Parser.y.pp 50.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
--								-*-haskell-*-
-- ---------------------------------------------------------------------------
-- (c) The University of Glasgow 1997-2003
---
-- The GHC grammar.
--
-- Author(s): Simon Marlow, Sven Panne 1997, 1998, 1999
-- ---------------------------------------------------------------------------

{
11
module Parser ( parseModule, parseStmt, parseIdentifier, parseType,
12
		parseHeader ) where
13 14 15 16 17 18

#define INCLUDE #include 
INCLUDE "HsVersions.h"

import HsSyn
import RdrHsSyn
19
import HscTypes		( IsBootInterface, DeprecTxt )
20 21 22 23 24
import Lexer
import RdrName
import TysWiredIn	( unitTyCon, unitDataCon, tupleTyCon, tupleCon, nilDataCon,
			  listTyCon_RDR, parrTyCon_RDR, consDataCon_RDR )
import Type		( funTyCon )
25
import ForeignCall	( Safety(..), CExportSpec(..), CLabelString,
26 27
			  CCallConv(..), CCallTarget(..), defaultCCallConv
			)
28
import OccName		( varName, dataName, tcClsName, tvName )
29 30
import DataCon		( DataCon, dataConName )
import SrcLoc		( Located(..), unLoc, getLoc, noLoc, combineSrcSpans,
31 32
			  SrcSpan, combineLocs, srcLocFile, 
			  mkSrcLoc, mkSrcSpan )
33
import Module
34
import StaticFlags	( opt_SccProfilingOn )
Simon Marlow's avatar
Simon Marlow committed
35
import Type		( Kind, mkArrowKind, liftedTypeKind, unliftedTypeKind )
36
import BasicTypes	( Boxity(..), Fixity(..), FixityDirection(..), IPName(..),
37
			  Activation(..), defaultInlineSpec )
38
import OrdList
39 40 41 42

import FastString
import Maybes		( orElse )
import Outputable
43
import GLAEXTS
44 45 46 47
}

{-
-----------------------------------------------------------------------------
48
Conflicts: 36 shift/reduce (1.25)
49

50
10 for abiguity in 'if x then y else z + 1'		[State 178]
51 52 53
	(shift parses as 'if x then y else (z + 1)', as per longest-parse rule)
	10 because op might be: : - ! * . `x` VARSYM CONSYM QVARSYM QCONSYM

54
1 for ambiguity in 'if x then y else z :: T'		[State 178]
55 56
	(shift parses as 'if x then y else (z :: T)', as per longest-parse rule)

57
4 for ambiguity in 'if x then y else z -< e'		[State 178]
ross's avatar
ross committed
58
	(shift parses as 'if x then y else (z -< T)', as per longest-parse rule)
59 60 61 62 63 64 65 66 67 68
	There are four such operators: -<, >-, -<<, >>-


2 for ambiguity in 'case v of { x :: T -> T ... } ' 	[States 11, 253]
 	Which of these two is intended?
	  case v of
	    (x::T) -> T		-- Rhs is T
    or
	  case v of
	    (x::T -> T) -> ..	-- Rhs is ...
ross's avatar
ross committed
69

70
10 for ambiguity in 'e :: a `b` c'.  Does this mean 	[States 11, 253]
71 72
	(e::a) `b` c, or 
	(e :: (a `b` c))
73
    As well as `b` we can have !, VARSYM, QCONSYM, and CONSYM, hence 5 cases
74
    Same duplication between states 11 and 253 as the previous case
75

76
1 for ambiguity in 'let ?x ...'				[State 329]
77 78 79 80
	the parser can't tell whether the ?x is the lhs of a normal binding or
	an implicit binding.  Fortunately resolving as shift gives it the only
	sensible meaning, namely the lhs of an implicit binding.

81
1 for ambiguity in '{-# RULES "name" [ ... #-}		[State 382]
82 83 84 85
	we don't know whether the '[' starts the activation or not: it
  	might be the start of the declaration with the activation being
	empty.  --SDM 1/4/2002

86
1 for ambiguity in '{-# RULES "name" forall = ... #-}' 	[State 474]
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	since 'forall' is a valid variable name, we don't know whether
	to treat a forall on the input as the beginning of a quantifier
	or the beginning of the rule itself.  Resolving to shift means
	it's always treated as a quantifier, hence the above is disallowed.
	This saves explicitly defining a grammar for the rule lhs that
	doesn't include 'forall'.

-- ---------------------------------------------------------------------------
-- Adding location info

This is done in a stylised way using the three macros below, L0, L1
and LL.  Each of these macros can be thought of as having type

   L0, L1, LL :: a -> Located a

They each add a SrcSpan to their argument.

   L0	adds 'noSrcSpan', used for empty productions

   L1   for a production with a single token on the lhs.  Grabs the SrcSpan
	from that token.

   LL   for a production with >1 token on the lhs.  Makes up a SrcSpan from
        the first and last tokens.

These suffice for the majority of cases.  However, we must be
especially careful with empty productions: LL won't work if the first
or last token on the lhs can represent an empty span.  In these cases,
we have to calculate the span using more of the tokens from the lhs, eg.

	| 'newtype' tycl_hdr '=' newconstr deriving
		{ L (comb3 $1 $4 $5)
		    (mkTyData NewType (unLoc $2) [$4] (unLoc $5)) }

We provide comb3 and comb4 functions which are useful in such cases.

Be careful: there's no checking that you actually got this right, the
only symptom will be that the SrcSpans of your syntax will be
incorrect.

/*
 * We must expand these macros *before* running Happy, which is why this file is
 * Parser.y.pp rather than just Parser.y - we run the C pre-processor first.
 */
#define L0   L noSrcSpan
#define L1   sL (getLoc $1)
#define LL   sL (comb2 $1 $>)

-- -----------------------------------------------------------------------------

-}

%token
 '_'            { L _ ITunderscore }		-- Haskell keywords
 'as' 		{ L _ ITas }
 'case' 	{ L _ ITcase }  	
 'class' 	{ L _ ITclass } 
 'data' 	{ L _ ITdata } 
 'default' 	{ L _ ITdefault }
 'deriving' 	{ L _ ITderiving }
 'do' 		{ L _ ITdo }
 'else' 	{ L _ ITelse }
 'hiding' 	{ L _ IThiding }
 'if' 		{ L _ ITif }
 'import' 	{ L _ ITimport }
 'in' 		{ L _ ITin }
 'infix' 	{ L _ ITinfix }
 'infixl' 	{ L _ ITinfixl }
 'infixr' 	{ L _ ITinfixr }
 'instance' 	{ L _ ITinstance }
 'let' 		{ L _ ITlet }
 'module' 	{ L _ ITmodule }
 'newtype' 	{ L _ ITnewtype }
 'of' 		{ L _ ITof }
 'qualified' 	{ L _ ITqualified }
 'then' 	{ L _ ITthen }
 'type' 	{ L _ ITtype }
 'where' 	{ L _ ITwhere }
 '_scc_'	{ L _ ITscc }	      -- ToDo: remove

 'forall'	{ L _ ITforall }			-- GHC extension keywords
 'foreign'	{ L _ ITforeign }
 'export'	{ L _ ITexport }
 'label'	{ L _ ITlabel } 
 'dynamic'	{ L _ ITdynamic }
 'safe'		{ L _ ITsafe }
 'threadsafe'	{ L _ ITthreadsafe }
 'unsafe'	{ L _ ITunsafe }
 'mdo'		{ L _ ITmdo }
 'stdcall'      { L _ ITstdcallconv }
 'ccall'        { L _ ITccallconv }
 'dotnet'       { L _ ITdotnet }
 'proc'		{ L _ ITproc }		-- for arrow notation extension
 'rec'		{ L _ ITrec }		-- for arrow notation extension

182 183 184
 '{-# INLINE'      	  { L _ (ITinline_prag _) }
 '{-# SPECIALISE'  	  { L _ ITspec_prag }
 '{-# SPECIALISE_INLINE'  { L _ (ITspec_inline_prag _) }
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
 '{-# SOURCE'	   { L _ ITsource_prag }
 '{-# RULES'	   { L _ ITrules_prag }
 '{-# CORE'        { L _ ITcore_prag }              -- hdaume: annotated core
 '{-# SCC'	   { L _ ITscc_prag }
 '{-# DEPRECATED'  { L _ ITdeprecated_prag }
 '{-# UNPACK'      { L _ ITunpack_prag }
 '#-}'		   { L _ ITclose_prag }

 '..'		{ L _ ITdotdot }  			-- reserved symbols
 ':'		{ L _ ITcolon }
 '::'		{ L _ ITdcolon }
 '='		{ L _ ITequal }
 '\\'		{ L _ ITlam }
 '|'		{ L _ ITvbar }
 '<-'		{ L _ ITlarrow }
 '->'		{ L _ ITrarrow }
 '@'		{ L _ ITat }
 '~'		{ L _ ITtilde }
 '=>'		{ L _ ITdarrow }
 '-'		{ L _ ITminus }
 '!'		{ L _ ITbang }
 '*'		{ L _ ITstar }
 '-<'		{ L _ ITlarrowtail }		-- for arrow notation
 '>-'		{ L _ ITrarrowtail }		-- for arrow notation
 '-<<'		{ L _ ITLarrowtail }		-- for arrow notation
 '>>-'		{ L _ ITRarrowtail }		-- for arrow notation
 '.'		{ L _ ITdot }

 '{'		{ L _ ITocurly } 			-- special symbols
 '}'		{ L _ ITccurly }
 '{|'           { L _ ITocurlybar }
 '|}'           { L _ ITccurlybar }
 vocurly	{ L _ ITvocurly } -- virtual open curly (from layout)
 vccurly	{ L _ ITvccurly } -- virtual close curly (from layout)
 '['		{ L _ ITobrack }
 ']'		{ L _ ITcbrack }
 '[:'		{ L _ ITopabrack }
 ':]'		{ L _ ITcpabrack }
 '('		{ L _ IToparen }
 ')'		{ L _ ITcparen }
 '(#'		{ L _ IToubxparen }
 '#)'		{ L _ ITcubxparen }
 '(|'		{ L _ IToparenbar }
 '|)'		{ L _ ITcparenbar }
 ';'		{ L _ ITsemi }
 ','		{ L _ ITcomma }
 '`'		{ L _ ITbackquote }

 VARID   	{ L _ (ITvarid    _) }		-- identifiers
 CONID   	{ L _ (ITconid    _) }
 VARSYM  	{ L _ (ITvarsym   _) }
 CONSYM  	{ L _ (ITconsym   _) }
 QVARID  	{ L _ (ITqvarid   _) }
 QCONID  	{ L _ (ITqconid   _) }
 QVARSYM 	{ L _ (ITqvarsym  _) }
 QCONSYM 	{ L _ (ITqconsym  _) }

 IPDUPVARID   	{ L _ (ITdupipvarid   _) }		-- GHC extension
 IPSPLITVARID  	{ L _ (ITsplitipvarid _) }		-- GHC extension

 CHAR		{ L _ (ITchar     _) }
 STRING		{ L _ (ITstring   _) }
 INTEGER	{ L _ (ITinteger  _) }
 RATIONAL	{ L _ (ITrational _) }
		    
 PRIMCHAR	{ L _ (ITprimchar   _) }
 PRIMSTRING	{ L _ (ITprimstring _) }
 PRIMINTEGER	{ L _ (ITprimint    _) }
 PRIMFLOAT	{ L _ (ITprimfloat  _) }
 PRIMDOUBLE	{ L _ (ITprimdouble _) }
 		    
-- Template Haskell 
'[|'            { L _ ITopenExpQuote  }       
'[p|'           { L _ ITopenPatQuote  }      
'[t|'           { L _ ITopenTypQuote  }      
'[d|'           { L _ ITopenDecQuote  }      
'|]'            { L _ ITcloseQuote    }
TH_ID_SPLICE    { L _ (ITidEscape _)  }     -- $x
'$('	        { L _ ITparenEscape   }     -- $( exp )
TH_VAR_QUOTE	{ L _ ITvarQuote      }     -- 'x
TH_TY_QUOTE	{ L _ ITtyQuote       }      -- ''T

%monad { P } { >>= } { return }
%lexer { lexer } { L _ ITeof }
%name parseModule module
%name parseStmt   maybe_stmt
%name parseIdentifier  identifier
272
%name parseType ctype
273
%partial parseHeader header
274
%tokentype { (Located Token) }
275 276
%%

277 278 279 280 281 282 283 284
-----------------------------------------------------------------------------
-- Identifiers; one of the entry points
identifier :: { Located RdrName }
	: qvar				{ $1 }
	| qcon				{ $1 }
	| qvarop			{ $1 }
	| qconop			{ $1 }

285 286 287 288 289 290 291 292 293 294 295 296 297
-----------------------------------------------------------------------------
-- Module Header

-- The place for module deprecation is really too restrictive, but if it
-- was allowed at its natural place just before 'module', we get an ugly
-- s/r conflict with the second alternative. Another solution would be the
-- introduction of a new pragma DEPRECATED_MODULE, but this is not very nice,
-- either, and DEPRECATED is only expected to be used by people who really
-- know what they are doing. :-)

module 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' body 
		{% fileSrcSpan >>= \ loc ->
298
		   return (L loc (HsModule (Just $2) $4 (fst $6) (snd $6) $3)) }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	| missing_module_keyword top close
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing 
				(fst $2) (snd $2) Nothing)) }

missing_module_keyword :: { () }
	: {- empty -}				{% pushCurrentContext }

maybemoddeprec :: { Maybe DeprecTxt }
	: '{-# DEPRECATED' STRING '#-}' 	{ Just (getSTRING $2) }
	|  {- empty -}				{ Nothing }

body 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	:  '{'            top '}'		{ $2 }
 	|      vocurly    top close		{ $2 }

top 	:: { ([LImportDecl RdrName], [LHsDecl RdrName]) }
	: importdecls				{ (reverse $1,[]) }
	| importdecls ';' cvtopdecls		{ (reverse $1,$3) }
	| cvtopdecls				{ ([],$1) }

cvtopdecls :: { [LHsDecl RdrName] }
	: topdecls				{ cvTopDecls $1 }

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
-----------------------------------------------------------------------------
-- Module declaration & imports only

header 	:: { Located (HsModule RdrName) }
 	: 'module' modid maybemoddeprec maybeexports 'where' header_body
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule (Just $2) $4 $6 [] $3)) }
	| missing_module_keyword importdecls
		{% fileSrcSpan >>= \ loc ->
		   return (L loc (HsModule Nothing Nothing $2 [] Nothing)) }

header_body :: { [LImportDecl RdrName] }
	:  '{'            importdecls		{ $2 }
 	|      vocurly    importdecls		{ $2 }

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
-----------------------------------------------------------------------------
-- The Export List

maybeexports :: { Maybe [LIE RdrName] }
	:  '(' exportlist ')'			{ Just $2 }
	|  {- empty -}				{ Nothing }

exportlist :: { [LIE RdrName] }
 	:  exportlist ',' export		{ $3 : $1 }
	|  exportlist ','			{ $1 }
 	|  export				{ [$1]  }
	|  {- empty -}				{ [] }

   -- No longer allow things like [] and (,,,) to be exported
   -- They are built in syntax, always available
export 	:: { LIE RdrName }
	:  qvar				{ L1 (IEVar (unLoc $1)) }
	|  oqtycon			{ L1 (IEThingAbs (unLoc $1)) }
	|  oqtycon '(' '..' ')'		{ LL (IEThingAll (unLoc $1)) }
	|  oqtycon '(' ')'		{ LL (IEThingWith (unLoc $1) []) }
	|  oqtycon '(' qcnames ')'	{ LL (IEThingWith (unLoc $1) (reverse $3)) }
	|  'module' modid		{ LL (IEModuleContents (unLoc $2)) }

qcnames :: { [RdrName] }
	:  qcnames ',' qcname			{ unLoc $3 : $1 }
	|  qcname				{ [unLoc $1]  }

qcname 	:: { Located RdrName }	-- Variable or data constructor
	:  qvar					{ $1 }
367
	|  qcon					{ $1 }
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

-----------------------------------------------------------------------------
-- Import Declarations

-- import decls can be *empty*, or even just a string of semicolons
-- whereas topdecls must contain at least one topdecl.

importdecls :: { [LImportDecl RdrName] }
	: importdecls ';' importdecl		{ $3 : $1 }
	| importdecls ';'			{ $1 }
	| importdecl				{ [ $1 ] }
	| {- empty -}				{ [] }

importdecl :: { LImportDecl RdrName }
	: 'import' maybe_src optqualified modid maybeas maybeimpspec 
		{ L (comb4 $1 $4 $5 $6) (ImportDecl $4 $2 $3 (unLoc $5) (unLoc $6)) }

maybe_src :: { IsBootInterface }
	: '{-# SOURCE' '#-}'			{ True }
	| {- empty -}				{ False }

optqualified :: { Bool }
      	: 'qualified'                           { True  }
      	| {- empty -}				{ False }

Simon Marlow's avatar
Simon Marlow committed
393
maybeas :: { Located (Maybe ModuleName) }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
      	: 'as' modid                            { LL (Just (unLoc $2)) }
      	| {- empty -}				{ noLoc Nothing }

maybeimpspec :: { Located (Maybe (Bool, [LIE RdrName])) }
	: impspec				{ L1 (Just (unLoc $1)) }
	| {- empty -}				{ noLoc Nothing }

impspec :: { Located (Bool, [LIE RdrName]) }
	:  '(' exportlist ')'  			{ LL (False, reverse $2) }
	|  'hiding' '(' exportlist ')' 		{ LL (True,  reverse $3) }

-----------------------------------------------------------------------------
-- Fixity Declarations

prec 	:: { Int }
	: {- empty -}		{ 9 }
	| INTEGER		{% checkPrecP (L1 (fromInteger (getINTEGER $1))) }

infix 	:: { Located FixityDirection }
	: 'infix'				{ L1 InfixN  }
	| 'infixl'				{ L1 InfixL  }
	| 'infixr'				{ L1 InfixR }

ops   	:: { Located [Located RdrName] }
	: ops ',' op				{ LL ($3 : unLoc $1) }
	| op					{ L1 [$1] }

-----------------------------------------------------------------------------
-- Top-Level Declarations

424
topdecls :: { OrdList (LHsDecl RdrName) }
425
	: topdecls ';' topdecl		{ $1 `appOL` $3 }
426
	| topdecls ';'			{ $1 }
427
	| topdecl			{ $1 }
428

429 430
topdecl :: { OrdList (LHsDecl RdrName) }
  	: tycl_decl			{ unitOL (L1 (TyClD (unLoc $1))) }
431 432
	| 'instance' inst_type where
		{ let (binds,sigs) = cvBindsAndSigs (unLoc $3)
433 434 435 436 437
		  in unitOL (L (comb3 $1 $2 $3) (InstD (InstDecl $2 binds sigs))) }
	| 'default' '(' comma_types0 ')'	{ unitOL (LL $ DefD (DefaultDecl $3)) }
	| 'foreign' fdecl			{ unitOL (LL (unLoc $2)) }
	| '{-# DEPRECATED' deprecations '#-}'	{ $2 }
	| '{-# RULES' rules '#-}'		{ $2 }
438 439
      	| decl					{ unLoc $1 }

440 441 442 443 444 445
	-- Template Haskell Extension
	| '$(' exp ')'				{ unitOL (LL $ SpliceD (SpliceDecl $2)) }
	| TH_ID_SPLICE				{ unitOL (LL $ SpliceD (SpliceDecl $
							L1 $ HsVar (mkUnqual varName (getTH_ID_SPLICE $1))
						  )) }

446
tycl_decl :: { LTyClDecl RdrName }
447 448 449 450 451
 	: 'type' type '=' ctype	
		-- Note type on the left of the '='; this allows
		-- infix type constructors to be declared
		-- 
		-- Note ctype, not sigtype, on the right
452 453 454
		-- We allow an explicit for-all but we don't insert one
		-- in 	type Foo a = (b,b)
		-- Instead we just say b is out of scope
455 456
 		{% do { (tc,tvs) <- checkSynHdr $2
		      ; return (LL (TySynonym tc tvs $4)) } }
457

458
	| data_or_newtype tycl_hdr constrs deriving
459 460
		{ L (comb4 $1 $2 $3 $4)	-- We need the location on tycl_hdr 
					-- in case constrs and deriving are both empty
461
		    (mkTyData (unLoc $1) (unLoc $2) Nothing (reverse (unLoc $3)) (unLoc $4)) }
462

463
        | data_or_newtype tycl_hdr opt_kind_sig 
464
		 'where' gadt_constrlist
465
		 deriving
466
		{ L (comb4 $1 $2 $4 $5)
467
		    (mkTyData (unLoc $1) (unLoc $2) $3 (reverse (unLoc $5)) (unLoc $6)) }
468 469 470 471 472 473 474 475

	| 'class' tycl_hdr fds where
		{ let 
			(binds,sigs) = cvBindsAndSigs (unLoc $4)
		  in
	 	  L (comb4 $1 $2 $3 $4) (mkClassDecl (unLoc $2) (unLoc $3) sigs 
					  binds) }

476 477 478 479
data_or_newtype :: { Located NewOrData }
	: 'data'	{ L1 DataType }
	| 'newtype'	{ L1 NewType }

480 481 482 483
opt_kind_sig :: { Maybe Kind }
	: 				{ Nothing }
	| '::' kind			{ Just $2 }

484 485 486 487 488 489 490
-- tycl_hdr parses the header of a type or class decl,
-- which takes the form
--	T a b
-- 	Eq a => T a
--	(Eq a, Ord b) => T a b
-- Rather a lot of inlining here, else we get reduce/reduce errors
tycl_hdr :: { Located (LHsContext RdrName, Located RdrName, [LHsTyVarBndr RdrName]) }
491
	: context '=>' type		{% checkTyClHdr $1         $3 >>= return.LL }
492 493 494 495 496
	| type				{% checkTyClHdr (noLoc []) $1 >>= return.L1 }

-----------------------------------------------------------------------------
-- Nested declarations

497
decls 	:: { Located (OrdList (LHsDecl RdrName)) }	
498
	: decls ';' decl		{ LL (unLoc $1 `appOL` unLoc $3) }
499
	| decls ';'			{ LL (unLoc $1) }
500
	| decl				{ $1 }
501
	| {- empty -}			{ noLoc nilOL }
502 503


504
decllist :: { Located (OrdList (LHsDecl RdrName)) }
505 506 507
	: '{'            decls '}'	{ LL (unLoc $2) }
	|     vocurly    decls close	{ $2 }

508
where 	:: { Located (OrdList (LHsDecl RdrName)) }
509 510
				-- No implicit parameters
	: 'where' decllist		{ LL (unLoc $2) }
511
	| {- empty -}			{ noLoc nilOL }
512

513 514 515 516
binds 	::  { Located (HsLocalBinds RdrName) } 		-- May have implicit parameters
	: decllist			{ L1 (HsValBinds (cvBindGroup (unLoc $1))) }
	| '{'            dbinds '}'	{ LL (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
	|     vocurly    dbinds close	{ L (getLoc $2) (HsIPBinds (IPBinds (unLoc $2) emptyLHsBinds)) }
517

518
wherebinds :: { Located (HsLocalBinds RdrName) }	-- May have implicit parameters
519
	: 'where' binds			{ LL (unLoc $2) }
520
	| {- empty -}			{ noLoc emptyLocalBinds }
521 522 523 524 525


-----------------------------------------------------------------------------
-- Transformation Rules

526
rules	:: { OrdList (LHsDecl RdrName) }
527
	:  rules ';' rule			{ $1 `snocOL` $3 }
528
        |  rules ';'				{ $1 }
529 530
        |  rule					{ unitOL $1 }
	|  {- empty -}				{ nilOL }
531

532
rule  	:: { LHsDecl RdrName }
533
	: STRING activation rule_forall infixexp '=' exp
534 535
	     { LL $ RuleD (HsRule (getSTRING $1) 
				  ($2 `orElse` AlwaysActive) 
536
				  $3 $4 placeHolderNames $6 placeHolderNames) }
537

538 539 540
activation :: { Maybe Activation } 
        : {- empty -}                           { Nothing }
        | explicit_activation                   { Just $1 }
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

explicit_activation :: { Activation }  -- In brackets
        : '[' INTEGER ']'		{ ActiveAfter  (fromInteger (getINTEGER $2)) }
        | '[' '~' INTEGER ']'		{ ActiveBefore (fromInteger (getINTEGER $3)) }

rule_forall :: { [RuleBndr RdrName] }
	: 'forall' rule_var_list '.'            { $2 }
        | {- empty -}				{ [] }

rule_var_list :: { [RuleBndr RdrName] }
        : rule_var				{ [$1] }
        | rule_var rule_var_list		{ $1 : $2 }

rule_var :: { RuleBndr RdrName }
	: varid                              	{ RuleBndr $1 }
       	| '(' varid '::' ctype ')'             	{ RuleBndrSig $2 $4 }

-----------------------------------------------------------------------------
-- Deprecations (c.f. rules)

561
deprecations :: { OrdList (LHsDecl RdrName) }
562
	: deprecations ';' deprecation		{ $1 `appOL` $3 }
563
	| deprecations ';' 			{ $1 }
564 565
	| deprecation				{ $1 }
	| {- empty -}				{ nilOL }
566 567

-- SUP: TEMPORARY HACK, not checking for `module Foo'
568
deprecation :: { OrdList (LHsDecl RdrName) }
569
	: depreclist STRING
570 571
		{ toOL [ LL $ DeprecD (Deprecation n (getSTRING $2)) 
		       | n <- unLoc $1 ] }
572 573 574 575 576 577


-----------------------------------------------------------------------------
-- Foreign import and export declarations

fdecl :: { LHsDecl RdrName }
Simon Marlow's avatar
Simon Marlow committed
578
fdecl : 'import' callconv safety fspec
579
		{% mkImport $2 $3 (unLoc $4) >>= return.LL }
Simon Marlow's avatar
Simon Marlow committed
580
      | 'import' callconv        fspec		
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		{% do { d <- mkImport $2 (PlaySafe False) (unLoc $3);
			return (LL d) } }
      | 'export' callconv fspec
		{% mkExport $2 (unLoc $3) >>= return.LL }

callconv :: { CallConv }
	  : 'stdcall'			{ CCall  StdCallConv }
	  | 'ccall'			{ CCall  CCallConv   }
	  | 'dotnet'			{ DNCall	     }

safety :: { Safety }
	: 'unsafe'			{ PlayRisky }
	| 'safe'			{ PlaySafe  False }
	| 'threadsafe'			{ PlaySafe  True }

fspec :: { Located (Located FastString, Located RdrName, LHsType RdrName) }
       : STRING var '::' sigtype      { LL (L (getLoc $1) (getSTRING $1), $2, $4) }
       |        var '::' sigtype      { LL (noLoc nilFS, $1, $3) }
         -- if the entity string is missing, it defaults to the empty string;
         -- the meaning of an empty entity string depends on the calling
         -- convention

-----------------------------------------------------------------------------
-- Type signatures

opt_sig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' sigtype			{ Just $2 }

opt_asig :: { Maybe (LHsType RdrName) }
	: {- empty -}			{ Nothing }
	| '::' atype			{ Just $2 }

614
sigtypes1 :: { [LHsType RdrName] }
615
	: sigtype			{ [ $1 ] }
616
	| sigtype ',' sigtypes1		{ $1 : $3 }
617 618 619 620 621 622 623 624 625 626 627 628

sigtype :: { LHsType RdrName }
	: ctype				{ L1 (mkImplicitHsForAllTy (noLoc []) $1) }
	-- Wrap an Implicit forall if there isn't one there already

sig_vars :: { Located [Located RdrName] }
	 : sig_vars ',' var		{ LL ($3 : unLoc $1) }
	 | var				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Types

629 630 631 632
strict_mark :: { Located HsBang }
	: '!'				{ L1 HsStrict }
	| '{-# UNPACK' '#-}' '!'	{ LL HsUnbox }

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
-- A ctype is a for-all type
ctype	:: { LHsType RdrName }
	: 'forall' tv_bndrs '.' ctype	{ LL $ mkExplicitHsForAllTy $2 (noLoc []) $4 }
	| context '=>' type		{ LL $ mkImplicitHsForAllTy   $1 $3 }
	-- A type of form (context => type) is an *implicit* HsForAllTy
	| type				{ $1 }

-- We parse a context as a btype so that we don't get reduce/reduce
-- errors in ctype.  The basic problem is that
--	(Eq a, Ord a)
-- looks so much like a tuple type.  We can't tell until we find the =>
context :: { LHsContext RdrName }
	: btype 			{% checkContext $1 }

type :: { LHsType RdrName }
648
	: ipvar '::' gentype		{ LL (HsPredTy (HsIParam (unLoc $1) $3)) }
649 650 651 652 653
	| gentype			{ $1 }

gentype :: { LHsType RdrName }
        : btype                         { $1 }
        | btype qtyconop gentype        { LL $ HsOpTy $1 $2 $3 }
654
        | btype tyvarop  gentype  	{ LL $ HsOpTy $1 $2 $3 }
655
 	| btype '->' ctype		{ LL $ HsFunTy $1 $3 }
656 657 658 659 660 661 662

btype :: { LHsType RdrName }
	: btype atype			{ LL $ HsAppTy $1 $2 }
	| atype				{ $1 }

atype :: { LHsType RdrName }
	: gtycon			{ L1 (HsTyVar (unLoc $1)) }
663
	| tyvar				{ L1 (HsTyVar (unLoc $1)) }
664
	| strict_mark atype		{ LL (HsBangTy (unLoc $1) $2) }
665
	| '(' ctype ',' comma_types1 ')'  { LL $ HsTupleTy Boxed  ($2:$4) }
666
	| '(#' comma_types1 '#)'	{ LL $ HsTupleTy Unboxed $2     }
667 668
	| '[' ctype ']'			{ LL $ HsListTy  $2 }
	| '[:' ctype ':]'		{ LL $ HsPArrTy  $2 }
669 670 671 672 673 674 675 676 677 678
	| '(' ctype ')'		        { LL $ HsParTy   $2 }
	| '(' ctype '::' kind ')'	{ LL $ HsKindSig $2 $4 }
-- Generics
        | INTEGER                       { L1 (HsNumTy (getINTEGER $1)) }

-- An inst_type is what occurs in the head of an instance decl
--	e.g.  (Foo a, Gaz b) => Wibble a b
-- It's kept as a single type, with a MonoDictTy at the right
-- hand corner, for convenience.
inst_type :: { LHsType RdrName }
679
	: sigtype			{% checkInstType $1 }
680

681 682 683 684
inst_types1 :: { [LHsType RdrName] }
	: inst_type			{ [$1] }
	| inst_type ',' inst_types1	{ $1 : $3 }

685 686 687 688 689
comma_types0  :: { [LHsType RdrName] }
	: comma_types1			{ $1 }
	| {- empty -}			{ [] }

comma_types1	:: { [LHsType RdrName] }
690 691
	: ctype				{ [$1] }
	| ctype  ',' comma_types1	{ $1 : $3 }
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

tv_bndrs :: { [LHsTyVarBndr RdrName] }
	 : tv_bndr tv_bndrs		{ $1 : $2 }
	 | {- empty -}			{ [] }

tv_bndr :: { LHsTyVarBndr RdrName }
	: tyvar				{ L1 (UserTyVar (unLoc $1)) }
	| '(' tyvar '::' kind ')'	{ LL (KindedTyVar (unLoc $2) $4) }

fds :: { Located [Located ([RdrName], [RdrName])] }
	: {- empty -}			{ noLoc [] }
	| '|' fds1			{ LL (reverse (unLoc $2)) }

fds1 :: { Located [Located ([RdrName], [RdrName])] }
	: fds1 ',' fd			{ LL ($3 : unLoc $1) }
	| fd				{ L1 [$1] }

fd :: { Located ([RdrName], [RdrName]) }
	: varids0 '->' varids0		{ L (comb3 $1 $2 $3)
					   (reverse (unLoc $1), reverse (unLoc $3)) }

varids0	:: { Located [RdrName] }
	: {- empty -}			{ noLoc [] }
	| varids0 tyvar			{ LL (unLoc $2 : unLoc $1) }

-----------------------------------------------------------------------------
-- Kinds

kind	:: { Kind }
	: akind			{ $1 }
	| akind '->' kind	{ mkArrowKind $1 $3 }

akind	:: { Kind }
	: '*'			{ liftedTypeKind }
Simon Marlow's avatar
Simon Marlow committed
726
	| '!'			{ unliftedTypeKind }
727 728 729 730 731 732
	| '(' kind ')'		{ $2 }


-----------------------------------------------------------------------------
-- Datatype declarations

733 734 735 736 737 738
gadt_constrlist :: { Located [LConDecl RdrName] }
	: '{'            gadt_constrs '}'	{ LL (unLoc $2) }
	|     vocurly    gadt_constrs close	{ $2 }

gadt_constrs :: { Located [LConDecl RdrName] }
        : gadt_constrs ';' gadt_constr  { LL ($3 : unLoc $1) }
739
        | gadt_constrs ';' 		{ $1 }
740 741
        | gadt_constr                   { L1 [$1] } 

742 743 744 745 746 747
-- We allow the following forms:
--	C :: Eq a => a -> T a
--	C :: forall a. Eq a => !a -> T a
--	D { x,y :: a } :: T a
--	forall a. Eq a => D { x,y :: a } :: T a

748
gadt_constr :: { LConDecl RdrName }
749
        : con '::' sigtype
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
              { LL (mkGadtDecl $1 $3) } 
        -- Syntax: Maybe merge the record stuff with the single-case above?
        --         (to kill the mostly harmless reduce/reduce error)
        -- XXX revisit autrijus
	| constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $1 in 
		  LL (ConDecl con Implicit [] (noLoc []) details (ResTyGADT $3)) }
{-
	| forall context '=>' constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $4 in 
		  LL (ConDecl con Implicit (unLoc $1) $2 details (ResTyGADT $6)) }
	| forall constr_stuff_record '::' sigtype
		{ let (con,details) = unLoc $2 in 
		  LL (ConDecl con Implicit (unLoc $1) (noLoc []) details (ResTyGADT $4)) }
-}

766 767 768 769 770 771 772 773 774 775 776 777

constrs :: { Located [LConDecl RdrName] }
        : {- empty; a GHC extension -}  { noLoc [] }
        | '=' constrs1                  { LL (unLoc $2) }

constrs1 :: { Located [LConDecl RdrName] }
	: constrs1 '|' constr		{ LL ($3 : unLoc $1) }
	| constr			{ L1 [$1] }

constr :: { LConDecl RdrName }
	: forall context '=>' constr_stuff	
		{ let (con,details) = unLoc $4 in 
778
		  LL (ConDecl con Explicit (unLoc $1) $2 details ResTyH98) }
779 780
	| forall constr_stuff
		{ let (con,details) = unLoc $2 in 
781
		  LL (ConDecl con Explicit (unLoc $1) (noLoc []) details ResTyH98) }
782 783 784 785 786 787

forall :: { Located [LHsTyVarBndr RdrName] }
	: 'forall' tv_bndrs '.'		{ LL $2 }
	| {- empty -}			{ noLoc [] }

constr_stuff :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
788 789 790 791 792 793 794
-- We parse the constructor declaration 
--	C t1 t2
-- as a btype (treating C as a type constructor) and then convert C to be
-- a data constructor.  Reason: it might continue like this:
--	C t1 t2 %: D Int
-- in which case C really would be a type constructor.  We can't resolve this
-- ambiguity till we come across the constructor oprerator :% (or not, more usually)
795 796 797
	: btype				{% mkPrefixCon $1 [] >>= return.LL }
	| oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.LL }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.LL }
798
	| btype conop btype		{ LL ($2, InfixCon $1 $3) }
799

800 801 802 803
constr_stuff_record :: { Located (Located RdrName, HsConDetails RdrName (LBangType RdrName)) }
	: oqtycon '{' '}' 		{% mkRecCon $1 [] >>= return.sL (comb2 $1 $>) }
	| oqtycon '{' fielddecls '}' 	{% mkRecCon $1 $3 >>= return.sL (comb2 $1 $>) }

804 805 806 807 808
fielddecls :: { [([Located RdrName], LBangType RdrName)] }
	: fielddecl ',' fielddecls	{ unLoc $1 : $3 }
	| fielddecl			{ [unLoc $1] }

fielddecl :: { Located ([Located RdrName], LBangType RdrName) }
809
	: sig_vars '::' ctype		{ LL (reverse (unLoc $1), $3) }
810

811 812 813 814
-- We allow the odd-looking 'inst_type' in a deriving clause, so that
-- we can do deriving( forall a. C [a] ) in a newtype (GHC extension).
-- The 'C [a]' part is converted to an HsPredTy by checkInstType
-- We don't allow a context, but that's sorted out by the type checker.
815 816
deriving :: { Located (Maybe [LHsType RdrName]) }
	: {- empty -}				{ noLoc Nothing }
817 818 819
	| 'deriving' qtycon	{% do { let { L loc tv = $2 }
				      ; p <- checkInstType (L loc (HsTyVar tv))
				      ; return (LL (Just [p])) } }
820 821
	| 'deriving' '(' ')'	 		{ LL (Just []) }
	| 'deriving' '(' inst_types1 ')' 	{ LL (Just $3) }
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
             -- Glasgow extension: allow partial 
             -- applications in derivings

-----------------------------------------------------------------------------
-- Value definitions

{- There's an awkward overlap with a type signature.  Consider
	f :: Int -> Int = ...rhs...
   Then we can't tell whether it's a type signature or a value
   definition with a result signature until we see the '='.
   So we have to inline enough to postpone reductions until we know.
-}

{-
  ATTENTION: Dirty Hackery Ahead! If the second alternative of vars is var
  instead of qvar, we get another shift/reduce-conflict. Consider the
  following programs:
  
     { (^^) :: Int->Int ; }          Type signature; only var allowed

     { (^^) :: Int->Int = ... ; }    Value defn with result signature;
				     qvar allowed (because of instance decls)
  
  We can't tell whether to reduce var to qvar until after we've read the signatures.
-}

848
decl 	:: { Located (OrdList (LHsDecl RdrName)) }
849
	: sigdecl			{ $1 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
850 851 852 853
	| '!' infixexp rhs		{% do { pat <- checkPattern $2;
					        return (LL $ unitOL $ LL $ ValD $ 
							PatBind (LL $ BangPat pat) (unLoc $3)
								placeHolderType placeHolderNames) } }
854
	| infixexp opt_sig rhs		{% do { r <- checkValDef $1 $2 $3;
855
						return (LL $ unitOL (LL $ ValD r)) } }
856 857

rhs	:: { Located (GRHSs RdrName) }
858 859
	: '=' exp wherebinds	{ L (comb3 $1 $2 $3) $ GRHSs (unguardedRHS $2) (unLoc $3) }
	| gdrhs	wherebinds	{ LL $ GRHSs (reverse (unLoc $1)) (unLoc $2) }
860 861 862 863 864 865

gdrhs :: { Located [LGRHS RdrName] }
	: gdrhs gdrh		{ LL ($2 : unLoc $1) }
	| gdrh			{ L1 [$1] }

gdrh :: { LGRHS RdrName }
866
	: '|' quals '=' exp  	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
867

868
sigdecl :: { Located (OrdList (LHsDecl RdrName)) }
869 870
	: infixexp '::' sigtype
				{% do s <- checkValSig $1 $3; 
871
				      return (LL $ unitOL (LL $ SigD s)) }
872 873
		-- See the above notes for why we need infixexp here
	| var ',' sig_vars '::' sigtype	
874
				{ LL $ toOL [ LL $ SigD (TypeSig n $5) | n <- $1 : unLoc $3 ] }
875
	| infix prec ops	{ LL $ toOL [ LL $ SigD (FixSig (FixitySig n (Fixity $2 (unLoc $1))))
876 877
					     | n <- unLoc $3 ] }
	| '{-# INLINE'   activation qvar '#-}'	      
878
				{ LL $ unitOL (LL $ SigD (InlineSig $3 (mkInlineSpec $2 (getINLINE $1)))) }
879
	| '{-# SPECIALISE' qvar '::' sigtypes1 '#-}'
880
			 	{ LL $ toOL [ LL $ SigD (SpecSig $2 t defaultInlineSpec)
881
					    | t <- $4] }
882
	| '{-# SPECIALISE_INLINE' activation qvar '::' sigtypes1 '#-}'
883
			 	{ LL $ toOL [ LL $ SigD (SpecSig $3 t (mkInlineSpec $2 (getSPEC_INLINE $1)))
884
					    | t <- $5] }
885
	| '{-# SPECIALISE' 'instance' inst_type '#-}'
886
				{ LL $ unitOL (LL $ SigD (SpecInstSig $3)) }
887 888 889 890 891 892

-----------------------------------------------------------------------------
-- Expressions

exp   :: { LHsExpr RdrName }
	: infixexp '::' sigtype		{ LL $ ExprWithTySig $1 $3 }
ross's avatar
ross committed
893 894 895 896
	| infixexp '-<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsFirstOrderApp True }
	| infixexp '>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsFirstOrderApp False }
	| infixexp '-<<' exp		{ LL $ HsArrApp $1 $3 placeHolderType HsHigherOrderApp True }
	| infixexp '>>-' exp		{ LL $ HsArrApp $3 $1 placeHolderType HsHigherOrderApp False}
897 898 899 900 901 902 903 904 905
	| infixexp			{ $1 }

infixexp :: { LHsExpr RdrName }
	: exp10				{ $1 }
	| infixexp qop exp10		{ LL (OpApp $1 $2 (panic "fixity") $3) }

exp10 :: { LHsExpr RdrName }
	: '\\' aexp aexps opt_asig '->' exp	
			{% checkPatterns ($2 : reverse $3) >>= \ ps -> 
906
			   return (LL $ HsLam (mkMatchGroup [LL $ Match ps $4
907
					    (GRHSs (unguardedRHS $6) emptyLocalBinds
908
							)])) }
909 910
  	| 'let' binds 'in' exp			{ LL $ HsLet (unLoc $2) $4 }
	| 'if' exp 'then' exp 'else' exp	{ LL $ HsIf $2 $4 $6 }
911
   	| 'case' exp 'of' altslist		{ LL $ HsCase $2 (mkMatchGroup (unLoc $4)) }
912 913 914
	| '-' fexp				{ LL $ mkHsNegApp $2 }

  	| 'do' stmtlist			{% let loc = comb2 $1 $2 in
915 916
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo DoExpr stmts body)) }
917
  	| 'mdo' stmtlist		{% let loc = comb2 $1 $2 in
918 919
					   checkDo loc (unLoc $2)  >>= \ (stmts,body) ->
					   return (L loc (mkHsDo (MDoExpr noPostTcTable) stmts body)) }
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        | scc_annot exp		    		{ LL $ if opt_SccProfilingOn
							then HsSCC (unLoc $1) $2
							else HsPar $2 }

	| 'proc' aexp '->' exp	
			{% checkPattern $2 >>= \ p -> 
			   return (LL $ HsProc p (LL $ HsCmdTop $4 [] 
						   placeHolderType undefined)) }
						-- TODO: is LL right here?

        | '{-# CORE' STRING '#-}' exp           { LL $ HsCoreAnn (getSTRING $2) $4 }
						    -- hdaume: core annotation
	| fexp					{ $1 }

scc_annot :: { Located FastString }
	: '_scc_' STRING			{ LL $ getSTRING $2 }
	| '{-# SCC' STRING '#-}'		{ LL $ getSTRING $2 }

fexp 	:: { LHsExpr RdrName }
	: fexp aexp				{ LL $ HsApp $1 $2 }
  	| aexp					{ $1 }

aexps 	:: { [LHsExpr RdrName] }
	: aexps aexp				{ $2 : $1 }
  	| {- empty -}				{ [] }

aexp	:: { LHsExpr RdrName }
	: qvar '@' aexp			{ LL $ EAsPat $1 $3 }
	| '~' aexp			{ LL $ ELazyPat $2 }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
949
--	| '!' aexp			{ LL $ EBangPat $2 }
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	| aexp1				{ $1 }

aexp1	:: { LHsExpr RdrName }
        : aexp1 '{' fbinds '}' 	{% do { r <- mkRecConstrOrUpdate $1 (comb2 $2 $4) 
							(reverse $3);
				        return (LL r) }}
  	| aexp2			{ $1 }

-- Here was the syntax for type applications that I was planning
-- but there are difficulties (e.g. what order for type args)
-- so it's not enabled yet.
-- But this case *is* used for the left hand side of a generic definition,
-- which is parsed as an expression before being munged into a pattern
 	| qcname '{|' gentype '|}'      { LL $ HsApp (sL (getLoc $1) (HsVar (unLoc $1)))
						     (sL (getLoc $3) (HsType $3)) }

aexp2	:: { LHsExpr RdrName }
	: ipvar				{ L1 (HsIPVar $! unLoc $1) }
	| qcname			{ L1 (HsVar   $! unLoc $1) }
	| literal			{ L1 (HsLit   $! unLoc $1) }
	| INTEGER			{ L1 (HsOverLit $! mkHsIntegral (getINTEGER $1)) }
	| RATIONAL			{ L1 (HsOverLit $! mkHsFractional (getRATIONAL $1)) }
	| '(' exp ')'			{ LL (HsPar $2) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
973
	| '(' texp ',' texps ')'	{ LL $ ExplicitTuple ($2 : reverse $4) Boxed }
974 975 976 977 978 979 980
	| '(#' texps '#)'		{ LL $ ExplicitTuple (reverse $2)      Unboxed }
	| '[' list ']'                  { LL (unLoc $2) }
	| '[:' parr ':]'                { LL (unLoc $2) }
	| '(' infixexp qop ')'		{ LL $ SectionL $2 $3 }
	| '(' qopm infixexp ')'		{ LL $ SectionR $2 $3 }
	| '_'				{ L1 EWildPat }
	
981
	-- Template Haskell Extension
982
	| TH_ID_SPLICE          { L1 $ HsSpliceE (mkHsSplice 
983
					(L1 $ HsVar (mkUnqual varName 
984 985 986
							(getTH_ID_SPLICE $1)))) } -- $x
	| '$(' exp ')'   	{ LL $ HsSpliceE (mkHsSplice $2) }               -- $( exp )

987
	| TH_VAR_QUOTE qvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
988
	| TH_VAR_QUOTE qcon 	{ LL $ HsBracket (VarBr (unLoc $2)) }
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	| TH_TY_QUOTE tyvar 	{ LL $ HsBracket (VarBr (unLoc $2)) }
 	| TH_TY_QUOTE gtycon	{ LL $ HsBracket (VarBr (unLoc $2)) }
	| '[|' exp '|]'         { LL $ HsBracket (ExpBr $2) }                       
	| '[t|' ctype '|]'      { LL $ HsBracket (TypBr $2) }                       
	| '[p|' infixexp '|]'   {% checkPattern $2 >>= \p ->
					   return (LL $ HsBracket (PatBr p)) }
	| '[d|' cvtopbody '|]'	{ LL $ HsBracket (DecBr (mkGroup $2)) }

	-- arrow notation extension
	| '(|' aexp2 cmdargs '|)'	{ LL $ HsArrForm $2 Nothing (reverse $3) }

cmdargs	:: { [LHsCmdTop RdrName] }
	: cmdargs acmd			{ $2 : $1 }
  	| {- empty -}			{ [] }

acmd	:: { LHsCmdTop RdrName }
	: aexp2			{ L1 $ HsCmdTop $1 [] placeHolderType undefined }

cvtopbody :: { [LHsDecl RdrName] }
1008 1009 1010 1011 1012 1013
	:  '{'            cvtopdecls0 '}'		{ $2 }
	|      vocurly    cvtopdecls0 close		{ $2 }

cvtopdecls0 :: { [LHsDecl RdrName] }
	: {- empty -}		{ [] }
	| cvtopdecls		{ $1 }
1014

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1015 1016 1017 1018 1019 1020
texp :: { LHsExpr RdrName }
	: exp				{ $1 }
	| qopm infixexp			{ LL $ SectionR $1 $2 }
	-- The second production is really here only for bang patterns
	-- but 

1021
texps :: { [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1022 1023
	: texps ',' texp		{ $3 : $1 }
	| texp				{ [$1] }
1024 1025 1026 1027 1028 1029 1030 1031 1032


-----------------------------------------------------------------------------
-- List expressions

-- The rules below are little bit contorted to keep lexps left-recursive while
-- avoiding another shift/reduce-conflict.

list :: { LHsExpr RdrName }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1033
	: texp			{ L1 $ ExplicitList placeHolderType [$1] }
1034
	| lexps 		{ L1 $ ExplicitList placeHolderType (reverse (unLoc $1)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1035 1036 1037 1038 1039
	| texp '..'		{ LL $ ArithSeq noPostTcExpr (From $1) }
	| texp ',' exp '..' 	{ LL $ ArithSeq noPostTcExpr (FromThen $1 $3) }
	| texp '..' exp	 	{ LL $ ArithSeq noPostTcExpr (FromTo $1 $3) }
	| texp ',' exp '..' exp	{ LL $ ArithSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| texp pquals		{ sL (comb2 $1 $>) $ mkHsDo ListComp (reverse (unLoc $2)) $1 }
1040 1041

lexps :: { Located [LHsExpr RdrName] }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
1042 1043
	: lexps ',' texp 		{ LL ($3 : unLoc $1) }
	| texp ',' texp			{ LL [$3,$1] }
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

-----------------------------------------------------------------------------
-- List Comprehensions

pquals :: { Located [LStmt RdrName] }	-- Either a singleton ParStmt, 
					-- or a reversed list of Stmts
	: pquals1			{ case unLoc $1 of
					    [qs] -> L1 qs
					    qss  -> L1 [L1 (ParStmt stmtss)]
						 where
						    stmtss = [ (reverse qs, undefined) 
						    	     | qs <- qss ]
					}
			
pquals1 :: { Located [[LStmt RdrName]] }
	: pquals1 '|' quals		{ LL (unLoc $3 : unLoc $1) }
	| '|' quals			{ L (getLoc $2) [unLoc $2] }

quals :: { Located [LStmt RdrName] }
	: quals ',' qual		{ LL ($3 : unLoc $1) }
	| qual				{ L1 [$1] }

-----------------------------------------------------------------------------
-- Parallel array expressions

-- The rules below are little bit contorted; see the list case for details.
-- Note that, in contrast to lists, we only have finite arithmetic sequences.
-- Moreover, we allow explicit arrays with no element (represented by the nil
-- constructor in the list case).

parr :: { LHsExpr RdrName }
	: 				{ noLoc (ExplicitPArr placeHolderType []) }
	| exp				{ L1 $ ExplicitPArr placeHolderType [$1] }
	| lexps 			{ L1 $ ExplicitPArr placeHolderType 
						       (reverse (unLoc $1)) }
1079 1080 1081
	| exp '..' exp	 		{ LL $ PArrSeq noPostTcExpr (FromTo $1 $3) }
	| exp ',' exp '..' exp		{ LL $ PArrSeq noPostTcExpr (FromThenTo $1 $3 $5) }
	| exp pquals			{ sL (comb2 $1 $>) $ mkHsDo PArrComp (reverse (unLoc $2)) $1 }
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

-- We are reusing `lexps' and `pquals' from the list case.

-----------------------------------------------------------------------------
-- Case alternatives

altslist :: { Located [LMatch RdrName] }
	: '{'            alts '}'	{ LL (reverse (unLoc $2)) }
	|     vocurly    alts  close	{ L (getLoc $2) (reverse (unLoc $2)) }

alts    :: { Located [LMatch RdrName] }
        : alts1				{ L1 (unLoc $1) }
	| ';' alts			{ LL (unLoc $2) }

alts1 	:: { Located [LMatch RdrName] }
	: alts1 ';' alt			{ LL ($3 : unLoc $1) }
	| alts1 ';'			{ LL (unLoc $1) }
	| alt				{ L1 [$1] }

alt 	:: { LMatch RdrName }
	: infixexp opt_sig alt_rhs	{%  checkPattern $1 >>= \p ->
			    		    return (LL (Match [p] $2 (unLoc $3))) }

alt_rhs :: { Located (GRHSs RdrName) }
1106
	: ralt wherebinds		{ LL (GRHSs (unLoc $1) (unLoc $2)) }
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

ralt :: { Located [LGRHS RdrName] }
	: '->' exp			{ LL (unguardedRHS $2) }
	| gdpats			{ L1 (reverse (unLoc $1)) }

gdpats :: { Located [LGRHS RdrName] }
	: gdpats gdpat			{ LL ($2 : unLoc $1) }
	| gdpat				{ L1 [$1] }

gdpat	:: { LGRHS RdrName }
1117
	: '|' quals '->' exp	 	{ sL (comb2 $1 $>) $ GRHS (reverse (unLoc $2)) $4 }
1118 1119 1120 1121 1122 1123 1124 1125 1126

-----------------------------------------------------------------------------
-- Statement sequences

stmtlist :: { Located [LStmt RdrName] }
	: '{'         	stmts '}'	{ LL (unLoc $2) }
	|     vocurly   stmts close	{ $2 }

--	do { ;; s ; s ; ; s ;; }
1127
-- The last Stmt should be an expression, but that's hard to enforce
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
-- here, because we need too much lookahead if we see do { e ; }
-- So we use ExprStmts throughout, and switch the last one over
-- in ParseUtils.checkDo instead
stmts :: { Located [LStmt RdrName] }
	: stmt stmts_help		{ LL ($1 : unLoc $2) }
	| ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

stmts_help :: { Located [LStmt RdrName] } -- might be empty
	: ';' stmts			{ LL (unLoc $2) }
	| {- empty -}			{ noLoc [] }

-- For typing stmts at the GHCi prompt, where 
-- the input may consist of just comments.
maybe_stmt :: { Maybe (LStmt RdrName) }
	: stmt				{ Just $1 }
	| {- nothing -}			{ Nothing }

stmt  :: { LStmt RdrName }
	: qual				{ $1 }
	| infixexp '->' exp		{% checkPattern $3 >>= \p ->
1149 1150
					   return (LL $ mkBindStmt p $1) }
  	| 'rec' stmtlist		{ LL $ mkRecStmt (unLoc $2) }
1151 1152

qual  :: { LStmt RdrName }
1153
	: exp '<-' exp			{% checkPattern $1 >>= \p ->
1154 1155
					   return (LL $ mkBindStmt p $3) }
	| exp				{ L1 $ mkExprStmt $1 }
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  	| 'let' binds			{ LL $ LetStmt (unLoc $2) }

-----------------------------------------------------------------------------
-- Record Field Update/Construction

fbinds 	:: { HsRecordBinds RdrName }
	: fbinds1			{ $1 }
  	| {- empty -}			{ [] }

fbinds1	:: { HsRecordBinds RdrName }
	: fbinds1 ',' fbind		{ $3 : $1 }
	| fbind				{ [$1] }
  
fbind	:: { (Located RdrName, LHsExpr RdrName) }
	: qvar '=' exp			{ ($1,$3) }

-----------------------------------------------------------------------------
-- Implicit Parameter Bindings

dbinds 	:: { Located [LIPBind RdrName] }
	: dbinds ';' dbind		{ LL ($3 : unLoc $1) }
	| dbinds ';'			{ LL (unLoc $1) }
	| dbind				{ L1 [$1] }
--	| {- empty -}			{ [] }

dbind	:: { LIPBind RdrName }
dbind	: ipvar '=' exp			{ LL (IPBind (unLoc $1) $3) }

1184 1185 1186
ipvar	:: { Located (IPName RdrName) }
	: IPDUPVARID		{ L1 (Dupable (mkUnqual varName (getIPDUPVARID $1))) }
	| IPSPLITVARID		{ L1 (Linear  (mkUnqual varName (getIPSPLITVARID $1))) }
1187

1188 1189
-----------------------------------------------------------------------------
-- Deprecations
1190 1191 1192 1193 1194 1195 1196

depreclist :: { Located [RdrName] }
depreclist : deprec_var			{ L1 [unLoc $1] }
	   | deprec_var ',' depreclist	{ LL (unLoc $1 : unLoc $3) }

deprec_var :: { Located RdrName }
deprec_var : var			{ $1 }
1197
	   | con			{ $1 }
1198

1199 1200
-----------------------------------------
-- Data constructors
1201 1202 1203
qcon	:: { Located RdrName }
	: qconid		{ $1 }
	| '(' qconsym ')'	{ LL (unLoc $2) }
1204 1205
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
-- The case of '[:' ':]' is part of the production `parr'
1206

1207 1208 1209 1210
con	:: { Located RdrName }
	: conid			{ $1 }
	| '(' consym ')'	{ LL (unLoc $2) }
	| sysdcon		{ L1 $ nameRdrName (dataConName (unLoc $1)) }
1211

1212 1213 1214 1215
sysdcon	:: { Located DataCon }	-- Wired in data constructors
	: '(' ')'		{ LL unitDataCon }
	| '(' commas ')'	{ LL $ tupleCon Boxed $2 }
	| '[' ']'		{ LL nilDataCon }
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

conop :: { Located RdrName }
	: consym		{ $1 }	
	| '`' conid '`'		{ LL (unLoc $2) }

qconop :: { Located RdrName }
	: qconsym		{ $1 }
	| '`' qconid '`'	{ LL (unLoc $2) }

-----------------------------------------------------------------------------
-- Type constructors

gtycon 	:: { Located RdrName }	-- A "general" qualified tycon
	: oqtycon			{ $1 }
	| '(' ')'			{ LL $ getRdrName unitTyCon }
	| '(' commas ')'		{ LL $ getRdrName (tupleTyCon Boxed $2) }
	| '(' '->' ')'			{ LL $ getRdrName funTyCon }
	| '[' ']'			{ LL $ listTyCon_RDR }
	| '[:' ':]'			{ LL $ parrTyCon_RDR }

oqtycon :: { Located RdrName }	-- An "ordinary" qualified tycon
	: qtycon			{ $1 }
 	| '(' qtyconsym ')'		{ LL (unLoc $2) }

qtyconop :: { Located RdrName }	-- Qualified or unqualified
	: qtyconsym			{ $1 }
	| '`' qtycon '`'		{ LL (unLoc $2) }

qtycon :: { Located RdrName }	-- Qualified or unqualified
	: QCONID			{ L1 $! mkQual tcClsName (getQCONID $1) }
	| tycon				{ $1 }

tycon 	:: { Located RdrName }	-- Unqualified
	: CONID				{ L1 $! mkUnqual tcClsName (getCONID $1) }

qtyconsym :: { Located RdrName }
	: QCONSYM			{ L1 $! mkQual tcClsName (getQCONSYM $1) }
	| tyconsym			{ $1 }

tyconsym :: { Located RdrName }
	: CONSYM			{ L1 $! mkUnqual tcClsName (getCONSYM $1) }

-----------------------------------------------------------------------------
1259
-- Operators
1260 1261 1262 1263 1264

op	:: { Located RdrName }   -- used in infix decls
	: varop			{ $1 }
	| conop 		{ $1 }

1265 1266 1267 1268
varop	:: { Located RdrName }
	: varsym		{ $1 }
	| '`' varid '`'		{ LL (unLoc $2) }

1269 1270 1271 1272 1273 1274 1275 1276
qop	:: { LHsExpr RdrName }   -- used in sections
	: qvarop		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

qopm	:: { LHsExpr RdrName }   -- used in sections
	: qvaropm		{ L1 $ HsVar (unLoc $1) }
	| qconop		{ L1 $ HsVar (unLoc $1) }

1277 1278 1279
qvarop :: { Located RdrName }
	: qvarsym		{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1280

1281 1282 1283
qvaropm :: { Located RdrName }
	: qvarsym_no_minus	{ $1 }
	| '`' qvarid '`'	{ LL (unLoc $2) }
1284

1285 1286
-----------------------------------------------------------------------------
-- Type variables
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296
tyvar   :: { Located RdrName }
tyvar   : tyvarid		{ $1 }
	| '(' tyvarsym ')'	{ LL (unLoc $2) }

tyvarop :: { Located RdrName }
tyvarop : '`' tyvarid '`'	{ LL (unLoc $2) }
	| tyvarsym		{ $1 }

tyvarid	:: { Located RdrName }
1297 1298 1299 1300 1301 1302
	: VARID			{ L1 $! mkUnqual tvName (getVARID $1) }
	| special_id		{ L1 $! mkUnqual tvName (unLoc $1) }
	| 'unsafe' 		{ L1 $! mkUnqual tvName FSLIT("unsafe") }
	| 'safe' 		{ L1 $! mkUnqual tvName FSLIT("safe") }
	| 'threadsafe' 		{ L1 $! mkUnqual tvName FSLIT("threadsafe") }

1303 1304 1305 1306 1307 1308
tyvarsym :: { Located RdrName }
-- Does not include "!", because that is used for strictness marks
--	         or ".", because that separates the quantified type vars from the rest
--		 or "*", because that's used for kinds
tyvarsym : VARSYM		{ L1 $! mkUnqual tvName (getVARSYM $1) }

1309 1310 1311
-----------------------------------------------------------------------------
-- Variables 

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
var 	:: { Located RdrName }
	: varid			{ $1 }
	| '(' varsym ')'	{ LL (unLoc $2) }

qvar 	:: { Located RdrName }
	: qvarid		{ $1 }
	| '(' varsym ')'	{ LL (unLoc $2) }
	| '(' qvarsym1 ')'	{ LL (unLoc $2) }
-- We've inlined qvarsym here so that the decision about
-- whether it's a qvar or a var can be postponed until
-- *after* we see the close paren.

qvarid :: { Located RdrName }
	: varid			{ $1 }
	| QVARID		{ L1 $ mkQual varName (getQVARID $1) }

varid :: { Located RdrName }
	: varid_no_unsafe 	{ $1 }
	| 'unsafe'		{ L1 $! mkUnqual varName FSLIT("unsafe") }
	| 'safe'		{ L1 $! mkUnqual varName FSLIT("safe") }
	| 'threadsafe'		{ L1 $! mkUnqual varName FSLIT("threadsafe") }

varid_no_unsafe :: { Located RdrName }
	: VARID			{ L1 $! mkUnqual varName (getVARID $1) }
	| special_id		{ L1 $! mkUnqual varName (unLoc $1) }
	| 'forall'		{ L1 $! mkUnqual varName FSLIT("forall") }

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
qvarsym :: { Located RdrName }
	: varsym		{ $1 }
	| qvarsym1		{ $1 }

qvarsym_no_minus :: { Located RdrName }
	: varsym_no_minus	{ $1 }
	| qvarsym1		{ $1 }

qvarsym1 :: { Located RdrName }
qvarsym1 : QVARSYM		{ L1 $ mkQual varName (getQVARSYM $1) }

varsym :: { Located RdrName }
	: varsym_no_minus 	{ $1 }
	| '-'			{ L1 $ mkUnqual varName FSLIT("-") }

varsym_no_minus :: { Located RdrName } -- varsym not including '-'
	: VARSYM		{ L1 $ mkUnqual varName (getVARSYM $1) }
	| special_sym		{ L1 $ mkUnqual varName (unLoc $1) }


1359 1360 1361
-- These special_ids are treated as keywords in various places, 
-- but as ordinary ids elsewhere.   'special_id' collects all these
-- except 'unsafe' and 'forall' whose treatment differs depending on context
1362
special_id :: { Located FastString }