Parser.y.pp 65.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41
import HaddockParse
import {-# SOURCE #-} HaddockLex hiding ( Token )
import HaddockUtils
42 43 44 45

import FastString
import Maybes		( orElse )
import Outputable
46

Simon Marlow's avatar
Simon Marlow committed
47 48
import Control.Monad    ( when )
import GHC.Exts
49 50
import Data.Char
import Control.Monad    ( mplus )
51 52 53
}

{-
54 55 56 57 58 59 60 61 62 63 64
-----------------------------------------------------------------------------
6 December 2006

Conflicts: 32 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

65 66 67 68 69 70 71 72 73 74 75
-----------------------------------------------------------------------------
26 July 2006

Conflicts: 37 shift/reduce
           1 reduce/reduce

The reduce/reduce conflict is weird.  It's between tyconsym and consym, and I
would think the two should never occur in the same context.

  -=chak

76
-----------------------------------------------------------------------------
77
Conflicts: 38 shift/reduce (1.25)
78

79
10 for abiguity in 'if x then y else z + 1'		[State 178]
80 81 82
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

83
1 for ambiguity in 'if x then y else z :: T'		[State 178]
84 85
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

86
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
87
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
88 89 90 91 92 93 94 95 96 97
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
98

99
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
100 101
	(e::a) `b` c, or 
	(e :: (a `b` c))
102
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
103
    Same duplication between states 11 and 253 as the previous case
104

105
1 for ambiguity in 'let ?x ...'				[State 329]
106 107 108 109
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

110
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
111 112 113 114
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

115
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
116 117 118 119 120 121 122
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

123 124 125 126
1 for ambiguity when the source file starts with "-- | doc". We need another
  token of lookahead to determine if a top declaration or the 'module' keyword
  follows. Shift parses as if the 'module' keyword follows.   

127 128 129 130 131 132 133 134 135 136 137
-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions
138
     -- This doesn't seem to work anymore -=chak
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
183
 'for' 	        { L _ ITfor }
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

202
 'forall'	{ L _ ITforall }		-- GHC extension keywords
203 204 205 206 207 208 209 210
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
211
 'iso'		{ L _ ITiso }
212
 'family'	{ L _ ITfamily }
213 214 215 216 217 218
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

219 220 221
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
291 292 293 294 295 296 297

 DOCNEXT	{ L _ (ITdocCommentNext _) }
 DOCPREV	{ L _ (ITdocCommentPrev _) }
 DOCNAMED	{ L _ (ITdocCommentNamed _) }
 DOCSECTION	{ L _ (ITdocSection _ _) }
 DOCOPTIONS	{ L _ (ITdocOptions _) }

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
314
%name parseType ctype
315
%partial parseHeader header
316
%tokentype { (Located Token) }
317 318
%%

319 320 321 322 323 324 325 326
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

327 328 329 330 331 332 333 334 335 336 337
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
338 339 340 341
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 (fst $7) (snd $7) $4 
                          opt info doc) )}}
342 343 344
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
345 346 347 348 349 350 351 352 353
                          (fst $2) (snd $2) Nothing Nothing emptyHaddockModInfo 
                          Nothing)) }

optdoc :: { (Maybe String, HaddockModInfo RdrName, Maybe (HsDoc RdrName)) }                             
        : moduleheader            { (Nothing, fst $1, snd $1) }
        | docoptions              { (Just $1, emptyHaddockModInfo, Nothing)} 
        | docoptions moduleheader { (Just $1, fst $2, snd $2) } 
        | moduleheader docoptions { (Just $2, fst $1, snd $1) } 
        | {- empty -}             { (Nothing, emptyHaddockModInfo, Nothing) }  
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

374 375 376 377
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
378 379 380 381
 	: optdoc 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc -> case $1 of { (opt, info, doc) -> 
		   return (L loc (HsModule (Just $3) $5 $7 [] $4 
                   opt info doc))}}
382 383
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
384 385
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing 
                   Nothing emptyHaddockModInfo Nothing)) }
386 387 388 389 390

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

391 392 393 394 395 396 397
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

398 399
exportlist :: { [LIE RdrName] }
	: expdoclist ',' expdoclist		{ $1 ++ $3 }
400 401 402
	| exportlist1				{ $1 }

exportlist1 :: { [LIE RdrName] }
403 404 405 406 407 408 409 410 411 412 413 414 415
        : expdoclist export expdoclist ',' exportlist  { $1 ++ ($2 : $3) ++ $5 }
 	| expdoclist export expdoclist	               { $1 ++ ($2 : $3) }
	| expdoclist				       { $1 }

expdoclist :: { [LIE RdrName] }
        : exp_doc expdoclist                           { $1 : $2 }
        | {- empty -}                                  { [] }

exp_doc :: { LIE RdrName }                                                   
        : docsection    { L1 (case (unLoc $1) of (n, doc) -> IEGroup n doc) }
        | docnamed      { L1 (IEDocNamed ((fst . unLoc) $1)) } 
        | docnext       { L1 (IEDoc (unLoc $1)) }       
                       
416 417 418 419 420 421 422 423 424 425 426
   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
427 428
	:  qcnames ',' qcname_ext	{ unLoc $3 : $1 }
	|  qcname_ext			{ [unLoc $1]  }
429

430 431 432 433 434 435 436 437
qcname_ext :: { Located RdrName }	-- Variable or data constructor
					-- or tagged type constructor
	:  qcname			{ $1 }
	|  'type' qcon			{ sL (comb2 $1 $2) 
					     (setRdrNameSpace (unLoc $2) 
							      tcClsName)  }

-- Cannot pull into qcname_ext, as qcname is also used in expression.
438
qcname 	:: { Located RdrName }	-- Variable or data constructor
439 440
	:  qvar				{ $1 }
	|  qcon				{ $1 }
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
466
maybeas :: { Located (Maybe ModuleName) }
467 468 469 470 471 472 473 474
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
475 476
	:  '(' exportlist ')'  			{ LL (False, $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  $3) }
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

497
topdecls :: { OrdList (LHsDecl RdrName) }
498 499 500
        : topdecls ';' topdecl		        { $1 `appOL` $3 }
        | topdecls ';'			        { $1 }
	| topdecl			        { $1 }
501

502
topdecl :: { OrdList (LHsDecl RdrName) }
503
  	: cl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
504
  	| ty_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
505 506 507 508
	| 'instance' inst_type where_inst
	    { let (binds, sigs, ats, _) = cvBindsAndSigs (unLoc $3)
	      in 
	      unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs ats)))}
509
        | stand_alone_deriving                  { unitOL (LL (DerivD (unLoc $1))) }
510 511 512 513
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
514 515
      	| decl					{ unLoc $1 }

516 517 518 519 520 521
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

522 523 524
-- Type classes
--
cl_decl :: { LTyClDecl RdrName }
525
	: 'class' tycl_hdr fds where_cls
526
		{% do { let { (binds, sigs, ats, docs)           = 
527
			        cvBindsAndSigs (unLoc $4)
528
		            ; (ctxt, tc, tvs, tparms) = unLoc $2}
529
                      ; checkTyVars tparms      -- only type vars allowed
530
		      ; checkKindSigs ats
531 532
		      ; return $ L (comb4 $1 $2 $3 $4) 
				   (mkClassDecl (ctxt, tc, tvs) 
533
					        (unLoc $3) sigs binds ats docs) } }
534

535
-- Type declarations (toplevel)
536 537
--
ty_decl :: { LTyClDecl RdrName }
538 539 540 541 542 543
           -- ordinary type synonyms
        : 'type' type '=' ctype
		-- Note ctype, not sigtype, on the right of '='
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
544 545
	        --
		-- Note the use of type for the head; this allows
546 547 548 549 550 551 552
		-- infix type constructors to be declared 
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs Nothing $4)) 
                      } }

           -- type family declarations
553
        | 'type' 'family' type opt_kind_sig 
554 555
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
556
		--
557 558 559 560 561 562
 		{% do { (tc, tvs, _) <- checkSynHdr $3 False
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $3 $4) 
				  (TyFunction tc tvs False kind))
563 564 565 566 567 568 569 570 571 572 573
		      } }

           -- type instance declarations
        | 'type' 'instance' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $3 True
		      ; return (L (comb2 $1 $5) 
				  (TySynonym tc tvs (Just typats) $5)) 
                      } }
574

575
          -- ordinary data type or newtype declaration
576
	| data_or_newtype tycl_hdr constrs deriving
577
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
578
                      ; checkTyVars tparms    -- no type pattern
579 580 581 582
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
583 584
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			       Nothing (reverse (unLoc $3)) (unLoc $4)) } }
585

586
          -- ordinary GADT declaration
587
        | data_or_newtype tycl_hdr opt_kind_sig 
588
		 'where' gadt_constrlist
589
		 deriving
590
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
591
                      ; checkTyVars tparms    -- can have type pats
592 593
		      ; return $
			  L (comb4 $1 $2 $4 $5)
594 595
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
			      (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
596

597
          -- data/newtype family
598
        | data_or_newtype 'family' tycl_hdr opt_kind_sig
599 600
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                      ; checkTyVars tparms    -- no type pattern
601 602 603
		      ; let kind = case unLoc $4 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
604
		      ; return $
605
			  L (comb3 $1 $2 $4)
606
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
607
			      (Just kind) [] Nothing) } }
608

609
          -- data/newtype instance declaration
610 611 612 613 614 615 616 617 618 619
	| data_or_newtype 'instance' tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $4 $5)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $4)) (unLoc $5)) } }

620
          -- GADT instance declaration
621 622 623 624 625 626 627 628
        | data_or_newtype 'instance' tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $3}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $3 $6 $7)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
629
			       (unLoc $4) (reverse (unLoc $6)) (unLoc $7)) } }
630

631 632 633 634 635 636 637 638
-- Associate type family declarations
--
-- * They have a different syntax than on the toplevel (no family special
--   identifier).
--
-- * They also need to be separate from instances; otherwise, data family
--   declarations without a kind signature cause parsing conflicts with empty
--   data declarations. 
639
--
640
at_decl_cls :: { LTyClDecl RdrName }
641
           -- type family declarations
642
        : 'type' type opt_kind_sig
643 644 645
		-- Note the use of type for the head; this allows
		-- infix type constructors to be declared
		--
646 647 648 649 650 651
 		{% do { (tc, tvs, _) <- checkSynHdr $2 False
		      ; let kind = case unLoc $3 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
		      ; return (L (comb3 $1 $2 $3) 
				  (TyFunction tc tvs False kind))
652 653
		      } }

654
           -- default type instance
655
        | 'type' type '=' ctype
656 657 658
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
659 660 661
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
662 663
                      } }

664 665
          -- data/newtype family declaration
        | data_or_newtype tycl_hdr opt_kind_sig
666 667
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                      ; checkTyVars tparms    -- no type pattern
668 669 670
		      ; let kind = case unLoc $3 of
				     Nothing -> liftedTypeKind
				     Just ki -> ki
671
		      ; return $
672
			  L (comb3 $1 $2 $3)
673
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Nothing) 
674 675 676 677 678 679 680 681 682 683 684 685 686 687
			      (Just kind) [] Nothing) } }

-- Associate type instances
--
at_decl_inst :: { LTyClDecl RdrName }
           -- type instance declarations
        : 'type' type '=' ctype
		-- Note the use of type for the head; this allows
		-- infix type constructors and type patterns
		--
 		{% do { (tc, tvs, typats) <- checkSynHdr $2 True
		      ; return (L (comb2 $1 $4) 
				  (TySynonym tc tvs (Just typats) $4)) 
                      } }
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

        -- data/newtype instance declaration
	| data_or_newtype tycl_hdr constrs deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $3 $4)
			           -- We need the location on tycl_hdr in case 
				   -- constrs and deriving are both empty
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
			      Nothing (reverse (unLoc $3)) (unLoc $4)) } }

        -- GADT instance declaration
        | data_or_newtype tycl_hdr opt_kind_sig 
		 'where' gadt_constrlist
		 deriving
		{% do { let {(ctxt, tc, tvs, tparms) = unLoc $2}
                                             -- can have type pats
		      ; return $
			  L (comb4 $1 $2 $5 $6)
			    (mkTyData (unLoc $1) (ctxt, tc, tvs, Just tparms) 
709
			     (unLoc $3) (reverse (unLoc $5)) (unLoc $6)) } }
710

711 712 713 714
opt_iso :: { Bool }
	:       { False }
	| 'iso'	{ True  }

715 716 717 718
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

719 720 721
opt_kind_sig :: { Located (Maybe Kind) }
	: 				{ noLoc Nothing }
	| '::' kind			{ LL (Just (unLoc $2)) }
722

723
-- tycl_hdr parses the header of a class or data type decl,
724 725 726 727
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
728
--      T Int [a]			-- for associated types
729
-- Rather a lot of inlining here, else we get reduce/reduce errors
730 731 732
tycl_hdr :: { Located (LHsContext RdrName, 
		       Located RdrName, 
		       [LHsTyVarBndr RdrName],
733
		       [LHsType RdrName]) }
734
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
735 736
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

737 738 739 740 741 742 743 744 745 746
-----------------------------------------------------------------------------
-- Stand-alone deriving

-- Glasgow extension: stand-alone deriving declarations
stand_alone_deriving :: { LDerivDecl RdrName }
  	: 'deriving' qtycon            'for' qtycon  {% do { p <- checkInstType (fmap HsTyVar $2)
				                           ; checkDerivDecl (LL (DerivDecl p $4)) } }

        | 'deriving' '(' inst_type ')' 'for' qtycon  {% checkDerivDecl (LL (DerivDecl $3 $6)) }

747 748 749
-----------------------------------------------------------------------------
-- Nested declarations

750
-- Declaration in class bodies
751
--
752 753 754 755 756 757 758 759 760
decl_cls  :: { Located (OrdList (LHsDecl RdrName)) }
decl_cls  : at_decl_cls		        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	  | decl                        { $1 }

decls_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	  : decls_cls ';' decl_cls	{ LL (unLoc $1 `appOL` unLoc $3) }
	  | decls_cls ';'		{ LL (unLoc $1) }
	  | decl_cls			{ $1 }
	  | {- empty -}			{ noLoc nilOL }
761 762


763
decllist_cls
764
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
765 766
	: '{'         decls_cls '}'	{ LL (unLoc $2) }
	|     vocurly decls_cls close	{ $2 }
767

768
-- Class body
769
--
770
where_cls :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
771 772
				-- No implicit parameters
				-- May have type declarations
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	: 'where' decllist_cls	        { LL (unLoc $2) }
	| {- empty -}		        { noLoc nilOL }

-- Declarations in instance bodies
--
decl_inst  :: { Located (OrdList (LHsDecl RdrName)) }
decl_inst  : at_decl_inst	        { LL (unitOL (L1 (TyClD (unLoc $1)))) }
	   | decl                       { $1 }

decls_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	   : decls_inst ';' decl_inst	{ LL (unLoc $1 `appOL` unLoc $3) }
	   | decls_inst ';'		{ LL (unLoc $1) }
	   | decl_inst			{ $1 }
	   | {- empty -}		{ noLoc nilOL }

decllist_inst 
        :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
	: '{'         decls_inst '}'	{ LL (unLoc $2) }
	|     vocurly decls_inst close	{ $2 }

-- Instance body
--
where_inst :: { Located (OrdList (LHsDecl RdrName)) }	-- Reversed
				-- No implicit parameters
				-- May have type declarations
	: 'where' decllist_inst		{ LL (unLoc $2) }
799 800
	| {- empty -}			{ noLoc nilOL }

801 802
-- Declarations in binding groups other than classes and instances
--
803
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
804
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
805
	| decls ';'			{ LL (unLoc $1) }
806
	| decl				{ $1 }
807
	| {- empty -}			{ noLoc nilOL }
808

809
decllist :: { Located (OrdList (LHsDecl RdrName)) }
810 811 812
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

813 814
-- Binding groups other than those of class and instance declarations
--
815
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
816
						-- No type declarations
817 818 819
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
820

821
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
822
						-- No type declarations
823
	: 'where' binds			{ LL (unLoc $2) }
824
	| {- empty -}			{ noLoc emptyLocalBinds }
825 826 827 828 829


-----------------------------------------------------------------------------
-- Transformation Rules

830
rules	:: { OrdList (LHsDecl RdrName) }
831
	:  rules ';' rule			{ $1 `snocOL` $3 }
832
        |  rules ';'				{ $1 }
833 834
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
835

836
rule  	:: { LHsDecl RdrName }
837
	: STRING activation rule_forall infixexp '=' exp
838 839
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
840
				  $3 $4 placeHolderNames $6 placeHolderNames) }
841

842 843 844
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

865
deprecations :: { OrdList (LHsDecl RdrName) }
866
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
867
	| deprecations ';' 			{ $1 }
868 869
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
870 871

-- SUP: TEMPORARY HACK, not checking for `module Foo'
872
deprecation :: { OrdList (LHsDecl RdrName) }
873
	: depreclist STRING
874 875
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
876 877 878 879 880 881


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
882
fdecl : 'import' callconv safety fspec
883
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
884
      | 'import' callconv        fspec		
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
901 902
       : STRING var '::' sigtypedoc     { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtypedoc     { LL (noLoc nilFS, $1, $3) }
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

918
sigtypes1 :: { [LHsType RdrName] }
919
	: sigtype			{ [ $1 ] }
920
	| sigtype ',' sigtypes1		{ $1 : $3 }
921 922 923 924 925

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

926 927 928 929
sigtypedoc :: { LHsType RdrName }
	: ctypedoc			{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

930 931 932 933 934 935 936
sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
infixtype :: { LHsType RdrName }
	: btype qtyconop gentype         { LL $ HsOpTy $1 $2 $3 }
        | btype tyvarop  gentype  	 { LL $ HsOpTy $1 $2 $3 }

infixtypedoc :: { LHsType RdrName }
        : infixtype                      { $1 }
	| infixtype docprev              { LL $ HsDocTy $1 $2 }

gentypedoc :: { LHsType RdrName }
        : btype                          { $1 }
        | btypedoc                       { $1 }
        | infixtypedoc                   { $1 }
        | btype '->' ctypedoc            { LL $ HsFunTy $1 $3 }
        | btypedoc '->' ctypedoc         { LL $ HsFunTy $1 $3 }

ctypedoc  :: { LHsType RdrName }
        : 'forall' tv_bndrs '.' ctypedoc { LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
        | context '=>' gentypedoc        { LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| gentypedoc			 { $1 }
	
958 959 960 961
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
977
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
978 979 980 981 982
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
983
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
984
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
985 986 987 988 989

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

990 991 992 993
btypedoc :: { LHsType RdrName }
	: btype atype docprev		{ LL $ HsDocTy (L (comb2 $1 $2) (HsAppTy $1 $2)) $3 }
        | atype docprev                 { LL $ HsDocTy $1 $2 }

994 995
atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
996
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
997
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
998
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
999
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
1000 1001
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
1002
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
1003
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 (unLoc $4) }
1004 1005 1006 1007 1008 1009 1010 1011
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
1012
	: sigtype			{% checkInstType $1 }
1013

1014 1015 1016 1017
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

1018 1019 1020 1021 1022
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
1023 1024
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
1025 1026 1027 1028 1029 1030 1031

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
1032 1033
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) 
							  (unLoc $4)) }
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

1054
kind	:: { Located Kind }
1055
	: akind			{ $1 }
1056
	| akind '->' kind	{ LL (mkArrowKind (unLoc $1) (unLoc $3)) }
1057

1058 1059 1060 1061
akind	:: { Located Kind }
	: '*'			{ L1 liftedTypeKind }
	| '!'			{ L1 unliftedTypeKind }
	| '(' kind ')'		{ LL (unLoc $2) }
1062 1063 1064 1065 1066


-----------------------------------------------------------------------------
-- Datatype declarations

1067 1068 1069 1070 1071 1072
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
1073
        | gadt_constrs ';' 		{ $1 }
1074 1075
        | gadt_constr                   { L1 [$1] } 

1076 1077 1078 1079 1080 1081
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

1082
gadt_constr :: { LConDecl RdrName }
1083
        : con '::' sigtype
1084 1085 1086
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
1087
        -- XXX revisit audreyt
1088 1089
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
1090
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3) Nothing) }
1091 1092 1093
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
1094
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6) Nothing ) }
1095 1096
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
1097
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4) Nothing) }
1098 1099
-}

1100 1101 1102

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
1103
        | maybe_docnext '=' constrs1    { L (comb2 $2 $3) (addConDocs (unLoc $3) $1) }
1104 1105

constrs1 :: { Located [LConDecl RdrName] }
1106 1107
	: constrs1 maybe_docnext '|' maybe_docprev constr { LL (addConDoc $5 $2 : addConDocFirst (unLoc $1) $4) }
	| constr			                  { L1 [$1] }
1108 1109

constr :: { LConDecl RdrName }
1110 1111 1112 1113 1114 1115
	: maybe_docnext forall context '=>' constr_stuff maybe_docprev	
		{ let (con,details) = unLoc $5 in 
		  L (comb4 $2 $3 $4 $5) (ConDecl con Explicit (unLoc $2) $3 details ResTyH98 ($1 `mplus` $6)) }
	| maybe_docnext forall constr_stuff maybe_docprev
		{ let (con,details) = unLoc $3 in 
		  L (comb2 $2 $3) (ConDecl con Explicit (unLoc $2) (noLoc []) details ResTyH98 ($1 `mplus` $4)) }
1116 1117 1118 1119 1120 1121

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
1122 1123 1124 1125 1126 1127 1128
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
1129 1130 1131
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
1132
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
1133

1134 1135 1136 1137
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

1138 1139 1140
fielddecls :: { [([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName))] }
	: fielddecl maybe_docnext ',' maybe_docprev fielddecls { addFieldDoc (unLoc $1) $4 : addFieldDocs $5 $2 }
	| fielddecl			                       { [unLoc $1] }
1141

1142 1143
fielddecl :: { Located ([Located RdrName], LBangType RdrName, Maybe (LHsDoc RdrName)) }
	: maybe_docnext sig_vars '::' ctype maybe_docprev      { L (comb3 $2 $3 $4) (reverse (unLoc $2), $4, $1 `mplus` $5) }
1144

1145 1146 1147 1148
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
1149 1150
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
1151 1152 1153
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
1154 1155
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

1182 1183 1184 1185 1186 1187 1188 1189 1190
docdecl :: { LHsDecl RdrName }
        : docdecld { L1 (DocD (unLoc $1)) }

docdecld :: { LDocDecl RdrName }
        : docnext                               { L1 (DocCommentNext (unLoc $1)) }
        | docprev                               { L1 (DocCommentPrev (unLoc $1)) }
        | docnamed                              { L1 (case (unLoc $1) of (n, doc) -> DocCommentNamed n doc) }
        | docsection                            { L1 (case (unLoc $1) of (n, doc) -> DocGroup n doc) }

1191
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
1192
	: sigdecl			{ $1 }
1193
	| '!' aexp rhs			{% do { pat <- checkPattern $2;
1194
					        return (LL $ unitOL $ LL $ ValD ( 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1195
							PatBind (LL $ BangPat pat) (unLoc $3)
1196
								placeHolderType placeHolderNames)) } }
1197
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
1198
						return (LL $ unitOL (LL $ ValD r)) } }
1199
        | docdecl                       { LL $ unitOL $1 }
1200 1201

rhs	:: { Located (GRHSs RdrName) }
1202 1203
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
1204 1205 1206 1207 1208 1209

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }