DsBinds.hs 54.5 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
14
{-# LANGUAGE TypeFamilies #-}
Ian Lynagh's avatar
Ian Lynagh committed
15

16
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
17
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
18
  ) where
19

20 21
#include "HsVersions.h"

22 23
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
24

25
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
26
import DsGRHSs
27
import DsUtils
28

29 30
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
31
import Literal          ( Literal(MachStr) )
32
import CoreOpt          ( simpleOptExpr )
33
import OccurAnal        ( occurAnalyseExpr )
34
import MkCore
Simon Marlow's avatar
Simon Marlow committed
35
import CoreUtils
36
import CoreArity ( etaExpand )
37
import CoreUnfold
38
import CoreFVs
39
import Digraph
40

41
import PrelNames
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import VarSet
Simon Marlow's avatar
Simon Marlow committed
53
import Rules
54
import VarEnv
55
import Var( EvVar )
56
import Outputable
57
import Module
Simon Marlow's avatar
Simon Marlow committed
58 59
import SrcLoc
import Maybes
60
import OrdList
Simon Marlow's avatar
Simon Marlow committed
61
import Bag
Richard Eisenberg's avatar
Richard Eisenberg committed
62
import BasicTypes
Ian Lynagh's avatar
Ian Lynagh committed
63
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
64
import FastString
65
import Util
66
import MonadUtils
67
import qualified GHC.LanguageExtensions as LangExt
68
import Control.Monad
69

70
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
71
*                                                                      *
72
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
73
*                                                                      *
74
**********************************************************************-}
75

76 77
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
78
dsTopLHsBinds :: LHsBinds GhcTc -> DsM (OrdList (Id,CoreExpr))
Richard Eisenberg's avatar
Richard Eisenberg committed
79 80 81 82
dsTopLHsBinds binds
     -- see Note [Strict binds checks]
  | not (isEmptyBag unlifted_binds) || not (isEmptyBag bang_binds)
  = do { mapBagM_ (top_level_err "bindings for unlifted types") unlifted_binds
83
       ; mapBagM_ (top_level_err "strict bindings")             bang_binds
Richard Eisenberg's avatar
Richard Eisenberg committed
84
       ; return nilOL }
85

Richard Eisenberg's avatar
Richard Eisenberg committed
86 87 88 89 90 91
  | otherwise
  = do { (force_vars, prs) <- dsLHsBinds binds
       ; when debugIsOn $
         do { xstrict <- xoptM LangExt.Strict
            ; MASSERT2( null force_vars || xstrict, ppr binds $$ ppr force_vars ) }
              -- with -XStrict, even top-level vars are listed as force vars.
92

Richard Eisenberg's avatar
Richard Eisenberg committed
93 94 95 96
       ; return (toOL prs) }

  where
    unlifted_binds = filterBag (isUnliftedHsBind . unLoc) binds
97
    bang_binds     = filterBag (isBangedHsBind   . unLoc) binds
Richard Eisenberg's avatar
Richard Eisenberg committed
98 99 100 101 102

    top_level_err desc (L loc bind)
      = putSrcSpanDs loc $
        errDs (hang (text "Top-level" <+> text desc <+> text "aren't allowed:")
                  2 (ppr bind))
103

104

Richard Eisenberg's avatar
Richard Eisenberg committed
105
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
106
-- later be forced in the binding group body, see Note [Desugar Strict binds]
107
dsLHsBinds :: LHsBinds GhcTc -> DsM ([Id], [(Id,CoreExpr)])
Richard Eisenberg's avatar
Richard Eisenberg committed
108
dsLHsBinds binds
109
  = do { ds_bs <- mapBagM dsLHsBind binds
110 111 112
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

Richard Eisenberg's avatar
Richard Eisenberg committed
113
------------------------
114
dsLHsBind :: LHsBind GhcTc
115 116 117 118 119 120
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
121
         -> HsBind GhcTc
122 123 124 125 126
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

127 128 129
dsHsBind dflags (VarBind { var_id = var
                         , var_rhs = expr
                         , var_inline = inline_regardless })
130
  = do  { core_expr <- dsLExpr expr
131 132
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
133
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
134
                   | otherwise         = var
135
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
136
              force_var = if xopt LangExt.Strict dflags
137 138 139 140
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

141 142
dsHsBind dflags b@(FunBind { fun_id = L _ fun, fun_matches = matches
                           , fun_co_fn = co_fn, fun_tick = tick })
143
 = do   { (args, body) <- matchWrapper
Ben Gamari's avatar
Ben Gamari committed
144
                           (mkPrefixFunRhs (noLoc $ idName fun))
145
                           Nothing matches
Simon Peyton Jones's avatar
Simon Peyton Jones committed
146
        ; core_wrap <- dsHsWrapper co_fn
147
        ; let body' = mkOptTickBox tick body
Simon Peyton Jones's avatar
Simon Peyton Jones committed
148 149
              rhs   = core_wrap (mkLams args body')
              core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
Ben Gamari's avatar
Ben Gamari committed
150 151 152 153 154
              force_var
                  -- Bindings are strict when -XStrict is enabled
                | xopt LangExt.Strict dflags
                , matchGroupArity matches == 0 -- no need to force lambdas
                = [id]
155
                | isBangedHsBind b
Ben Gamari's avatar
Ben Gamari committed
156 157 158
                = [id]
                | otherwise
                = []
159 160 161 162 163 164 165 166
        ; --pprTrace "dsHsBind" (vcat [ ppr fun <+> ppr (idInlinePragma fun)
          --                          , ppr (mg_alts matches)
          --                          , ppr args, ppr core_binds]) $
          return (force_var, [core_binds]) }

dsHsBind dflags (PatBind { pat_lhs = pat, pat_rhs = grhss
                         , pat_rhs_ty = ty
                         , pat_ticks = (rhs_tick, var_ticks) })
167
  = do  { body_expr <- dsGuarded grhss ty
168
        ; let body' = mkOptTickBox rhs_tick body_expr
169
              pat'  = decideBangHood dflags pat
170
        ; (force_var,sel_binds) <- mkSelectorBinds var_ticks pat body'
171 172
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
173 174
        ; let force_var' = if isBangedLPat pat'
                           then [force_var]
175 176
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
dsHsBind dflags (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                          , abs_exports = exports
                          , abs_ev_binds = ev_binds
                          , abs_binds = binds, abs_sig = has_sig })
  = do { ds_binds <- addDictsDs (toTcTypeBag (listToBag dicts)) $
                     dsLHsBinds binds
                                   -- addDictsDs: push type constraints deeper
                                   --             for inner pattern match check

       ; ds_ev_binds <- dsTcEvBinds_s ev_binds

       -- dsAbsBinds does the hard work
       ; dsAbsBinds dflags tyvars dicts exports ds_ev_binds ds_binds has_sig }

dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"


-----------------------
dsAbsBinds :: DynFlags
           -> [TyVar] -> [EvVar] -> [ABExport GhcTc]
           -> [CoreBind]                -- Desugared evidence bidings
           -> ([Id], [(Id,CoreExpr)])   -- Desugared value bindings
           -> Bool                      -- Single binding with signature
           -> DsM ([Id], [(Id,CoreExpr)])

dsAbsBinds dflags tyvars dicts exports
           ds_ev_binds (force_vars, bind_prs) has_sig

    -- A very important common case: one exported variable
    -- Non-recursive bindings come through this way
    -- So do self-recursive bindings
  | [export] <- exports
  , ABE { abe_poly = global_id, abe_mono = local_id
        , abe_wrap = wrap, abe_prags = prags } <- export
  , Just force_vars' <- case force_vars of
                           []                  -> Just []
                           [v] | v == local_id -> Just [global_id]
                           _                   -> Nothing
       -- If there is a variable to force, it's just the
       -- single variable we are binding here
  = do { core_wrap <- dsHsWrapper wrap -- Usually the identity
219

Simon Peyton Jones's avatar
Simon Peyton Jones committed
220 221
       ; let rhs = core_wrap $
                   mkLams tyvars $ mkLams dicts $
222 223 224 225 226 227 228 229 230
                   mkCoreLets ds_ev_binds $
                   body

             body | has_sig
                  , [(_, lrhs)] <- bind_prs
                  = lrhs
                  | otherwise
                  = mkLetRec bind_prs (Var local_id)

231
       ; (spec_binds, rules) <- dsSpecs rhs prags
232

233 234 235 236
       ; let global_id' = addIdSpecialisations global_id rules
             main_bind  = makeCorePair dflags global_id'
                                       (isDefaultMethod prags)
                                       (dictArity dicts) rhs
237

238
       ; return (force_vars', main_bind : fromOL spec_binds) }
sof's avatar
sof committed
239

240 241 242 243 244
    -- Another common case: no tyvars, no dicts
    -- In this case we can have a much simpler desugaring
  | null tyvars, null dicts

  = do { let mk_bind (ABE { abe_wrap = wrap
245 246 247
                          , abe_poly = global
                          , abe_mono = local
                          , abe_prags = prags })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
248
              = do { core_wrap <- dsHsWrapper wrap
249 250
                   ; return (makeCorePair dflags global
                                          (isDefaultMethod prags)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
251
                                          0 (core_wrap (Var local))) }
252 253
       ; main_binds <- mapM mk_bind exports

254 255 256 257 258 259
       ; return (force_vars, flattenBinds ds_ev_binds ++ bind_prs ++ main_binds) }

    -- The general case
    -- See Note [Desugaring AbsBinds]
  | otherwise
  = do { let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
260
                              | (lcl_id, rhs) <- bind_prs ]
261
                -- Monomorphic recursion possible, hence Rec
262 263 264 265 266 267 268 269 270 271 272
             new_force_vars = get_new_force_vars force_vars
             locals       = map abe_mono exports
             all_locals   = locals ++ new_force_vars
             tup_expr     = mkBigCoreVarTup all_locals
             tup_ty       = exprType tup_expr
       ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_ev_binds $
                            mkLet core_bind $
                            tup_expr

       ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
273

274 275 276
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
277
       ; (exported_force_vars, extra_exports) <- get_exports force_vars
278

279 280 281 282
       ; let mk_bind (ABE { abe_wrap = wrap
                          , abe_poly = global
                          , abe_mono = local, abe_prags = spec_prags })
                          -- See Note [AbsBinds wrappers] in HsBinds
283
                = do { tup_id  <- newSysLocalDs tup_ty
Simon Peyton Jones's avatar
Simon Peyton Jones committed
284 285 286 287 288
                     ; core_wrap <- dsHsWrapper wrap
                     ; let rhs = core_wrap $ mkLams tyvars $ mkLams dicts $
                                 mkTupleSelector all_locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
                           rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
289 290
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
291 292 293
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
294
                           -- Id is just the selector.  Hmm.
295
                     ; return ((global', rhs) : fromOL spec_binds) }
296

297
       ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
298

299 300
       ; return ( exported_force_vars
                , (poly_tup_id, poly_tup_rhs) :
301
                   concat export_binds_s) }
302
  where
303
    inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with
304 305 306
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
307 308 309 310
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
311 312

    add_inline :: Id -> Id    -- tran
313 314
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
330
    get_exports :: [Id] -> DsM ([Id], [ABExport GhcTc])
331 332 333 334 335 336 337 338 339 340 341 342
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
343 344 345 346
         return (ABE { abe_poly  = global
                     , abe_mono  = local
                     , abe_wrap  = WpHole
                     , abe_prags = SpecPrags [] })
347 348

-- | This is where we apply INLINE and INLINABLE pragmas. All we need to
349 350 351 352 353 354
-- do is to attach the unfolding information to the Id.
--
-- Other decisions about whether to inline are made in
-- `calcUnfoldingGuidance` but the decision about whether to then expose
-- the unfolding in the interface file is made in `TidyPgm.addExternal`
-- using this information.
355
------------------------
356 357
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr
             -> (Id, CoreExpr)
358
makeCorePair dflags gbl_id is_default_method dict_arity rhs
359
  | is_default_method                 -- Default methods are *always* inlined
360 361
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

362 363
  | otherwise
  = case inlinePragmaSpec inline_prag of
364 365 366
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
367
          Inline          -> inline_pair
368

369 370
  where
    inline_prag   = idInlinePragma gbl_id
371
    inlinable_unf = mkInlinableUnfolding dflags rhs
372 373
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
374 375
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
376
       , let real_arity = dict_arity + arity
377
        -- NB: The arity in the InlineRule takes account of the dictionaries
378
       = ( gbl_id `setIdUnfolding` mkInlineUnfoldingWithArity real_arity rhs
379 380 381 382
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
383
         (gbl_id `setIdUnfolding` mkInlineUnfolding rhs, rhs)
384 385 386 387

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
388

Austin Seipp's avatar
Austin Seipp committed
389
{-
390 391
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
392 393 394 395 396 397 398 399
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

400 401 402 403
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
Gabor Greif's avatar
Gabor Greif committed
404
The naive way would be to desugar to something like
405 406
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
407
But we don't want that, because if M.f isn't exported,
408 409
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
410 411 412
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
413 414 415
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
416 417 418 419
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
420
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
421
Although I'm a bit worried about whether full laziness might
422
float the f_lcl binding out and then inline M.f at its call site
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

438
The top-level AbsBinds for $cround has no tyvars or dicts (because the
439 440 441 442 443 444 445
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

446 447 448 449 450
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
451 452 453

and desugar it to

454 455 456
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
457 458

where B is the *non-recursive* binding
459 460 461
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
462 463

Notice (a) g has a different number of type variables to f, so we must
464 465
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
466

467 468 469 470
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
471

472 473 474 475
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
476 477

Why got to this trouble?  It's a common case, and it removes the
478
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
479 480 481 482
compilation, especially in a case where there are a *lot* of
bindings.


483 484 485 486 487 488 489 490
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
491
happen as a result of method sharing), there's a danger that we never
492 493 494 495
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
496
has the arity with which it is declared in the source code.  In this
497
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
498
should mean that (foo d) is a PAP and we don't share it.
499 500 501

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
502 503 504 505 506 507 508 509 510 511 512 513 514 515
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
516 517 518 519


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
520
See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
573
The simplest thing is to return it in the polymorphic
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Richard Eisenberg's avatar
Richard Eisenberg committed
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
Note [Strict binds checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several checks around properly formed strict bindings. They
all link to this Note. These checks must be here in the desugarer because
we cannot know whether or not a type is unlifted until after zonking, due
to levity polymorphism. These checks all used to be handled in the typechecker
in checkStrictBinds (before Jan '17).

We define an "unlifted bind" to be any bind that binds an unlifted id. Note that

  x :: Char
  (# True, x #) = blah

is *not* an unlifted bind. Unlifted binds are detected by HsUtils.isUnliftedHsBind.

606
Define a "banged bind" to have a top-level bang. Detected by HsPat.isBangedHsBind.
Richard Eisenberg's avatar
Richard Eisenberg committed
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
Define a "strict bind" to be either an unlifted bind or a banged bind.

The restrictions are:
  1. Strict binds may not be top-level. Checked in dsTopLHsBinds.

  2. Unlifted binds must also be banged. (There is no trouble to compile an unbanged
     unlifted bind, but an unbanged bind looks lazy, and we don't want users to be
     surprised by the strictness of an unlifted bind.) Checked in first clause
     of DsExpr.ds_val_bind.

  3. Unlifted binds may not have polymorphism (#6078). (That is, no quantified type
     variables or constraints.) Checked in first clause
     of DsExpr.ds_val_bind.

  4. Unlifted binds may not be recursive. Checked in second clause of ds_val_bind.

Austin Seipp's avatar
Austin Seipp committed
623
-}
624

625
------------------------
626
dsSpecs :: CoreExpr     -- Its rhs
627
        -> TcSpecPrags
628 629
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
630
-- See Note [Handling SPECIALISE pragmas] in TcBinds
631 632 633 634 635 636
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

637 638 639
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
640 641 642
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
643
  | isJust (isClassOpId_maybe poly_id)
644
  = putSrcSpanDs loc $
645 646
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for class method selector"
                          <+> quotes (ppr poly_id))
647
       ; return Nothing  }  -- There is no point in trying to specialise a class op
648 649
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
650

651 652
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
653 654
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for NOINLINE function:"
                          <+> quotes (ppr poly_id))
655
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
656
                            -- See Note [Activation pragmas for SPECIALISE]
657

658
  | otherwise
659
  = putSrcSpanDs loc $
660 661
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
662 663
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
664 665 666 667 668 669 670 671 672 673
             (spec_bndrs, spec_app) = collectHsWrapBinders spec_co
               -- spec_co looks like
               --         \spec_bndrs. [] spec_args
               -- perhaps with the body of the lambda wrapped in some WpLets
               -- E.g. /\a \(d:Eq a). let d2 = $df d in [] (Maybe a) d2

       ; core_app <- dsHsWrapper spec_app

       ; let ds_lhs  = core_app (Var poly_id)
             spec_ty = mkLamTypes spec_bndrs (exprType ds_lhs)
674 675 676
       ; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
         --                         , text "spec_co:" <+> ppr spec_co
         --                         , text "ds_rhs:" <+> ppr ds_lhs ]) $
Simon Peyton Jones's avatar
Simon Peyton Jones committed
677
         case decomposeRuleLhs spec_bndrs ds_lhs of {
678
           Left msg -> do { warnDs NoReason msg; return Nothing } ;
679
           Right (rule_bndrs, _fn, args) -> do
680

681
       { dflags <- getDynFlags
682
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
683
       ; let fn_unf    = realIdUnfolding poly_id
Simon Peyton Jones's avatar
Simon Peyton Jones committed
684
             spec_unf  = specUnfolding spec_bndrs core_app arity_decrease fn_unf
685 686 687
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
Simon Peyton Jones's avatar
Simon Peyton Jones committed
688 689
             arity_decrease = count isValArg args - count isId spec_bndrs

690
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
691
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
692 693
                        rule_act poly_name
                        rule_bndrs args
Simon Peyton Jones's avatar
Simon Peyton Jones committed
694
                        (mkVarApps (Var spec_id) spec_bndrs)
695

Simon Peyton Jones's avatar
Simon Peyton Jones committed
696
       ; let spec_rhs = mkLams spec_bndrs (core_app poly_rhs)
697

698 699
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
700
--              (warnDs $ text "SPECIALISE pragma on INLINE function probably won't fire:"
701
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
702 703 704 705 706

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
707 708 709 710
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
711
             = rhs          -- Local Id; this is its rhs
712 713
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
714 715 716
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
717
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
718
                            -- The type checker has checked that it *has* an unfolding
719

720 721 722 723 724
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
725
                                 -- in OccurAnal
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


743 744 745 746 747 748
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
749
        warnDs (Reason Opt_WarnOrphans) (ruleOrphWarn rule)
750 751 752
    return rule

ruleOrphWarn :: CoreRule -> SDoc
753
ruleOrphWarn rule = text "Orphan rule:" <+> ppr rule
754

755 756 757 758 759 760 761 762 763 764 765 766 767
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

768 769 770 771 772 773 774 775
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

776
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
798
SPEC [n] f :: ty            [n]   INLINE [k]
799 800 801 802 803 804 805 806 807 808
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
809 810
************************************************************************
*                                                                      *
811
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
812 813 814
*                                                                      *
************************************************************************
-}
815

816
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
817 818
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
819
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
820
--
821
-- Returns an error message if the LHS isn't of the expected shape
822 823 824 825 826
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))
827 828 829
  | Var funId <- fun2
  , Just con <- isDataConId_maybe funId
  = Left (constructor_msg con) -- See Note [No RULES on datacons]
830
  | Just (fn_id, args) <- decompose fun2 args2
831
  , let extra_bndrs = mk_extra_bndrs fn_id args
832 833 834 835 836 837
  = -- pprTrace "decmposeRuleLhs" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
    --                                  , text "orig_lhs:" <+> ppr orig_lhs
    --                                  , text "lhs1:"     <+> ppr lhs1
    --                                  , text "extra_dict_bndrs:" <+> ppr extra_dict_bndrs
    --                                  , text "fn_id:" <+> ppr fn_id
    --                                  , text "args:"   <+> ppr args]) $
838
    Right (orig_bndrs ++ extra_bndrs, fn_id, args)
839

840
  | otherwise
841
  = Left bad_shape_msg
842
 where
843 844 845 846
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

847 848
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
849

850
   orig_bndr_set = mkVarSet orig_bndrs
851

852 853 854 855 856 857 858 859 860 861 862 863 864
        -- Add extra tyvar binders: Note [Free tyvars in rule LHS]
        -- and extra dict binders: Note [Free dictionaries in rule LHS]
   mk_extra_bndrs fn_id args
     = toposortTyVars unbound_tvs ++ unbound_dicts
     where
       unbound_tvs   = [ v | v <- unbound_vars, isTyVar v ]
       unbound_dicts = [ mkLocalId (localiseName (idName d)) (idType d)
                       | d <- unbound_vars, isDictId d ]
       unbound_vars  = [ v | v <- exprsFreeVarsList args
                           , not (v `elemVarSet` orig_bndr_set)
                           , not (v == fn_id) ]
         -- fn_id: do not quantify over the function itself, which may
         -- itself be a dictionary (in pathological cases, Trac #10251)
865 866 867 868 869 870

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
871

872
   bad_shape_msg = hang (text "RULE left-hand side too complicated to desugar")
873 874
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
875 876
   dead_msg bndr = hang (sep [ text "Forall'd" <+> pp_bndr bndr
                             , text "is not bound in RULE lhs"])
877 878 879
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
880
   pp_bndr bndr
881 882 883
    | isTyVar bndr                      = text "type variable" <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = text "constraint" <+> quotes (ppr pred)
    | otherwise                         = text "variable" <+> quotes (ppr bndr)
884

885 886 887 888 889
   constructor_msg con = vcat
     [ text "A constructor," <+> ppr con <>
         text ", appears as outermost match in RULE lhs."
     , text "This rule will be ignored." ]

890
   drop_dicts :: CoreExpr -> CoreExpr
891
   drop_dicts e
892 893 894
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
895
       (bnds, body) = split_lets (occurAnalyseExpr e)
896
           -- The occurAnalyseExpr drops dead bindings which is
897 898
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
899 900

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
901 902
   split_lets (Let (NonRec d r) body)
     | isDictId d
903
     = ((d,r):bs, body')
904 905 906 907 908 909 910 911 912
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
913 914 915 916

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
917
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
918 919 920 921
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
922

Austin Seipp's avatar
Austin Seipp committed
923
{-
924
Note [Decomposing the left-hand side of a RULE]
925
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
926
There are several things going on here.
927 928
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
929
* extra_dict_bndrs: see Note [Free dictionaries]
930

931 932 933 934 935 936 937 938 939 940 941 942 943
Note [Free tyvars on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data T a = C

  foo :: T a -> Int
  foo C = 1

  {-# RULES "myrule"  foo C = 1 #-}

After type checking the LHS becomes (foo alpha (C alpha)), where alpha
is an unbound meta-tyvar.  The zonker in TcHsSyn is careful not to
turn the free alpha into Any (as it usually does).  Instead it turns it
944
into a TyVar 'a'.  See TcHsSyn Note [Zonking the LHS of a RULE].
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

Now we must quantify over that 'a'.  It's /really/ inconvenient to do that
in the zonker, because the HsExpr data type is very large.  But it's /easy/
to do it here in the desugarer.

Moreover, we have to do something rather similar for dictionaries;
see Note [Free dictionaries on rule LHS].   So that's why we look for
type variables free on the LHS, and quantify over them.

Note [Free dictionaries on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too.  *Any* dict with that type will do.

So for example when you have
        f :: Eq a => a -> a
        f = <rhs>
        ... SPECIALISE f :: Int -> Int ...

Then we get the SpecPrag
        SpecPrag (f Int dInt)

And from that we want the rule

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

979 980
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
981
drop_dicts drops dictionary bindings on the LHS where possible.
982 983
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
984
   Reasoning here is that there is only one d:Eq [Int], and so we can
985 986 987 988
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
989
         one of the orig_bndrs, which we assume occur on RHS.
990 991 992 993 994 995
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
996
         to match, but there is no other way to get d:Eq a
997

998
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
999 1000 1001 1002 1003 1004
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
1005
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
1006 1007 1008 1009 1010 1011
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
1012
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
1013 1014
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

1015 1016 1017
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
1028