RetainerProfile.c 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2001
 * Author: Sungwoo Park
 *
 * Retainer profiling.
 *
 * ---------------------------------------------------------------------------*/

Ben Gamari's avatar
Ben Gamari committed
10
#if defined(PROFILING)
11

12
// Turn off inlining when debugging - it obfuscates things
Ben Gamari's avatar
Ben Gamari committed
13
#if defined(DEBUG)
14 15 16 17 18
#define INLINE
#else
#define INLINE inline
#endif

Simon Marlow's avatar
Simon Marlow committed
19
#include "PosixSource.h"
20
#include "Rts.h"
Simon Marlow's avatar
Simon Marlow committed
21

22 23 24 25 26 27
#include "RtsUtils.h"
#include "RetainerProfile.h"
#include "RetainerSet.h"
#include "Schedule.h"
#include "Printer.h"
#include "Weak.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "sm/Sanity.h"
29 30 31
#include "Profiling.h"
#include "Stats.h"
#include "ProfHeap.h"
32
#include "Apply.h"
David Feuer's avatar
David Feuer committed
33 34
#include "StablePtr.h" /* markStablePtrTable */
#include "StableName.h" /* rememberOldStableNameAddresses */
Simon Marlow's avatar
Simon Marlow committed
35
#include "sm/Storage.h" // for END_OF_STATIC_LIST
36

37 38
/* Note [What is a retainer?]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~
39 40
Retainer profiling is a profiling technique that gives information why
objects can't be freed and lists the consumers that hold pointers to
41
the heap objects. It does not list all the objects that keep references
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
to the other, because then we would keep too much information that will
make the report unusable, for example the cons element of the list would keep
all the tail cells. As a result we are keeping only the objects of the
certain types, see 'isRetainer()' function for more discussion.

More formal definition of the retainer can be given the following way.

An object p is a retainer object of the object l, if all requirements
hold:

  1. p can be a retainer (see `isRetainer()`)
  2. l is reachable from p
  3. There are no other retainers on the path from p to l.

Exact algorithm and additional information can be found the historical
document 'docs/storage-mgt/rp.tex'. Details that are related to the
RTS implementation may be out of date, but the general
information about the retainers is still applicable.
60 61 62
*/


63 64 65 66 67 68 69 70 71
/*
  Note: what to change in order to plug-in a new retainer profiling scheme?
    (1) type retainer in ../includes/StgRetainerProf.h
    (2) retainer function R(), i.e., getRetainerFrom()
    (3) the two hashing functions, hashKeySingleton() and hashKeyAddElement(),
        in RetainerSet.h, if needed.
    (4) printRetainer() and printRetainerSetShort() in RetainerSet.c.
 */

72 73
// TODO: Change references to c_child_r in comments to 'data'.

74 75 76 77
/* -----------------------------------------------------------------------------
 * Declarations...
 * -------------------------------------------------------------------------- */

78
static uint32_t retainerGeneration;  // generation
79

80 81 82
static uint32_t numObjectVisited;    // total number of objects visited
static uint32_t timesAnyObjectVisited;  // number of times any objects are
                                        // visited
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/** Note [Profiling heap traversal visited bit]
 *
 * If the RTS is compiled with profiling enabled StgProfHeader can be used by
 * profiling code to store per-heap object information.
 *
 * When using the generic heap traversal code we use this field to store
 * profiler specific information. However we reserve the LSB of the *entire*
 * 'trav' union (which will overlap with the other fields) for the generic
 * traversal code. We use the bit to decide whether we've already visited this
 * closure in this pass or not. We do this as the heap may contain cyclic
 * references, it being a graph and all, so we would likely just infinite loop
 * if we didn't.
 *
 * We assume that at least the LSB of the largest field in the corresponding
 * union is insignificant. This is true at least for the word aligned pointers
 * which the retainer profiler currently stores there and should be maintained
 * by new users of the 'trav' union.
 *
 * Now the way the traversal works is that the interpretation of the "visited?"
 * bit depends on the value of the global 'flip' variable. We don't want to have
 * to do another pass over the heap just to reset the bit to zero so instead on
 * each traversal (i.e. each run of the profiling code) we invert the value of
 * the global 'flip' variable. We interpret this as resetting all the "visited?"
 * flags on the heap.
 *
 * There is one exception to this rule, namely: static objects. There we do just
 * go over the heap and reset the bit manually. See
111
 * 'resetStaticObjectForProfiling'.
112
 */
113
StgWord flip = 0;     // flip bit
114 115
                      // must be 0 if DEBUG_RETAINER is on (for static closures)

116 117
#define setTravDataToZero(c) \
  (c)->header.prof.hp.trav.lsb = flip
118 119 120 121 122 123 124 125 126 127 128 129

/* -----------------------------------------------------------------------------
 * Retainer stack - header
 *   Note:
 *     Although the retainer stack implementation could be separated *
 *     from the retainer profiling engine, there does not seem to be
 *     any advantage in doing that; retainer stack is an integral part
 *     of retainer profiling engine and cannot be use elsewhere at
 *     all.
 * -------------------------------------------------------------------------- */

typedef enum {
130 131
    // Object with fixed layout. Keeps an information about that
    // element was processed. (stackPos.next.step)
132
    posTypeStep,
133 134
    // Description of the pointers-first heap object. Keeps information
    // about layout. (stackPos.next.ptrs)
135
    posTypePtrs,
136
    // Keeps SRT bitmap (stackPos.next.srt)
137
    posTypeSRT,
138 139 140
    // Keeps a new object that was not inspected yet. Keeps a parent
    // element (stackPos.next.parent)
    posTypeFresh
141 142 143 144 145 146 147 148
} nextPosType;

typedef union {
    // fixed layout or layout specified by a field in the closure
    StgWord step;

    // layout.payload
    struct {
149 150 151
        // See StgClosureInfo in InfoTables.h
        StgHalfWord pos;
        StgHalfWord ptrs;
152
        StgPtr payload;
153 154 155 156
    } ptrs;

    // SRT
    struct {
157
        StgClosure *srt;
158 159 160
    } srt;
} nextPos;

161 162
// Tagged stack element, that keeps information how to process
// the next element in the traverse stack.
163 164 165 166 167
typedef struct {
    nextPosType type;
    nextPos next;
} stackPos;

168 169 170 171 172 173 174
typedef union {
     /**
      * Most recent retainer for the corresponding closure on the stack.
      */
    retainer c_child_r;
} stackData;

175 176
// Element in the traverse stack, keeps the element, information
// how to continue processing the element, and it's retainer set.
177 178
typedef struct {
    stackPos info;
179 180 181
    StgClosure *c;
    StgClosure *cp; // parent of 'c'
    stackData data;
182 183
} stackElement;

184
typedef struct {
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
  Invariants:
    firstStack points to the first block group.
    currentStack points to the block group currently being used.
    currentStack->free == stackLimit.
    stackTop points to the topmost byte in the stack of currentStack.
    Unless the whole stack is empty, stackTop must point to the topmost
    object (or byte) in the whole stack. Thus, it is only when the whole stack
    is empty that stackTop == stackLimit (not during the execution of push()
    and pop()).
    stackBottom == currentStack->start.
    stackLimit == currentStack->start + BLOCK_SIZE_W * currentStack->blocks.
  Note:
    When a current stack becomes empty, stackTop is set to point to
    the topmost element on the previous block group so as to satisfy
    the invariants described above.
 */
202 203 204
    bdescr *firstStack;
    bdescr *currentStack;
    stackElement *stackBottom, *stackTop, *stackLimit;
205 206 207 208 209 210 211

/*
  currentStackBoundary is used to mark the current stack chunk.
  If stackTop == currentStackBoundary, it means that the current stack chunk
  is empty. It is the responsibility of the user to keep currentStackBoundary
  valid all the time if it is to be employed.
 */
212
    stackElement *currentStackBoundary;
213

214
#if defined(DEBUG_RETAINER)
215 216 217 218 219 220 221 222 223
/*
  stackSize records the current size of the stack.
  maxStackSize records its high water mark.
  Invariants:
    stackSize <= maxStackSize
  Note:
    stackSize is just an estimate measure of the depth of the graph. The reason
    is that some heap objects have only a single child and may not result
    in a new element being pushed onto the stack. Therefore, at the end of
224
    retainer profiling, maxStackSize is some value no greater
225 226
    than the actual depth of the graph.
 */
227
    int stackSize, maxStackSize;
228
#endif
229 230
} traverseState;

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/* Callback called when heap traversal visits a closure.
 *
 * Before this callback is called the profiling header of the visited closure
 * 'c' is zero'd with 'setTravDataToZero' if this closure hasn't been visited in
 * this run yet. See Note [Profiling heap traversal visited bit].
 *
 * Return 'true' when this is not the first visit to this element. The generic
 * traversal code will then skip traversing the children.
 */
typedef bool (*visitClosure_cb) (
    const StgClosure *c,
    const StgClosure *cp,
    const stackData data,
    stackData *child_data);

246 247 248
traverseState g_retainerTraverseState;


249 250 251
static void traverseStack(traverseState *, StgClosure *, stackData, StgPtr, StgPtr);
static void traverseClosure(traverseState *, StgClosure *, StgClosure *, retainer);
static void traversePushClosure(traverseState *, StgClosure *, StgClosure *, stackData);
252

253 254 255 256 257 258 259 260 261

// number of blocks allocated for one stack
#define BLOCKS_IN_STACK 1

/* -----------------------------------------------------------------------------
 * Add a new block group to the stack.
 * Invariants:
 *  currentStack->link == s.
 * -------------------------------------------------------------------------- */
262
static INLINE void
263
newStackBlock( traverseState *ts, bdescr *bd )
264
{
265 266 267 268 269
    ts->currentStack = bd;
    ts->stackTop     = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    ts->stackBottom  = (stackElement *)bd->start;
    ts->stackLimit   = (stackElement *)ts->stackTop;
    bd->free     = (StgPtr)ts->stackLimit;
270 271 272 273 274 275 276
}

/* -----------------------------------------------------------------------------
 * Return to the previous block group.
 * Invariants:
 *   s->link == currentStack.
 * -------------------------------------------------------------------------- */
277
static INLINE void
278
returnToOldStack( traverseState *ts, bdescr *bd )
279
{
280 281 282 283 284
    ts->currentStack = bd;
    ts->stackTop = (stackElement *)bd->free;
    ts->stackBottom = (stackElement *)bd->start;
    ts->stackLimit = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    bd->free = (StgPtr)ts->stackLimit;
285 286 287 288 289 290
}

/* -----------------------------------------------------------------------------
 *  Initializes the traverse stack.
 * -------------------------------------------------------------------------- */
static void
291
initializeTraverseStack( traverseState *ts )
292
{
293 294
    if (ts->firstStack != NULL) {
        freeChain(ts->firstStack);
295 296
    }

297 298 299
    ts->firstStack = allocGroup(BLOCKS_IN_STACK);
    ts->firstStack->link = NULL;
    ts->firstStack->u.back = NULL;
300

301
    newStackBlock(ts, ts->firstStack);
302 303 304 305 306 307 308 309
}

/* -----------------------------------------------------------------------------
 * Frees all the block groups in the traverse stack.
 * Invariants:
 *   firstStack != NULL
 * -------------------------------------------------------------------------- */
static void
310
closeTraverseStack( traverseState *ts )
311
{
312 313
    freeChain(ts->firstStack);
    ts->firstStack = NULL;
314 315 316
}

/* -----------------------------------------------------------------------------
Ben Gamari's avatar
Ben Gamari committed
317
 * Returns true if the whole stack is empty.
318
 * -------------------------------------------------------------------------- */
Ben Gamari's avatar
Ben Gamari committed
319
static INLINE bool
320
isEmptyWorkStack( traverseState *ts )
321
{
322
    return (ts->firstStack == ts->currentStack) && ts->stackTop == ts->stackLimit;
323 324
}

sof's avatar
sof committed
325 326 327
/* -----------------------------------------------------------------------------
 * Returns size of stack
 * -------------------------------------------------------------------------- */
328
W_
329
traverseWorkStackBlocks(traverseState *ts)
sof's avatar
sof committed
330 331
{
    bdescr* bd;
332
    W_ res = 0;
sof's avatar
sof committed
333

334
    for (bd = ts->firstStack; bd != NULL; bd = bd->link)
sof's avatar
sof committed
335 336 337 338 339
      res += bd->blocks;

    return res;
}

340 341 342 343 344 345
W_
retainerStackBlocks(void)
{
    return traverseWorkStackBlocks(&g_retainerTraverseState);
}

346
/* -----------------------------------------------------------------------------
Ben Gamari's avatar
Ben Gamari committed
347
 * Returns true if stackTop is at the stack boundary of the current stack,
348 349
 * i.e., if the current stack chunk is empty.
 * -------------------------------------------------------------------------- */
Ben Gamari's avatar
Ben Gamari committed
350
static INLINE bool
351
isOnBoundary( traverseState *ts )
352
{
353
    return ts->stackTop == ts->currentStackBoundary;
354 355 356 357 358 359 360
}

/* -----------------------------------------------------------------------------
 * Initializes *info from ptrs and payload.
 * Invariants:
 *   payload[] begins with ptrs pointers followed by non-pointers.
 * -------------------------------------------------------------------------- */
361
static INLINE void
362
init_ptrs( stackPos *info, uint32_t ptrs, StgPtr payload )
363 364 365 366 367 368 369 370 371 372
{
    info->type              = posTypePtrs;
    info->next.ptrs.pos     = 0;
    info->next.ptrs.ptrs    = ptrs;
    info->next.ptrs.payload = payload;
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
373
static INLINE StgClosure *
374 375 376
find_ptrs( stackPos *info )
{
    if (info->next.ptrs.pos < info->next.ptrs.ptrs) {
377
        return (StgClosure *)info->next.ptrs.payload[info->next.ptrs.pos++];
378
    } else {
379
        return NULL;
380 381 382 383 384 385
    }
}

/* -----------------------------------------------------------------------------
 *  Initializes *info from SRT information stored in *infoTable.
 * -------------------------------------------------------------------------- */
386
static INLINE void
387
init_srt_fun( stackPos *info, const StgFunInfoTable *infoTable )
388
{
389 390 391
    info->type = posTypeSRT;
    if (infoTable->i.srt) {
        info->next.srt.srt = (StgClosure*)GET_FUN_SRT(infoTable);
392
    } else {
393
        info->next.srt.srt = NULL;
394
    }
395 396
}

397
static INLINE void
398
init_srt_thunk( stackPos *info, const StgThunkInfoTable *infoTable )
399
{
Ömer Sinan Ağacan's avatar
Ömer Sinan Ağacan committed
400
    info->type = posTypeSRT;
401 402
    if (infoTable->i.srt) {
        info->next.srt.srt = (StgClosure*)GET_SRT(infoTable);
403
    } else {
404
        info->next.srt.srt = NULL;
405
    }
406 407 408 409 410
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
411
static INLINE StgClosure *
412 413 414
find_srt( stackPos *info )
{
    StgClosure *c;
415
    if (info->type == posTypeSRT) {
416 417 418
        c = info->next.srt.srt;
        info->next.srt.srt = NULL;
        return c;
419 420 421
    }
}

422 423 424 425
/* -----------------------------------------------------------------------------
 * Pushes an element onto traverse stack
 * -------------------------------------------------------------------------- */
static void
426 427
pushStackElement(traverseState *ts, stackElement *se)
{
428
    bdescr *nbd;      // Next Block Descriptor
429
    if (ts->stackTop - 1 < ts->stackBottom) {
430 431 432 433 434
#if defined(DEBUG_RETAINER)
        // debugBelch("push() to the next stack.\n");
#endif
        // currentStack->free is updated when the active stack is switched
        // to the next stack.
435
        ts->currentStack->free = (StgPtr)ts->stackTop;
436

437
        if (ts->currentStack->link == NULL) {
438 439
            nbd = allocGroup(BLOCKS_IN_STACK);
            nbd->link = NULL;
440 441
            nbd->u.back = ts->currentStack;
            ts->currentStack->link = nbd;
442
        } else
443
            nbd = ts->currentStack->link;
444

445
        newStackBlock(ts, nbd);
446 447 448
    }

    // adjust stackTop (acutal push)
449
    ts->stackTop--;
450 451 452 453
    // If the size of stackElement was huge, we would better replace the
    // following statement by either a memcpy() call or a switch statement
    // on the type of the element. Currently, the size of stackElement is
    // small enough (5 words) that this direct assignment seems to be enough.
454
    *ts->stackTop = *se;
455 456

#if defined(DEBUG_RETAINER)
457 458 459 460
    ts->stackSize++;
    if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
    ASSERT(ts->stackSize >= 0);
    debugBelch("stackSize = %d\n", ts->stackSize);
461
#endif
462

463 464 465 466 467 468
}

/* Push an object onto traverse stack. This method can be used anytime
 * instead of calling retainClosure(), it exists in order to use an
 * explicit stack instead of direct recursion.
 *
469
 *  *cp - object's parent
470 471 472 473
 *  *c - closure
 *  c_child_r - closure retainer.
 */
static INLINE void
474
traversePushClosure(traverseState *ts, StgClosure *c, StgClosure *cp, stackData data) {
475 476 477
    stackElement se;

    se.c = c;
478 479
    se.cp = cp;
    se.data = data;
480 481
    se.info.type = posTypeFresh;

482
    pushStackElement(ts, &se);
483 484
};

485 486 487 488
/* -----------------------------------------------------------------------------
 *  push() pushes a stackElement representing the next child of *c
 *  onto the traverse stack. If *c has no child, *first_child is set
 *  to NULL and nothing is pushed onto the stack. If *c has only one
489
 *  child, *c_child is set to that child and nothing is pushed onto
490 491 492 493 494 495
 *  the stack.  If *c has more than two children, *first_child is set
 *  to the first child and a stackElement representing the second
 *  child is pushed onto the stack.

 *  Invariants:
 *     *c_child_r is the most recent retainer of *c's children.
496
 *     *c is not any of TSO, AP, PAP, AP_STACK, which means that
497 498 499
 *        there cannot be any stack objects.
 *  Note: SRTs are considered to  be children as well.
 * -------------------------------------------------------------------------- */
500
static INLINE void
501
traversePushChildren(traverseState *ts, StgClosure *c, stackData data, StgClosure **first_child)
502 503 504 505
{
    stackElement se;
    bdescr *nbd;      // Next Block Descriptor

Ben Gamari's avatar
Ben Gamari committed
506
#if defined(DEBUG_RETAINER)
507
    debugBelch("push(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", ts->stackTop, ts->currentStackBoundary);
508 509 510
#endif

    ASSERT(get_itbl(c)->type != TSO);
511
    ASSERT(get_itbl(c)->type != AP_STACK);
512 513 514 515 516 517

    //
    // fill in se
    //

    se.c = c;
518 519
    se.data = data;
    // Note: se.cp ommitted on purpose, only retainPushClosure uses that.
520 521 522

    // fill in se.info
    switch (get_itbl(c)->type) {
523
        // no child, no SRT
524 525 526
    case CONSTR_0_1:
    case CONSTR_0_2:
    case ARR_WORDS:
gcampax's avatar
gcampax committed
527
    case COMPACT_NFDATA:
528 529
        *first_child = NULL;
        return;
530

531
        // one child (fixed), no SRT
532 533
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
534 535
        *first_child = ((StgMutVar *)c)->var;
        return;
536
    case THUNK_SELECTOR:
537 538
        *first_child = ((StgSelector *)c)->selectee;
        return;
539
    case BLACKHOLE:
540 541
        *first_child = ((StgInd *)c)->indirectee;
        return;
542 543
    case CONSTR_1_0:
    case CONSTR_1_1:
544 545
        *first_child = c->payload[0];
        return;
546

547 548 549
        // For CONSTR_2_0 and MVAR, we use se.info.step to record the position
        // of the next child. We do not write a separate initialization code.
        // Also we do not have to initialize info.type;
550

551 552
        // two children (fixed), no SRT
        // need to push a stackElement, but nothing to store in se.info
553
    case CONSTR_2_0:
554
        *first_child = c->payload[0];         // return the first pointer
555 556
        se.info.type = posTypeStep;
        se.info.next.step = 2;            // 2 = second
557
        break;
558

559 560
        // three children (fixed), no SRT
        // need to push a stackElement
561 562
    case MVAR_CLEAN:
    case MVAR_DIRTY:
563 564 565
        // head must be TSO and the head of a linked list of TSOs.
        // Shoule it be a child? Seems to be yes.
        *first_child = (StgClosure *)((StgMVar *)c)->head;
566
        se.info.type = posTypeStep;
567 568 569 570
        se.info.next.step = 2;            // 2 = second
        break;

        // three children (fixed), no SRT
571
    case WEAK:
572
        *first_child = ((StgWeak *)c)->key;
573
        se.info.type = posTypeStep;
574 575
        se.info.next.step = 2;
        break;
576

577
        // layout.payload.ptrs, no SRT
578
    case TVAR:
579
    case CONSTR:
Simon Marlow's avatar
Simon Marlow committed
580
    case CONSTR_NOCAF:
581
    case PRIM:
582
    case MUT_PRIM:
583
    case BCO:
584 585 586 587 588 589 590 591
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;   // no child
        break;

        // StgMutArrPtr.ptrs, no SRT
592 593
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
594 595
    case MUT_ARR_PTRS_FROZEN_CLEAN:
    case MUT_ARR_PTRS_FROZEN_DIRTY:
596 597 598 599 600 601 602 603
        init_ptrs(&se.info, ((StgMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;

        // StgMutArrPtr.ptrs, no SRT
604 605
    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
606 607
    case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
    case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
608 609 610 611 612 613
        init_ptrs(&se.info, ((StgSmallMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgSmallMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;
614

615
    // layout.payload.ptrs, SRT
616
    case FUN_STATIC:
617 618
    case FUN:           // *c is a heap object.
    case FUN_2_0:
619 620 621 622 623 624
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs, (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto fun_srt_only;
        break;
625

626 627
    case THUNK:
    case THUNK_2_0:
628 629 630 631 632 633 634 635 636
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)((StgThunk *)c)->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto thunk_srt_only;
        break;

        // 1 fixed child, SRT
637 638
    case FUN_1_0:
    case FUN_1_1:
639 640 641 642
        *first_child = c->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_fun(&se.info, get_fun_itbl(c));
        break;
643

644 645
    case THUNK_1_0:
    case THUNK_1_1:
646 647 648 649
        *first_child = ((StgThunk *)c)->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_thunk(&se.info, get_thunk_itbl(c));
        break;
650

651
    case FUN_0_1:      // *c is a heap object.
652
    case FUN_0_2:
653 654
    fun_srt_only:
        init_srt_fun(&se.info, get_fun_itbl(c));
655 656 657 658
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;
659 660 661

    // SRT only
    case THUNK_STATIC:
662
        ASSERT(get_itbl(c)->srt != 0);
663 664
    case THUNK_0_1:
    case THUNK_0_2:
665 666
    thunk_srt_only:
        init_srt_thunk(&se.info, get_thunk_itbl(c));
667 668 669 670 671
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;

672
    case TREC_CHUNK:
673
        *first_child = (StgClosure *)((StgTRecChunk *)c)->prev_chunk;
674
        se.info.type = posTypeStep;
675 676
        se.info.next.step = 0;  // entry no.
        break;
677

678
        // cannot appear
679
    case PAP:
680 681
    case AP:
    case AP_STACK:
682
    case TSO:
683
    case STACK:
684
    case IND_STATIC:
685
        // stack objects
686 687
    case UPDATE_FRAME:
    case CATCH_FRAME:
688
    case UNDERFLOW_FRAME:
689 690 691 692
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
693
        // invalid objects
694 695 696
    case IND:
    case INVALID_OBJECT:
    default:
697
        barf("Invalid object *c in push(): %d", get_itbl(c)->type);
698
        return;
699 700
    }

701 702 703 704
    // se.cp has to be initialized when type==posTypeFresh. We don't do that
    // here though. So type must be !=posTypeFresh.
    ASSERT(se.info.type != posTypeFresh);

705
    pushStackElement(ts, &se);
706 707 708 709 710 711 712 713 714 715 716 717
}

/* -----------------------------------------------------------------------------
 *  popOff() and popOffReal(): Pop a stackElement off the traverse stack.
 *  Invariants:
 *    stackTop cannot be equal to stackLimit unless the whole stack is
 *    empty, in which case popOff() is not allowed.
 *  Note:
 *    You can think of popOffReal() as a part of popOff() which is
 *    executed at the end of popOff() in necessary. Since popOff() is
 *    likely to be executed quite often while popOffReal() is not, we
 *    separate popOffReal() from popOff(), which is declared as an
718
 *    INLINE function (for the sake of execution speed).  popOffReal()
719 720 721
 *    is called only within popOff() and nowhere else.
 * -------------------------------------------------------------------------- */
static void
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
popStackElement(traverseState *ts) {
#if defined(DEBUG_RETAINER)
    debugBelch("popStackElement(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", ts->stackTop, ts->currentStackBoundary);
#endif

    ASSERT(ts->stackTop != ts->stackLimit);
    ASSERT(!isEmptyWorkStack(ts));

    // <= (instead of <) is wrong!
    if (ts->stackTop + 1 < ts->stackLimit) {
        ts->stackTop++;
#if defined(DEBUG_RETAINER)
        ts->stackSize--;
        if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
        ASSERT(ts->stackSize >= 0);
        debugBelch("stackSize = (--) %d\n", ts->stackSize);
#endif
        return;
    }

742 743
    bdescr *pbd;    // Previous Block Descriptor

Ben Gamari's avatar
Ben Gamari committed
744
#if defined(DEBUG_RETAINER)
745
    debugBelch("pop() to the previous stack.\n");
746 747
#endif

748 749
    ASSERT(ts->stackTop + 1 == ts->stackLimit);
    ASSERT(ts->stackBottom == (stackElement *)ts->currentStack->start);
750

751
    if (ts->firstStack == ts->currentStack) {
752
        // The stack is completely empty.
753 754
        ts->stackTop++;
        ASSERT(ts->stackTop == ts->stackLimit);
Ben Gamari's avatar
Ben Gamari committed
755
#if defined(DEBUG_RETAINER)
756 757 758 759
        ts->stackSize--;
        if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
        ASSERT(ts->stackSize >= 0);
        debugBelch("stackSize = %d\n", ts->stackSize);
760
#endif
761
        return;
762 763 764 765
    }

    // currentStack->free is updated when the active stack is switched back
    // to the previous stack.
766
    ts->currentStack->free = (StgPtr)ts->stackLimit;
767 768

    // find the previous block descriptor
769
    pbd = ts->currentStack->u.back;
770 771
    ASSERT(pbd != NULL);

772
    returnToOldStack(ts, pbd);
773

Ben Gamari's avatar
Ben Gamari committed
774
#if defined(DEBUG_RETAINER)
775 776 777 778
    ts->stackSize--;
    if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
    ASSERT(ts->stackSize >= 0);
    debugBelch("stackSize = %d\n", ts->stackSize);
779 780 781 782 783 784
#endif
}

/* -----------------------------------------------------------------------------
 *  Finds the next object to be considered for retainer profiling and store
 *  its pointer to *c.
785 786 787
 *  If the unprocessed object was stored in the stack (posTypeFresh), the
 *  this object is returned as-is. Otherwise Test if the topmost stack
 *  element indicates that more objects are left,
788
 *  and if so, retrieve the first object and store its pointer to *c. Also,
789 790 791
 *  set *cp and *data appropriately, both of which are stored in the stack
 *  element.  The topmost stack element then is overwritten so as for it to now
 *  denote the next object.
792 793
 *  If the topmost stack element indicates no more objects are left, pop
 *  off the stack element until either an object can be retrieved or
Ben Gamari's avatar
Ben Gamari committed
794
 *  the current stack chunk becomes empty, indicated by true returned by
795 796 797 798 799
 *  isOnBoundary(), in which case *c is set to NULL.
 *  Note:
 *    It is okay to call this function even when the current stack chunk
 *    is empty.
 * -------------------------------------------------------------------------- */
800
static INLINE void
801
traversePop(traverseState *ts, StgClosure **c, StgClosure **cp, stackData *data)
802 803 804
{
    stackElement *se;

Ben Gamari's avatar
Ben Gamari committed
805
#if defined(DEBUG_RETAINER)
806
    debugBelch("pop(): stackTop = 0x%x, currentStackBoundary = 0x%x\n", ts->stackTop, ts->currentStackBoundary);
807 808
#endif

809 810 811 812
    // Is this the last internal element? If so instead of modifying the current
    // stackElement in place we actually remove it from the stack.
    bool last = false;

813
    do {
814
        if (isOnBoundary(ts)) {     // if the current stack chunk is depleted
815 816 817 818
            *c = NULL;
            return;
        }

819 820
        // Note: Below every `break`, where the loop condition is true, must be
        // accompanied by a popOff() otherwise this is an infinite loop.
821
        se = ts->stackTop;
822

823 824
        // If this is a top-level element, you should pop that out.
        if (se->info.type == posTypeFresh) {
825
            *cp = se->cp;
826
            *c = se->c;
827
            *data = se->data;
828
            popStackElement(ts);
829 830 831
            return;
        }

832 833
        // Note: The first ptr of all of these was already returned as
        // *fist_child in push(), so we always start with the second field.
834 835 836 837 838
        switch (get_itbl(se->c)->type) {
            // two children (fixed), no SRT
            // nothing in se.info
        case CONSTR_2_0:
            *c = se->c->payload[1];
839 840
            last = true;
            goto out;
841 842 843

            // three children (fixed), no SRT
            // need to push a stackElement
844 845
        case MVAR_CLEAN:
        case MVAR_DIRTY:
846 847 848 849 850 851
            if (se->info.next.step == 2) {
                *c = (StgClosure *)((StgMVar *)se->c)->tail;
                se->info.next.step++;             // move to the next step
                // no popOff
            } else {
                *c = ((StgMVar *)se->c)->value;
852
                last = true;
853
            }
854
            goto out;
855 856 857 858 859 860 861 862 863

            // three children (fixed), no SRT
        case WEAK:
            if (se->info.next.step == 2) {
                *c = ((StgWeak *)se->c)->value;
                se->info.next.step++;
                // no popOff
            } else {
                *c = ((StgWeak *)se->c)->finalizer;
864
                last = true;
865
            }
866
            goto out;
867 868 869 870 871 872 873 874

        case TREC_CHUNK: {
            // These are pretty complicated: we have N entries, each
            // of which contains 3 fields that we want to follow.  So
            // we divide the step counter: the 2 low bits indicate
            // which field, and the rest of the bits indicate the
            // entry number (starting from zero).
            TRecEntry *entry;
875 876
            uint32_t entry_no = se->info.next.step >> 2;
            uint32_t field_no = se->info.next.step & 3;
877 878
            if (entry_no == ((StgTRecChunk *)se->c)->next_entry_idx) {
                *c = NULL;
879
                popStackElement(ts);
880
                break; // this breaks out of the switch not the loop
881 882 883 884 885 886 887 888 889 890
            }
            entry = &((StgTRecChunk *)se->c)->entries[entry_no];
            if (field_no == 0) {
                *c = (StgClosure *)entry->tvar;
            } else if (field_no == 1) {
                *c = entry->expected_value;
            } else {
                *c = entry->new_value;
            }
            se->info.next.step++;
891
            goto out;
892
        }
893

894 895
        case TVAR:
        case CONSTR:
896 897 898 899 900 901
        case PRIM:
        case MUT_PRIM:
        case BCO:
            // StgMutArrPtr.ptrs, no SRT
        case MUT_ARR_PTRS_CLEAN:
        case MUT_ARR_PTRS_DIRTY:
902 903
        case MUT_ARR_PTRS_FROZEN_CLEAN:
        case MUT_ARR_PTRS_FROZEN_DIRTY:
904 905 906 907
        case SMALL_MUT_ARR_PTRS_CLEAN:
        case SMALL_MUT_ARR_PTRS_DIRTY:
        case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
        case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
908 909
            *c = find_ptrs(&se->info);
            if (*c == NULL) {
910
                popStackElement(ts);
911
                break; // this breaks out of the switch not the loop
912
            }
913
            goto out;
914 915 916

            // layout.payload.ptrs, SRT
        case FUN:         // always a heap object
917
        case FUN_STATIC:
918 919 920 921
        case FUN_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
922
                    goto out;
923 924 925 926 927 928 929 930 931 932
                }
                init_srt_fun(&se->info, get_fun_itbl(se->c));
            }
            goto do_srt;

        case THUNK:
        case THUNK_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
933
                    goto out;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
                }
                init_srt_thunk(&se->info, get_thunk_itbl(se->c));
            }
            goto do_srt;

            // SRT
        do_srt:
        case THUNK_STATIC:
        case FUN_0_1:
        case FUN_0_2:
        case THUNK_0_1:
        case THUNK_0_2:
        case FUN_1_0:
        case FUN_1_1:
        case THUNK_1_0:
        case THUNK_1_1:
            *c = find_srt(&se->info);
951
            if(*c == NULL) {
952
                popStackElement(ts);
953
                break; // this breaks out of the switch not the loop
954
            }
955
            goto out;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

            // no child (fixed), no SRT
        case CONSTR_0_1:
        case CONSTR_0_2:
        case ARR_WORDS:
            // one child (fixed), no SRT
        case MUT_VAR_CLEAN:
        case MUT_VAR_DIRTY:
        case THUNK_SELECTOR:
        case CONSTR_1_1:
            // cannot appear
        case PAP:
        case AP:
        case AP_STACK:
        case TSO:
971 972
        case STACK:
        case IND_STATIC:
Simon Marlow's avatar
Simon Marlow committed
973
        case CONSTR_NOCAF:
974
            // stack objects
975
        case UPDATE_FRAME:
976
        case CATCH_FRAME:
977 978
        case UNDERFLOW_FRAME:
        case STOP_FRAME:
979 980 981 982 983 984 985
        case RET_BCO:
        case RET_SMALL:
        case RET_BIG:
            // invalid objects
        case IND:
        case INVALID_OBJECT:
        default:
986
            barf("Invalid object *c in pop(): %d", get_itbl(se->c)->type);
987 988
            return;
        }
989 990 991 992 993 994 995 996 997 998
    } while (*c == NULL);

out:

    ASSERT(*c != NULL);

    *cp = se->c;
    *data = se->data;

    if(last)
999
        popStackElement(ts);
1000 1001 1002

    return;

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

/* -----------------------------------------------------------------------------
 * RETAINER PROFILING ENGINE
 * -------------------------------------------------------------------------- */

void
initRetainerProfiling( void )
{
    initializeAllRetainerSet();
    retainerGeneration = 0;
}

/* -----------------------------------------------------------------------------
 *  This function must be called before f-closing prof_file.
 * -------------------------------------------------------------------------- */
void
endRetainerProfiling( void )
{
    outputAllRetainerSet(prof_file);
}

/* -----------------------------------------------------------------------------
 *  Returns the actual pointer to the retainer set of the closure *c.
 *  It may adjust RSET(c) subject to flip.
 *  Side effects:
 *    RSET(c) is initialized to NULL if its current value does not
 *    conform to flip.
 *  Note:
 *    Even though this function has side effects, they CAN be ignored because
 *    subsequent calls to retainerSetOf() always result in the same return value
 *    and retainerSetOf() is the only way to retrieve retainerSet of a given
 *    closure.
 *    We have to perform an XOR (^) operation each time a closure is examined.
 *    The reason is that we do not know when a closure is visited last.
 * -------------------------------------------------------------------------- */
1039
static INLINE void
1040
traverseMaybeInitClosureData(StgClosure *c)
1041
{
1042 1043
    if (!isTravDataValid(c)) {
        setTravDataToZero(c);
1044 1045 1046 1047
    }
}

/* -----------------------------------------------------------------------------
Ben Gamari's avatar
Ben Gamari committed
1048
 * Returns true if *c is a retainer.
1049 1050 1051 1052 1053 1054
 * In general the retainers are the objects that may be the roots of the
 * collection. Basically this roots represents programmers threads
 * (TSO) with their stack and thunks.
 *
 * In addition we mark all mutable objects as a retainers, the reason for
 * that decision is lost in time.
1055
 * -------------------------------------------------------------------------- */
Ben Gamari's avatar
Ben Gamari committed
1056
static INLINE bool
1057 1058 1059
isRetainer( StgClosure *c )
{
    switch (get_itbl(c)->type) {
1060 1061 1062 1063
        //
        //  True case
        //
        // TSOs MUST be retainers: they constitute the set of roots.
1064
    case TSO:
1065
    case STACK:
1066

1067
        // mutable objects
1068
    case MUT_PRIM:
1069 1070
    case MVAR_CLEAN:
    case MVAR_DIRTY:
1071
    case TVAR:
1072 1073
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
1074 1075
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
1076 1077 1078
    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
    case BLOCKING_QUEUE:
1079

1080
        // thunks are retainers.
1081 1082 1083 1084 1085 1086 1087
    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_2_0:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_SELECTOR:
1088 1089
    case AP:
    case AP_STACK:
1090

1091
        // Static thunks, or CAFS, are obviously retainers.
1092 1093
    case THUNK_STATIC:

1094 1095
        // WEAK objects are roots; there is separate code in which traversing
        // begins from WEAK objects.
1096
    case WEAK:
Ben Gamari's avatar
Ben Gamari committed
1097
        return true;
1098

1099 1100 1101
        //
        // False case
        //
1102

1103
        // constructors
1104
    case CONSTR:
Simon Marlow's avatar
Simon Marlow committed
1105
    case CONSTR_NOCAF:
1106 1107 1108 1109 1110
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
1111
        // functions
1112 1113 1114 1115 1116 1117
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
1118
        // partial applications
1119
    case PAP:
1120
        // indirection
Ian Lynagh's avatar
Ian Lynagh committed
1121 1122 1123 1124
    // IND_STATIC used to be an error, but at the moment it can happen
    // as isAlive doesn't look through IND_STATIC as it ignores static
    // closures. See trac #3956 for a program that hit this error.
    case IND_STATIC:
1125
    case BLACKHOLE:
1126
    case WHITEHOLE:
1127
        // static objects
1128
    case FUN_STATIC:
1129
        // misc
1130
    case PRIM:
1131 1132
    case BCO:
    case ARR_WORDS:
1133
    case COMPACT_NFDATA:
1134
        // STM
1135
    case TREC_CHUNK:
1136
        // immutable arrays
1137 1138 1139 1140
    case MUT_ARR_PTRS_FROZEN_CLEAN:
    case MUT_ARR_PTRS_FROZEN_DIRTY:
    case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
    case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
Ben Gamari's avatar
Ben Gamari committed
1141
        return false;
1142

1143 1144 1145 1146 1147
        //
        // Error case
        //
        // Stack objects are invalid because they are never treated as
        // legal objects during retainer profiling.
1148 1149
    case UPDATE_FRAME:
    case CATCH_FRAME:
1150 1151
    case CATCH_RETRY_FRAME:
    case CATCH_STM_FRAME:
1152
    case UNDERFLOW_FRAME:
1153
    case ATOMICALLY_FRAME:
1154 1155 1156 1157
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
1158
    case RET_FUN:
1159
        // other cases
1160 1161 1162
    case IND:
    case INVALID_OBJECT:
    default:
1163
        barf("Invalid object in isRetainer(): %d", get_itbl(c