Stable.c 14 KB
Newer Older
1 2
/* -----------------------------------------------------------------------------
 *
3
 * (c) The GHC Team, 1998-2002
4 5 6 7 8
 *
 * Stable names and stable pointers.
 *
 * ---------------------------------------------------------------------------*/

9 10 11
// Make static versions of inline functions in Stable.h:
#define RTS_STABLE_C

12
#include "PosixSource.h"
13 14 15
#include "Rts.h"
#include "Hash.h"
#include "RtsUtils.h"
16
#include "OSThreads.h"
17 18 19
#include "Storage.h"
#include "RtsAPI.h"
#include "RtsFlags.h"
20
#include "OSThreads.h"
Simon Marlow's avatar
Simon Marlow committed
21
#include "Trace.h"
22
#include "Stable.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

/* Comment from ADR's implementation in old RTS:

  This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
  small change in @HpOverflow.lc@) consists of the changes in the
  runtime system required to implement "Stable Pointers". But we're
  getting a bit ahead of ourselves --- what is a stable pointer and what
  is it used for?

  When Haskell calls C, it normally just passes over primitive integers,
  floats, bools, strings, etc.  This doesn't cause any problems at all
  for garbage collection because the act of passing them makes a copy
  from the heap, stack or wherever they are onto the C-world stack.
  However, if we were to pass a heap object such as a (Haskell) @String@
  and a garbage collection occured before we finished using it, we'd run
  into problems since the heap object might have been moved or even
  deleted.

  So, if a C call is able to cause a garbage collection or we want to
  store a pointer to a heap object between C calls, we must be careful
  when passing heap objects. Our solution is to keep a table of all
  objects we've given to the C-world and to make sure that the garbage
  collector collects these objects --- updating the table as required to
  make sure we can still find the object.


  Of course, all this rather begs the question: why would we want to
  pass a boxed value?

  One very good reason is to preserve laziness across the language
  interface. Rather than evaluating an integer or a string because it
  {\em might\/} be required by the C function, we can wait until the C
  function actually wants the value and then force an evaluation.

  Another very good reason (the motivating reason!) is that the C code
  might want to execute an object of sort $IO ()$ for the side-effects
  it will produce. For example, this is used when interfacing to an X
  widgets library to allow a direct implementation of callbacks.


  The @makeStablePointer :: a -> IO (StablePtr a)@ function
  converts a value into a stable pointer.  It is part of the @PrimIO@
  monad, because we want to be sure we don't allocate one twice by
  accident, and then only free one of the copies.

  \begin{verbatim}
  makeStablePtr#  :: a -> State# RealWorld -> (# RealWorld, a #)
  freeStablePtr#  :: StablePtr# a -> State# RealWorld -> State# RealWorld
  deRefStablePtr# :: StablePtr# a -> State# RealWorld -> 
        (# State# RealWorld, a #)
  \end{verbatim}

  There may be additional functions on the C side to allow evaluation,
  application, etc of a stable pointer.

*/

80 81
snEntry *stable_ptr_table = NULL;
static snEntry *stable_ptr_free = NULL;
82

83
static unsigned int SPT_size = 0;
84

85
#ifdef THREADED_RTS
86
static Mutex stable_mutex;
87
#endif
88

89 90 91 92
/* This hash table maps Haskell objects to stable names, so that every
 * call to lookupStableName on a given object will return the same
 * stable name.
 *
93 94 95
 * OLD COMMENTS about reference counting follow.  The reference count
 * in a stable name entry is now just a counter.
 *
96 97 98 99 100 101 102 103 104 105
 * Reference counting
 * ------------------
 * A plain stable name entry has a zero reference count, which means
 * the entry will dissappear when the object it points to is
 * unreachable.  For stable pointers, we need an entry that sticks
 * around and keeps the object it points to alive, so each stable name
 * entry has an associated reference count.
 *
 * A stable pointer has a weighted reference count N attached to it
 * (actually in its upper 5 bits), which represents the weight
106
 * 2^(N-1).  The stable name entry keeps a 32-bit reference count, which
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * represents any weight between 1 and 2^32 (represented as zero).
 * When the weight is 2^32, the stable name table owns "all" of the
 * stable pointers to this object, and the entry can be garbage
 * collected if the object isn't reachable.
 *
 * A new stable pointer is given the weight log2(W/2), where W is the
 * weight stored in the table entry.  The new weight in the table is W
 * - 2^log2(W/2).
 *
 * A stable pointer can be "split" into two stable pointers, by
 * dividing the weight by 2 and giving each pointer half.
 * When freeing a stable pointer, the weight of the pointer is added
 * to the weight stored in the table entry.
 * */

122
static HashTable *addrToStableHash = NULL;
123 124 125

#define INIT_SPT_SIZE 64

sof's avatar
sof committed
126
STATIC_INLINE void
127 128 129 130 131
initFreeList(snEntry *table, nat n, snEntry *free)
{
  snEntry *p;

  for (p = table + n - 1; p >= table; p--) {
sof's avatar
sof committed
132
    p->addr   = (P_)free;
133
    p->old    = NULL;
134
    p->ref    = 0;
sof's avatar
sof committed
135
    p->sn_obj = NULL;
136 137 138 139 140 141 142 143
    free = p;
  }
  stable_ptr_free = table;
}

void
initStablePtrTable(void)
{
144 145 146 147 148 149 150 151 152 153 154 155 156 157
	if (SPT_size > 0)
		return;

    SPT_size = INIT_SPT_SIZE;
    stable_ptr_table = stgMallocBytes(SPT_size * sizeof(snEntry),
				      "initStablePtrTable");

    /* we don't use index 0 in the stable name table, because that
     * would conflict with the hash table lookup operations which
     * return NULL if an entry isn't found in the hash table.
     */
    initFreeList(stable_ptr_table+1,INIT_SPT_SIZE-1,NULL);
    addrToStableHash = allocHashTable();

158
#ifdef THREADED_RTS
159
    initMutex(&stable_mutex);
160
#endif
161 162
}

163 164 165 166 167 168 169 170 171 172
void
exitStablePtrTable(void)
{
  if (addrToStableHash)
    freeHashTable(addrToStableHash, NULL);
  addrToStableHash = NULL;
  if (stable_ptr_table)
    stgFree(stable_ptr_table);
  stable_ptr_table = NULL;
  SPT_size = 0;
173 174 175
#ifdef THREADED_RTS
  closeMutex(&stable_mutex);
#endif
176 177
}

sof's avatar
sof committed
178 179
/*
 * get at the real stuff...remove indirections.
Simon Marlow's avatar
Simon Marlow committed
180 181 182
 * It untags pointers before dereferencing and
 * retags the real stuff with its tag (if there
 * is any) when returning.
sof's avatar
sof committed
183 184 185 186 187 188 189
 *
 * ToDo: move to a better home.
 */
static
StgClosure*
removeIndirections(StgClosure* p)
{
Simon Marlow's avatar
Simon Marlow committed
190 191
  StgWord tag = GET_CLOSURE_TAG(p);
  StgClosure* q = UNTAG_CLOSURE(p);
sof's avatar
sof committed
192

193 194 195 196 197
  while (get_itbl(q)->type == IND ||
         get_itbl(q)->type == IND_STATIC ||
         get_itbl(q)->type == IND_OLDGEN ||
         get_itbl(q)->type == IND_PERM ||
         get_itbl(q)->type == IND_OLDGEN_PERM ) {
Simon Marlow's avatar
Simon Marlow committed
198 199
      tag = GET_CLOSURE_TAG(q);
      q = UNTAG_CLOSURE(((StgInd *)q)->indirectee);
sof's avatar
sof committed
200
  }
Simon Marlow's avatar
Simon Marlow committed
201
  return TAG_CLOSURE(tag,q);
sof's avatar
sof committed
202 203
}

204 205
static StgWord
lookupStableName_(StgPtr p)
206 207
{
  StgWord sn;
208
  void* sn_tmp;
209 210 211 212

  if (stable_ptr_free == NULL) {
    enlargeStablePtrTable();
  }
sof's avatar
sof committed
213 214

  /* removing indirections increases the likelihood
215
   * of finding a match in the stable name hash table.
sof's avatar
sof committed
216 217 218
   */
  p = (StgPtr)removeIndirections((StgClosure*)p);

219 220
  sn_tmp = lookupHashTable(addrToStableHash,(W_)p);
  sn = (StgWord)sn_tmp;
221 222 223
  
  if (sn != 0) {
    ASSERT(stable_ptr_table[sn].addr == p);
Simon Marlow's avatar
Simon Marlow committed
224
    debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
225 226 227
    return sn;
  } else {
    sn = stable_ptr_free - stable_ptr_table;
228
    stable_ptr_free  = (snEntry*)(stable_ptr_free->addr);
229
    stable_ptr_table[sn].ref = 0;
230
    stable_ptr_table[sn].addr = p;
231
    stable_ptr_table[sn].sn_obj = NULL;
Simon Marlow's avatar
Simon Marlow committed
232
    /* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */
233 234 235 236 237 238 239 240
    
    /* add the new stable name to the hash table */
    insertHashTable(addrToStableHash, (W_)p, (void *)sn);

    return sn;
  }
}

241 242 243 244
StgWord
lookupStableName(StgPtr p)
{
    StgWord res;
245 246

    initStablePtrTable();
247 248 249 250 251 252
    ACQUIRE_LOCK(&stable_mutex);
    res = lookupStableName_(p);
    RELEASE_LOCK(&stable_mutex);
    return res;
}

sof's avatar
sof committed
253
STATIC_INLINE void
254 255
freeStableName(snEntry *sn)
{
256
  ASSERT(sn->sn_obj == NULL);
257
  if (sn->addr != NULL) {
258
      removeHashTable(addrToStableHash, (W_)sn->addr, NULL);
259
  }
260 261 262 263 264 265 266
  sn->addr = (P_)stable_ptr_free;
  stable_ptr_free = sn;
}

StgStablePtr
getStablePtr(StgPtr p)
{
267 268
  StgWord sn;

269
  initStablePtrTable();
270 271
  ACQUIRE_LOCK(&stable_mutex);
  sn = lookupStableName_(p);
272
  stable_ptr_table[sn].ref++;
273
  RELEASE_LOCK(&stable_mutex);
274
  return (StgStablePtr)(sn);
275 276
}

277 278 279
void
freeStablePtr(StgStablePtr sp)
{
280 281
    snEntry *sn;

282
	initStablePtrTable();
283 284 285
    ACQUIRE_LOCK(&stable_mutex);

    sn = &stable_ptr_table[(StgWord)sp];
286
    
287 288 289 290 291 292 293
    ASSERT((StgWord)sp < SPT_size  &&  sn->addr != NULL  &&  sn->ref > 0);

    sn->ref--;

    // If this entry has no StableName attached, then just free it
    // immediately.  This is important; it might be a while before the
    // next major GC which actually collects the entry.
294
    if (sn->sn_obj == NULL && sn->ref == 0) {
295 296
	freeStableName(sn);
    }
297 298

    RELEASE_LOCK(&stable_mutex);
299 300
}

301 302 303 304
void
enlargeStablePtrTable(void)
{
  nat old_SPT_size = SPT_size;
305

306
    // 2nd and subsequent times
307 308 309
  SPT_size *= 2;
  stable_ptr_table =
    stgReallocBytes(stable_ptr_table,
sof's avatar
sof committed
310
		      SPT_size * sizeof(snEntry),
311
		      "enlargeStablePtrTable");
sof's avatar
sof committed
312

313
  initFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
314 315 316 317 318
}

/* -----------------------------------------------------------------------------
 * Treat stable pointers as roots for the garbage collector.
 *
319
 * A stable pointer is any stable name entry with a ref > 0.  We'll
320 321 322 323
 * take the opportunity to zero the "keep" flags at the same time.
 * -------------------------------------------------------------------------- */

void
324
markStablePtrTable(evac_fn evac)
325
{
326 327 328 329 330 331 332 333 334 335
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // Mark all the stable *pointers* (not stable names).
    // _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	q = p->addr;

336 337 338
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
339 340 341 342 343 344 345
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // save the current addr away: we need to be able to tell
	    // whether the objects moved in order to be able to update
	    // the hash table later.
	    p->old = p->addr;

346 347
	    // if the ref is non-zero, treat addr as a root
	    if (p->ref != 0) {
348 349 350 351 352
		evac((StgClosure **)&p->addr);
	    }
	}
    }
}
353

354 355 356 357 358 359 360
/* -----------------------------------------------------------------------------
 * Thread the stable pointer table for compacting GC.
 * 
 * Here we must call the supplied evac function for each pointer into
 * the heap from the stable pointer table, because the compacting
 * collector may move the object it points to.
 * -------------------------------------------------------------------------- */
361

362 363 364 365 366 367 368 369 370 371
void
threadStablePtrTable( evac_fn evac )
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
	
372 373 374 375 376
	if (p->sn_obj != NULL) {
	    evac((StgClosure **)&p->sn_obj);
	}

	q = p->addr;
377
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
378
	    evac((StgClosure **)&p->addr);
379 380 381 382 383 384 385 386 387
	}
    }
}

/* -----------------------------------------------------------------------------
 * Garbage collect any dead entries in the stable pointer table.
 *
 * A dead entry has:
 *
388
 *          - a zero reference count
389
 *          - a dead sn_obj
390
 *
391 392 393 394
 * Both of these conditions must be true in order to re-use the stable
 * name table entry.  We can re-use stable name table entries for live
 * heap objects, as long as the program has no StableName objects that
 * refer to the entry.
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
 * -------------------------------------------------------------------------- */

void
gcStablePtrTable( void )
{
    snEntry *p, *end_stable_ptr_table;
    StgPtr q;
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
	
	// Update the pointer to the StableName object, if there is one
	if (p->sn_obj != NULL) {
	    p->sn_obj = isAlive(p->sn_obj);
	}
	
413 414 415
	// Internal pointers are free slots.  If q == NULL, it's a
	// stable name where the object has been GC'd, but the
	// StableName object (sn_obj) is still alive.
416 417 418 419
	q = p->addr;
	if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {

	    // StableNames only:
420
	    if (p->ref == 0) {
421 422 423
		if (p->sn_obj == NULL) {
		    // StableName object is dead
		    freeStableName(p);
424 425
		    debugTrace(DEBUG_stable, "GC'd Stable name %ld",
			       (long)(p - stable_ptr_table));
426 427 428
		    continue;
		    
		} else {
429
		  p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
Simon Marlow's avatar
Simon Marlow committed
430 431
		  debugTrace(DEBUG_stable, 
			     "stable name %ld still alive at %p, ref %ld\n",
432
			     (long)(p - stable_ptr_table), p->addr, p->ref);
433 434 435 436 437 438 439 440
		}
	    }
	}
    }
}

/* -----------------------------------------------------------------------------
 * Update the StablePtr/StableName hash table
441 442 443 444 445 446 447 448
 *
 * The boolean argument 'full' indicates that a major collection is
 * being done, so we might as well throw away the hash table and build
 * a new one.  For a minor collection, we just re-hash the elements
 * that changed.
 * -------------------------------------------------------------------------- */

void
449
updateStablePtrTable(rtsBool full)
450
{
451 452 453 454 455
    snEntry *p, *end_stable_ptr_table;
    
    if (full && addrToStableHash != NULL) {
	freeHashTable(addrToStableHash,NULL);
	addrToStableHash = allocHashTable();
456
    }
457 458 459 460 461
    
    end_stable_ptr_table = &stable_ptr_table[SPT_size];
    
    // NOTE: _starting_ at index 1; index 0 is unused.
    for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
462
	
463 464 465 466 467 468 469 470 471 472 473
	if (p->addr == NULL) {
	    if (p->old != NULL) {
		// The target has been garbage collected.  Remove its
		// entry from the hash table.
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		p->old = NULL;
	    }
	}
	else if (p->addr < (P_)stable_ptr_table 
		 || p->addr >= (P_)end_stable_ptr_table) {
	    // Target still alive, Re-hash this stable name 
474
	    if (full) {
475 476 477 478 479 480
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
	    } else if (p->addr != p->old) {
		removeHashTable(addrToStableHash, (W_)p->old, NULL);
		insertHashTable(addrToStableHash, (W_)p->addr, 
				(void *)(p - stable_ptr_table));
481
	    }
482 483 484
	}
    }
}