
 *    *c is one of the following: TSO, AP_STACK.
1272 1273 1274 1275 1276
 *    If *c is TSO, c == c_child_r.
 *    stackStart < stackEnd.
 *    RSET(c) and RSET(c_child_r) are valid, i.e., their
 *    interpretation conforms to the current value of flip (even when they
 *    are interpreted to be NULL).
1277
 *    If *c is TSO, its state is not ThreadComplete,or ThreadKilled,
1278
 *    which means that its stack is ready to process.
1279 1280 1281 1282 1283
 *  Note:
 *    This code was almost plagiarzied from GC.c! For each pointer,
 *    retainClosure() is invoked instead of evacuate().
 * -------------------------------------------------------------------------- */
static void
1284
retainStack( StgClosure *c, retainer c_child_r,
1285
             StgPtr stackStart, StgPtr stackEnd )
1286 1287
{
    stackElement *oldStackBoundary;
1288 1289
    StgPtr p;
    StgRetInfoTable *info;
1290
    StgWord bitmap;
1291
    nat size;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

#ifdef DEBUG_RETAINER
    cStackSize++;
    if (cStackSize > maxCStackSize) maxCStackSize = cStackSize;
#endif

    /*
      Each invocation of retainStack() creates a new virtual
      stack. Since all such stacks share a single common stack, we
      record the current currentStackBoundary, which will be restored
      at the exit.
    */
    oldStackBoundary = currentStackBoundary;
    currentStackBoundary = stackTop;

#ifdef DEBUG_RETAINER
1308
    // debugBelch("retainStack() called: oldStackBoundary = 0x%x, currentStackBoundary = 0x%x\n", oldStackBoundary, currentStackBoundary);
1309 1310
#endif

1311 1312
    ASSERT(get_itbl(c)->type == STACK);

1313 1314
    p = stackStart;
    while (p < stackEnd) {
1315
        info = get_ret_itbl((StgClosure *)p);
1316

1317
        switch(info->i.type) {
1318

1319 1320 1321 1322
        case UPDATE_FRAME:
            retainClosure(((StgUpdateFrame *)p)->updatee, c, c_child_r);
            p += sizeofW(StgUpdateFrame);
            continue;
1323

1324 1325
        case UNDERFLOW_FRAME:
        case STOP_FRAME:
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        case CATCH_FRAME:
        case CATCH_STM_FRAME:
        case CATCH_RETRY_FRAME:
        case ATOMICALLY_FRAME:
        case RET_SMALL:
            bitmap = BITMAP_BITS(info->i.layout.bitmap);
            size   = BITMAP_SIZE(info->i.layout.bitmap);
            p++;
            p = retain_small_bitmap(p, size, bitmap, c, c_child_r);

        follow_srt:
            retainSRT((StgClosure **)GET_SRT(info), info->i.srt_bitmap, c, c_child_r);
            continue;

        case RET_BCO: {
            StgBCO *bco;

            p++;
            retainClosure((StgClosure *)*p, c, c_child_r);
            bco = (StgBCO *)*p;
            p++;
            size = BCO_BITMAP_SIZE(bco);
            retain_large_bitmap(p, BCO_BITMAP(bco), size, c, c_child_r);
            p += size;
            continue;
        }

            // large bitmap (> 32 entries, or > 64 on a 64-bit machine)
        case RET_BIG:
            size = GET_LARGE_BITMAP(&info->i)->size;
            p++;
            retain_large_bitmap(p, GET_LARGE_BITMAP(&info->i),
                                size, c, c_child_r);
            p += size;
            // and don't forget to follow the SRT
            goto follow_srt;
1362

1363
        case RET_FUN: {
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
            StgRetFun *ret_fun = (StgRetFun *)p;
            StgFunInfoTable *fun_info;

            retainClosure(ret_fun->fun, c, c_child_r);
            fun_info = get_fun_itbl(UNTAG_CLOSURE(ret_fun->fun));

            p = (P_)&ret_fun->payload;
            switch (fun_info->f.fun_type) {
            case ARG_GEN:
                bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
                size = BITMAP_SIZE(fun_info->f.b.bitmap);
                p = retain_small_bitmap(p, size, bitmap, c, c_child_r);
                break;
            case ARG_GEN_BIG:
                size = GET_FUN_LARGE_BITMAP(fun_info)->size;
                retain_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info),
                                    size, c, c_child_r);
                p += size;
                break;
            default:
                bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
                size = BITMAP_SIZE(stg_arg_bitmaps[fun_info->f.fun_type]);
                p = retain_small_bitmap(p, size, bitmap, c, c_child_r);
                break;
            }
            goto follow_srt;
        }

        default:
            barf("Invalid object found in retainStack(): %d",
                 (int)(info->i.type));
        }
1396 1397 1398 1399 1400
    }

    // restore currentStackBoundary
    currentStackBoundary = oldStackBoundary;
#ifdef DEBUG_RETAINER
1401
    // debugBelch("retainStack() finished: currentStackBoundary = 0x%x\n", currentStackBoundary);
1402 1403 1404 1405 1406 1407 1408
#endif

#ifdef DEBUG_RETAINER
    cStackSize--;
#endif
}

1409 1410 1411 1412
/* ----------------------------------------------------------------------------
 * Call retainClosure for each of the children of a PAP/AP
 * ------------------------------------------------------------------------- */

1413
static INLINE StgPtr
Simon Marlow's avatar
Simon Marlow committed
1414
retain_PAP_payload (StgClosure *pap,    /* NOT tagged */
1415
                    retainer c_child_r, /* NOT tagged */
Simon Marlow's avatar
Simon Marlow committed
1416
                    StgClosure *fun,    /* tagged */
1417
                    StgClosure** payload, StgWord n_args)
1418 1419
{
    StgPtr p;
1420
    StgWord bitmap;
1421 1422
    StgFunInfoTable *fun_info;

1423
    retainClosure(fun, pap, c_child_r);
Simon Marlow's avatar
Simon Marlow committed
1424
    fun = UNTAG_CLOSURE(fun);
1425
    fun_info = get_fun_itbl(fun);
1426 1427
    ASSERT(fun_info->i.type != PAP);

1428
    p = (StgPtr)payload;
1429

1430
    switch (fun_info->f.fun_type) {
1431
    case ARG_GEN:
1432 1433 1434 1435
        bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
        p = retain_small_bitmap(p, n_args, bitmap,
                                pap, c_child_r);
        break;
1436
    case ARG_GEN_BIG:
1437 1438 1439 1440
        retain_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info),
                            n_args, pap, c_child_r);
        p += n_args;
        break;
1441
    case ARG_BCO:
1442 1443 1444 1445
        retain_large_bitmap((StgPtr)payload, BCO_BITMAP(fun),
                            n_args, pap, c_child_r);
        p += n_args;
        break;
1446
    default:
1447 1448 1449
        bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
        p = retain_small_bitmap(p, n_args, bitmap, pap, c_child_r);
        break;
1450 1451 1452 1453
    }
    return p;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/* -----------------------------------------------------------------------------
 *  Compute the retainer set of *c0 and all its desecents by traversing.
 *  *cp0 is the parent of *c0, and *r0 is the most recent retainer of *c0.
 *  Invariants:
 *    c0 = cp0 = r0 holds only for root objects.
 *    RSET(cp0) and RSET(r0) are valid, i.e., their
 *    interpretation conforms to the current value of flip (even when they
 *    are interpreted to be NULL).
 *    However, RSET(c0) may be corrupt, i.e., it may not conform to
 *    the current value of flip. If it does not, during the execution
 *    of this function, RSET(c0) must be initialized as well as all
 *    its descendants.
 *  Note:
 *    stackTop must be the same at the beginning and the exit of this function.
1468
 *    *c0 can be TSO (as well as AP_STACK).
1469 1470
 * -------------------------------------------------------------------------- */
static void
1471
retainClosure( StgClosure *c0, StgClosure *cp0, retainer r0 )
1472
{
Simon Marlow's avatar
Simon Marlow committed
1473 1474 1475
    // c = Current closure                          (possibly tagged)
    // cp = Current closure's Parent                (NOT tagged)
    // r = current closures' most recent Retainer   (NOT tagged)
1476 1477
    // c_child_r = current closure's children's most recent retainer
    // first_child = first child of c
1478
    StgClosure *c, *cp, *first_child;
1479
    RetainerSet *s, *retainerSetOfc;
1480
    retainer r, c_child_r;
1481 1482 1483 1484 1485 1486 1487 1488
    StgWord typeOfc;

#ifdef DEBUG_RETAINER
    // StgPtr oldStackTop;
#endif

#ifdef DEBUG_RETAINER
    // oldStackTop = stackTop;
1489
    // debugBelch("retainClosure() called: c0 = 0x%x, cp0 = 0x%x, r0 = 0x%x\n", c0, cp0, r0);
1490 1491 1492