TcBinds.hs 71.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5
\section[TcBinds]{TcBinds}
Austin Seipp's avatar
Austin Seipp committed
6
-}
7

8
{-# LANGUAGE CPP, RankNTypes, ScopedTypeVariables #-}
9
{-# LANGUAGE FlexibleContexts #-}
10
{-# LANGUAGE TypeFamilies #-}
11
{-# LANGUAGE ViewPatterns #-}
12

13
module TcBinds ( tcLocalBinds, tcTopBinds, tcValBinds,
14
                 tcHsBootSigs, tcPolyCheck,
15 16
                 chooseInferredQuantifiers,
                 badBootDeclErr ) where
17

18 19
import GhcPrelude

20
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
21
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
22
import {-# SOURCE #-} TcPatSyn ( tcPatSynDecl, tcPatSynBuilderBind )
23
import CoreSyn (Tickish (..))
24
import CostCentre (mkUserCC, CCFlavour(DeclCC))
Simon Marlow's avatar
Simon Marlow committed
25
import DynFlags
26
import FastString
27
import GHC.Hs
28
import TcSigs
29
import TcRnMonad
30
import TcOrigin
Simon Marlow's avatar
Simon Marlow committed
31 32 33
import TcEnv
import TcUnify
import TcSimplify
34
import TcEvidence
Simon Marlow's avatar
Simon Marlow committed
35 36 37
import TcHsType
import TcPat
import TcMType
38 39
import FamInstEnv( normaliseType )
import FamInst( tcGetFamInstEnvs )
40
import TyCon
Simon Marlow's avatar
Simon Marlow committed
41
import TcType
42
import Type( mkStrLitTy, tidyOpenType, splitTyConApp_maybe, mkCastTy)
Simon Marlow's avatar
Simon Marlow committed
43
import TysPrim
44
import TysWiredIn( mkBoxedTupleTy )
Simon Marlow's avatar
Simon Marlow committed
45
import Id
46
import Var
47
import VarSet
48
import VarEnv( TidyEnv )
49
import Module
Simon Marlow's avatar
Simon Marlow committed
50
import Name
51
import NameSet
52
import NameEnv
Simon Marlow's avatar
Simon Marlow committed
53
import SrcLoc
54
import Bag
Simon Marlow's avatar
Simon Marlow committed
55 56 57 58 59
import ErrUtils
import Digraph
import Maybes
import Util
import BasicTypes
60
import Outputable
61
import PrelNames( ipClassName )
62
import TcValidity (checkValidType)
niteria's avatar
niteria committed
63
import UniqFM
David Feuer's avatar
David Feuer committed
64
import UniqSet
65
import qualified GHC.LanguageExtensions as LangExt
66
import ConLike
67 68

import Control.Monad
69
import Data.Foldable (find)
70 71

#include "HsVersions.h"
72

Austin Seipp's avatar
Austin Seipp committed
73 74 75
{-
************************************************************************
*                                                                      *
76
\subsection{Type-checking bindings}
Austin Seipp's avatar
Austin Seipp committed
77 78
*                                                                      *
************************************************************************
79

80
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
81 82 83 84 85 86 87 88 89 90
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

91
The real work is done by @tcBindWithSigsAndThen@.
92 93 94 95 96 97 98 99 100 101

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

102 103 104
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

105 106
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
107
The game plan for polymorphic recursion in the code above is
108 109

        * Bind any variable for which we have a type signature
110
          to an Id with a polymorphic type.  Then when type-checking
111 112 113 114 115 116 117 118 119 120 121 122 123 124
          the RHSs we'll make a full polymorphic call.

This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:

        f :: Eq a => [a] -> [a]
        f xs = ...f...

If we don't take care, after typechecking we get

        f = /\a -> \d::Eq a -> let f' = f a d
                               in
                               \ys:[a] -> ...f'...

125
Notice the stupid construction of (f a d), which is of course
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

        ff :: [Int] -> [Int]
        ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

        ff = f Int dEqInt

           = let f' = f Int dEqInt in \ys. ...f'...

           = let f' = let f' = f Int dEqInt in \ys. ...f'...
                      in \ys. ...f'...

Etc.

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.

Then we get

        f = /\a -> \d::Eq a -> letrec
                                 fm = \ys:[a] -> ...fm...
                               in
                               fm
Austin Seipp's avatar
Austin Seipp committed
163
-}
164

165 166
tcTopBinds :: [(RecFlag, LHsBinds GhcRn)] -> [LSig GhcRn]
           -> TcM (TcGblEnv, TcLclEnv)
167 168
-- The TcGblEnv contains the new tcg_binds and tcg_spects
-- The TcLclEnv has an extended type envt for the new bindings
169
tcTopBinds binds sigs
cactus's avatar
cactus committed
170 171 172 173 174
  = do  { -- Pattern synonym bindings populate the global environment
          (binds', (tcg_env, tcl_env)) <- tcValBinds TopLevel binds sigs $
            do { gbl <- getGblEnv
               ; lcl <- getLclEnv
               ; return (gbl, lcl) }
175 176
        ; specs <- tcImpPrags sigs   -- SPECIALISE prags for imported Ids

177 178 179 180 181 182 183 184 185
        ; complete_matches <- setEnvs (tcg_env, tcl_env) $ tcCompleteSigs sigs
        ; traceTc "complete_matches" (ppr binds $$ ppr sigs)
        ; traceTc "complete_matches" (ppr complete_matches)

        ; let { tcg_env' = tcg_env { tcg_imp_specs
                                      = specs ++ tcg_imp_specs tcg_env
                                   , tcg_complete_matches
                                      = complete_matches
                                          ++ tcg_complete_matches tcg_env }
186
                           `addTypecheckedBinds` map snd binds' }
187 188

        ; return (tcg_env', tcl_env) }
189
        -- The top level bindings are flattened into a giant
Ian Lynagh's avatar
Ian Lynagh committed
190
        -- implicitly-mutually-recursive LHsBinds
cactus's avatar
cactus committed
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

-- Note [Typechecking Complete Matches]
-- Much like when a user bundled a pattern synonym, the result types of
-- all the constructors in the match pragma must be consistent.
--
-- If we allowed pragmas with inconsistent types then it would be
-- impossible to ever match every constructor in the list and so
-- the pragma would be useless.





-- This is only used in `tcCompleteSig`. We fold over all the conlikes,
-- this accumulator keeps track of the first `ConLike` with a concrete
-- return type. After fixing the return type, all other constructors with
-- a fixed return type must agree with this.
--
-- The fields of `Fixed` cache the first conlike and its return type so
-- that that we can compare all the other conlikes to it. The conlike is
-- stored for error messages.
--
-- `Nothing` in the case that the type is fixed by a type signature
data CompleteSigType = AcceptAny | Fixed (Maybe ConLike) TyCon

217
tcCompleteSigs  :: [LSig GhcRn] -> TcM [CompleteMatch]
218 219
tcCompleteSigs sigs =
  let
220
      doOne :: Sig GhcRn -> TcM (Maybe CompleteMatch)
221
      doOne c@(CompleteMatchSig _ _ lns mtc)
222 223 224 225 226 227 228 229 230 231 232 233 234
        = fmap Just $ do
           addErrCtxt (text "In" <+> ppr c) $
            case mtc of
              Nothing -> infer_complete_match
              Just tc -> check_complete_match tc
        where

          checkCLTypes acc = foldM checkCLType (acc, []) (unLoc lns)

          infer_complete_match = do
            (res, cls) <- checkCLTypes AcceptAny
            case res of
              AcceptAny -> failWithTc ambiguousError
235
              Fixed _ tc  -> return $ mkMatch cls tc
236 237 238 239

          check_complete_match tc_name = do
            ty_con <- tcLookupLocatedTyCon tc_name
            (_, cls) <- checkCLTypes (Fixed Nothing ty_con)
240 241 242 243
            return $ mkMatch cls ty_con

          mkMatch :: [ConLike] -> TyCon -> CompleteMatch
          mkMatch cls ty_con = CompleteMatch {
244 245 246 247 248
            -- foldM is a left-fold and will have accumulated the ConLikes in
            -- the reverse order. foldrM would accumulate in the correct order,
            -- but would type-check the last ConLike first, which might also be
            -- confusing from the user's perspective. Hence reverse here.
            completeMatchConLikes = reverse (map conLikeName cls),
249 250
            completeMatchTyCon = tyConName ty_con
            }
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      doOne _ = return Nothing

      ambiguousError :: SDoc
      ambiguousError =
        text "A type signature must be provided for a set of polymorphic"
          <+> text "pattern synonyms."


      -- See note [Typechecking Complete Matches]
      checkCLType :: (CompleteSigType, [ConLike]) -> Located Name
                  -> TcM (CompleteSigType, [ConLike])
      checkCLType (cst, cs) n = do
        cl <- addLocM tcLookupConLike n
        let   (_,_,_,_,_,_, res_ty) = conLikeFullSig cl
              res_ty_con = fst <$> splitTyConApp_maybe res_ty
        case (cst, res_ty_con) of
          (AcceptAny, Nothing) -> return (AcceptAny, cl:cs)
          (AcceptAny, Just tc) -> return (Fixed (Just cl) tc, cl:cs)
          (Fixed mfcl tc, Nothing)  -> return (Fixed mfcl tc, cl:cs)
          (Fixed mfcl tc, Just tc') ->
            if tc == tc'
              then return (Fixed mfcl tc, cl:cs)
              else case mfcl of
                     Nothing ->
                      addErrCtxt (text "In" <+> ppr cl) $
                        failWithTc typeSigErrMsg
                     Just cl -> failWithTc (errMsg cl)
             where
              typeSigErrMsg :: SDoc
              typeSigErrMsg =
                text "Couldn't match expected type"
                      <+> quotes (ppr tc)
                      <+> text "with"
                      <+> quotes (ppr tc')

              errMsg :: ConLike -> SDoc
              errMsg fcl =
                text "Cannot form a group of complete patterns from patterns"
                  <+> quotes (ppr fcl) <+> text "and" <+> quotes (ppr cl)
                  <+> text "as they match different type constructors"
                  <+> parens (quotes (ppr tc)
                               <+> text "resp."
                               <+> quotes (ppr tc'))
294 295 296 297
  -- For some reason I haven't investigated further, the signatures come in
  -- backwards wrt. declaration order. So we reverse them here, because it makes
  -- a difference for incomplete match suggestions.
  in  mapMaybeM (addLocM doOne) (reverse sigs) -- process in declaration order
298

299
tcHsBootSigs :: [(RecFlag, LHsBinds GhcRn)] -> [LSig GhcRn] -> TcM [Id]
300 301
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
302
tcHsBootSigs binds sigs
Ian Lynagh's avatar
Ian Lynagh committed
303
  = do  { checkTc (null binds) badBootDeclErr
304
        ; concat <$> mapM (addLocM tc_boot_sig) (filter isTypeLSig sigs) }
305
  where
306
    tc_boot_sig (TypeSig _ lnames hs_ty) = mapM f lnames
307
      where
308
        f (dL->L _ name)
Richard Eisenberg's avatar
Richard Eisenberg committed
309
          = do { sigma_ty <- tcHsSigWcType (FunSigCtxt name False) hs_ty
310
               ; return (mkVanillaGlobal name sigma_ty) }
Ian Lynagh's avatar
Ian Lynagh committed
311
        -- Notice that we make GlobalIds, not LocalIds
Ian Lynagh's avatar
Ian Lynagh committed
312
    tc_boot_sig s = pprPanic "tcHsBootSigs/tc_boot_sig" (ppr s)
313

314
badBootDeclErr :: MsgDoc
315
badBootDeclErr = text "Illegal declarations in an hs-boot file"
316

317
------------------------
318 319
tcLocalBinds :: HsLocalBinds GhcRn -> TcM thing
             -> TcM (HsLocalBinds GhcTcId, thing)
sof's avatar
sof committed
320

321
tcLocalBinds (EmptyLocalBinds x) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
322
  = do  { thing <- thing_inside
323
        ; return (EmptyLocalBinds x, thing) }
sof's avatar
sof committed
324

325
tcLocalBinds (HsValBinds x (XValBindsLR (NValBinds binds sigs))) thing_inside
326
  = do  { (binds', thing) <- tcValBinds NotTopLevel binds sigs thing_inside
327 328
        ; return (HsValBinds x (XValBindsLR (NValBinds binds' sigs)), thing) }
tcLocalBinds (HsValBinds _ (ValBinds {})) _ = panic "tcLocalBinds"
329

330
tcLocalBinds (HsIPBinds x (IPBinds _ ip_binds)) thing_inside
331 332
  = do  { ipClass <- tcLookupClass ipClassName
        ; (given_ips, ip_binds') <-
333
            mapAndUnzipM (wrapLocSndM (tc_ip_bind ipClass)) ip_binds
334

335
        -- If the binding binds ?x = E, we  must now
Ian Lynagh's avatar
Ian Lynagh committed
336
        -- discharge any ?x constraints in expr_lie
337
        -- See Note [Implicit parameter untouchables]
338
        ; (ev_binds, result) <- checkConstraints (IPSkol ips)
339
                                  [] given_ips thing_inside
340

341
        ; return (HsIPBinds x (IPBinds ev_binds ip_binds') , result) }
342
  where
343
    ips = [ip | (dL->L _ (IPBind _ (Left (dL->L _ ip)) _)) <- ip_binds]
344

Ian Lynagh's avatar
Ian Lynagh committed
345 346 347
        -- I wonder if we should do these one at at time
        -- Consider     ?x = 4
        --              ?y = ?x + 1
348
    tc_ip_bind ipClass (IPBind _ (Left (dL->L _ ip)) expr)
349
       = do { ty <- newOpenFlexiTyVarTy
350 351
            ; let p = mkStrLitTy $ hsIPNameFS ip
            ; ip_id <- newDict ipClass [ p, ty ]
352
            ; expr' <- tcMonoExpr expr (mkCheckExpType ty)
353
            ; let d = toDict ipClass p ty `fmap` expr'
354
            ; return (ip_id, (IPBind noExtField (Right ip_id) d)) }
355
    tc_ip_bind _ (IPBind _ (Right {}) _) = panic "tc_ip_bind"
356
    tc_ip_bind _ (XIPBind nec) = noExtCon nec
357 358 359

    -- Coerces a `t` into a dictionry for `IP "x" t`.
    -- co : t -> IP "x" t
360
    toDict ipClass x ty = mkHsWrap $ mkWpCastR $
361
                          wrapIP $ mkClassPred ipClass [x,ty]
362

363 364
tcLocalBinds (HsIPBinds _ (XHsIPBinds nec)) _ = noExtCon nec
tcLocalBinds (XHsLocalBindsLR nec)          _ = noExtCon nec
365

366 367
{- Note [Implicit parameter untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
368 369 370 371 372
We add the type variables in the types of the implicit parameters
as untouchables, not so much because we really must not unify them,
but rather because we otherwise end up with constraints like this
    Num alpha, Implic { wanted = alpha ~ Int }
The constraint solver solves alpha~Int by unification, but then
373
doesn't float that solved constraint out (it's not an unsolved
374
wanted).  Result disaster: the (Num alpha) is again solved, this
375 376
time by defaulting.  No no no.

377
However [Oct 10] this is all handled automatically by the
378
untouchable-range idea.
Austin Seipp's avatar
Austin Seipp committed
379
-}
380

381
tcValBinds :: TopLevelFlag
382
           -> [(RecFlag, LHsBinds GhcRn)] -> [LSig GhcRn]
383
           -> TcM thing
384
           -> TcM ([(RecFlag, LHsBinds GhcTcId)], thing)
385

386
tcValBinds top_lvl binds sigs thing_inside
387 388 389 390
  = do  {   -- Typecheck the signatures
            -- It's easier to do so now, once for all the SCCs together
            -- because a single signature  f,g :: <type>
            -- might relate to more than one SCC
391
        ; (poly_ids, sig_fn) <- tcAddPatSynPlaceholders patsyns $
392
                                tcTySigs sigs
Ian Lynagh's avatar
Ian Lynagh committed
393

394 395
                -- Extend the envt right away with all the Ids
                -- declared with complete type signatures
396
                -- Do not extend the TcBinderStack; instead
397
                -- we extend it on a per-rhs basis in tcExtendForRhs
398
        ; tcExtendSigIds top_lvl poly_ids $ do
399 400
            { (binds', (extra_binds', thing)) <- tcBindGroups top_lvl sig_fn prag_fn binds $ do
                   { thing <- thing_inside
401
                     -- See Note [Pattern synonym builders don't yield dependencies]
402
                     --     in RnBinds
403
                   ; patsyn_builders <- mapM tcPatSynBuilderBind patsyns
404
                   ; let extra_binds = [ (NonRecursive, builder) | builder <- patsyn_builders ]
405
                   ; return (extra_binds, thing) }
406
            ; return (binds' ++ extra_binds', thing) }}
407 408 409
  where
    patsyns = getPatSynBinds binds
    prag_fn = mkPragEnv sigs (foldr (unionBags . snd) emptyBag binds)
410

411
------------------------
412
tcBindGroups :: TopLevelFlag -> TcSigFun -> TcPragEnv
413 414
             -> [(RecFlag, LHsBinds GhcRn)] -> TcM thing
             -> TcM ([(RecFlag, LHsBinds GhcTcId)], thing)
415 416
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time
417
-- Here a "strongly connected component" has the strightforward
418
-- meaning of a group of bindings that mention each other,
419
-- ignoring type signatures (that part comes later)
420

421
tcBindGroups _ _ _ [] thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
422 423
  = do  { thing <- thing_inside
        ; return ([], thing) }
424

425
tcBindGroups top_lvl sig_fn prag_fn (group : groups) thing_inside
426
  = do  { -- See Note [Closed binder groups]
427 428
          type_env <- getLclTypeEnv
        ; let closed = isClosedBndrGroup type_env (snd group)
429 430
        ; (group', (groups', thing))
                <- tc_group top_lvl sig_fn prag_fn group closed $
431
                   tcBindGroups top_lvl sig_fn prag_fn groups thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
432
        ; return (group' ++ groups', thing) }
sof's avatar
sof committed
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
-- Note [Closed binder groups]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
--  A mutually recursive group is "closed" if all of the free variables of
--  the bindings are closed. For example
--
-- >  h = \x -> let f = ...g...
-- >                g = ....f...x...
-- >             in ...
--
-- Here @g@ is not closed because it mentions @x@; and hence neither is @f@
-- closed.
--
-- So we need to compute closed-ness on each strongly connected components,
-- before we sub-divide it based on what type signatures it has.
--

451
------------------------
452
tc_group :: forall thing.
453
            TopLevelFlag -> TcSigFun -> TcPragEnv
454 455
         -> (RecFlag, LHsBinds GhcRn) -> IsGroupClosed -> TcM thing
         -> TcM ([(RecFlag, LHsBinds GhcTcId)], thing)
456 457

-- Typecheck one strongly-connected component of the original program.
458
-- We get a list of groups back, because there may
459 460
-- be specialisations etc as well

461
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) closed thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
462 463
        -- A single non-recursive binding
        -- We want to keep non-recursive things non-recursive
464
        -- so that we desugar unlifted bindings correctly
cactus's avatar
cactus committed
465 466
  = do { let bind = case bagToList binds of
                 [bind] -> bind
467 468
                 []     -> panic "tc_group: empty list of binds"
                 _      -> panic "tc_group: NonRecursive binds is not a singleton bag"
469 470
       ; (bind', thing) <- tc_single top_lvl sig_fn prag_fn bind closed
                                     thing_inside
cactus's avatar
cactus committed
471
       ; return ( [(NonRecursive, bind')], thing) }
472

473
tc_group top_lvl sig_fn prag_fn (Recursive, binds) closed thing_inside
474 475
  =     -- To maximise polymorphism, we do a new
        -- strongly-connected-component analysis, this time omitting
Ian Lynagh's avatar
Ian Lynagh committed
476
        -- any references to variables with type signatures.
477
        -- (This used to be optional, but isn't now.)
478
        -- See Note [Polymorphic recursion] in HsBinds.
479
    do  { traceTc "tc_group rec" (pprLHsBinds binds)
480 481
        ; whenIsJust mbFirstPatSyn $ \lpat_syn ->
            recursivePatSynErr (getLoc lpat_syn) binds
482
        ; (binds1, thing) <- go sccs
483
        ; return ([(Recursive, binds1)], thing) }
Ian Lynagh's avatar
Ian Lynagh committed
484
                -- Rec them all together
485
  where
486
    mbFirstPatSyn = find (isPatSyn . unLoc) binds
cactus's avatar
cactus committed
487 488 489
    isPatSyn PatSynBind{} = True
    isPatSyn _ = False

490
    sccs :: [SCC (LHsBind GhcRn)]
niteria's avatar
niteria committed
491
    sccs = stronglyConnCompFromEdgedVerticesUniq (mkEdges sig_fn binds)
492

493
    go :: [SCC (LHsBind GhcRn)] -> TcM (LHsBinds GhcTcId, thing)
494
    go (scc:sccs) = do  { (binds1, ids1) <- tc_scc scc
495 496 497
                        ; (binds2, thing) <- tcExtendLetEnv top_lvl sig_fn
                                                            closed ids1 $
                                             go sccs
498 499
                        ; return (binds1 `unionBags` binds2, thing) }
    go []         = do  { thing <- thing_inside; return (emptyBag, thing) }
500

501 502
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive [bind]
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    binds
sof's avatar
sof committed
503

504
    tc_sub_group rec_tc binds =
505
      tcPolyBinds sig_fn prag_fn Recursive rec_tc closed binds
sof's avatar
sof committed
506

507
recursivePatSynErr ::
508
     OutputableBndrId p =>
509 510 511 512 513 514
     SrcSpan -- ^ The location of the first pattern synonym binding
             --   (for error reporting)
  -> LHsBinds (GhcPass p)
  -> TcM a
recursivePatSynErr loc binds
  = failAt loc $
515
    hang (text "Recursive pattern synonym definition with following bindings:")
516
       2 (vcat $ map pprLBind . bagToList $ binds)
cactus's avatar
cactus committed
517
  where
518
    pprLoc loc  = parens (text "defined at" <+> ppr loc)
519 520
    pprLBind (dL->L loc bind) = pprWithCommas ppr (collectHsBindBinders bind)
                                <+> pprLoc loc
cactus's avatar
cactus committed
521 522

tc_single :: forall thing.
523
            TopLevelFlag -> TcSigFun -> TcPragEnv
524 525
          -> LHsBind GhcRn -> IsGroupClosed -> TcM thing
          -> TcM (LHsBinds GhcTcId, thing)
526
tc_single _top_lvl sig_fn _prag_fn
527
          (dL->L _ (PatSynBind _ psb@PSB{ psb_id = (dL->L _ name) }))
528
          _ thing_inside
529
  = do { (aux_binds, tcg_env) <- tcPatSynDecl psb (sig_fn name)
530
       ; thing <- setGblEnv tcg_env thing_inside
cactus's avatar
cactus committed
531 532
       ; return (aux_binds, thing)
       }
533

534
tc_single top_lvl sig_fn prag_fn lbind closed thing_inside
535
  = do { (binds1, ids) <- tcPolyBinds sig_fn prag_fn
536
                                      NonRecursive NonRecursive
537
                                      closed
538
                                      [lbind]
539
       ; thing <- tcExtendLetEnv top_lvl sig_fn closed ids thing_inside
cactus's avatar
cactus committed
540
       ; return (binds1, thing) }
541

542
------------------------
543
type BKey = Int -- Just number off the bindings
544

545
mkEdges :: TcSigFun -> LHsBinds GhcRn -> [Node BKey (LHsBind GhcRn)]
546
-- See Note [Polymorphic recursion] in HsBinds.
547
mkEdges sig_fn binds
548 549
  = [ DigraphNode bind key [key | n <- nonDetEltsUniqSet (bind_fvs (unLoc bind)),
                         Just key <- [lookupNameEnv key_map n], no_sig n ]
550 551
    | (bind, key) <- keyd_binds
    ]
niteria's avatar
niteria committed
552 553 554
    -- It's OK to use nonDetEltsUFM here as stronglyConnCompFromEdgedVertices
    -- is still deterministic even if the edges are in nondeterministic order
    -- as explained in Note [Deterministic SCC] in Digraph.
555
  where
556 557 558 559
    bind_fvs (FunBind { fun_ext = fvs }) = fvs
    bind_fvs (PatBind { pat_ext = fvs }) = fvs
    bind_fvs _                           = emptyNameSet

560
    no_sig :: Name -> Bool
561
    no_sig n = not (hasCompleteSig sig_fn n)
562 563 564

    keyd_binds = bagToList binds `zip` [0::BKey ..]

Ian Lynagh's avatar
Ian Lynagh committed
565
    key_map :: NameEnv BKey     -- Which binding it comes from
566
    key_map = mkNameEnv [(bndr, key) | (dL->L _ bind, key) <- keyd_binds
567
                                     , bndr <- collectHsBindBinders bind ]
568

569
------------------------
570
tcPolyBinds :: TcSigFun -> TcPragEnv
571 572 573
            -> RecFlag         -- Whether the group is really recursive
            -> RecFlag         -- Whether it's recursive after breaking
                               -- dependencies based on type signatures
574
            -> IsGroupClosed   -- Whether the group is closed
575 576
            -> [LHsBind GhcRn]  -- None are PatSynBind
            -> TcM (LHsBinds GhcTcId, [TcId])
577

578
-- Typechecks a single bunch of values bindings all together,
579 580 581
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
582 583
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
584 585
-- important.
--
586
-- Knows nothing about the scope of the bindings
587
-- None of the bindings are pattern synonyms
588

589
tcPolyBinds sig_fn prag_fn rec_group rec_tc closed bind_list
590
  = setSrcSpan loc                              $
591
    recoverM (recoveryCode binder_names sig_fn) $ do
592
        -- Set up main recover; take advantage of any type sigs
593

594
    { traceTc "------------------------------------------------" Outputable.empty
595
    ; traceTc "Bindings for {" (ppr binder_names)
596
    ; dflags   <- getDynFlags
597
    ; let plan = decideGeneralisationPlan dflags bind_list closed sig_fn
598
    ; traceTc "Generalisation plan" (ppr plan)
599
    ; result@(_, poly_ids) <- case plan of
600 601
         NoGen              -> tcPolyNoGen rec_tc prag_fn sig_fn bind_list
         InferGen mn        -> tcPolyInfer rec_tc prag_fn sig_fn mn bind_list
602
         CheckGen lbind sig -> tcPolyCheck prag_fn sig lbind
603

604 605 606
    ; traceTc "} End of bindings for" (vcat [ ppr binder_names, ppr rec_group
                                            , vcat [ppr id <+> ppr (idType id) | id <- poly_ids]
                                          ])
607

608
    ; return result }
609
  where
610 611
    binder_names = collectHsBindListBinders bind_list
    loc = foldr1 combineSrcSpans (map getLoc bind_list)
612
         -- The mbinds have been dependency analysed and
613
         -- may no longer be adjacent; so find the narrowest
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
614
         -- span that includes them all
615

616 617 618 619
--------------
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise
-- subsequent error messages
620
recoveryCode :: [Name] -> TcSigFun -> TcM (LHsBinds GhcTcId, [Id])
621 622 623 624 625 626 627 628 629 630 631 632 633
recoveryCode binder_names sig_fn
  = do  { traceTc "tcBindsWithSigs: error recovery" (ppr binder_names)
        ; let poly_ids = map mk_dummy binder_names
        ; return (emptyBag, poly_ids) }
  where
    mk_dummy name
      | Just sig <- sig_fn name
      , Just poly_id <- completeSigPolyId_maybe sig
      = poly_id
      | otherwise
      = mkLocalId name forall_a_a

forall_a_a :: TcType
634 635 636 637 638
-- At one point I had (forall r (a :: TYPE r). a), but of course
-- that type is ill-formed: its mentions 'r' which escapes r's scope.
-- Another alternative would be (forall (a :: TYPE kappa). a), where
-- kappa is a unification variable. But I don't think we need that
-- complication here. I'm going to just use (forall (a::*). a).
639
-- See #15276
640
forall_a_a = mkSpecForAllTys [alphaTyVar] alphaTy
641 642 643 644 645 646 647

{- *********************************************************************
*                                                                      *
                         tcPolyNoGen
*                                                                      *
********************************************************************* -}

648
tcPolyNoGen     -- No generalisation whatsoever
649
  :: RecFlag       -- Whether it's recursive after breaking
650
                   -- dependencies based on type signatures
651
  -> TcPragEnv -> TcSigFun
652 653
  -> [LHsBind GhcRn]
  -> TcM (LHsBinds GhcTcId, [TcId])
654

655 656
tcPolyNoGen rec_tc prag_fn tc_sig_fn bind_list
  = do { (binds', mono_infos) <- tcMonoBinds rec_tc tc_sig_fn
657
                                             (LetGblBndr prag_fn)
658
                                             bind_list
659
       ; mono_ids' <- mapM tc_mono_info mono_infos
660
       ; return (binds', mono_ids') }
661
  where
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
662
    tc_mono_info (MBI { mbi_poly_name = name, mbi_mono_id = mono_id })
663 664
      = do { _specs <- tcSpecPrags mono_id (lookupPragEnv prag_fn name)
           ; return mono_id }
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
665 666 667 668
           -- NB: tcPrags generates error messages for
           --     specialisation pragmas for non-overloaded sigs
           -- Indeed that is why we call it here!
           -- So we can safely ignore _specs
669

670 671 672 673 674 675 676 677 678

{- *********************************************************************
*                                                                      *
                         tcPolyCheck
*                                                                      *
********************************************************************* -}

tcPolyCheck :: TcPragEnv
            -> TcIdSigInfo     -- Must be a complete signature
679 680
            -> LHsBind GhcRn   -- Must be a FunBind
            -> TcM (LHsBinds GhcTcId, [TcId])
681
-- There is just one binding,
682
--   it is a Funbind
Simon Peyton Jones's avatar
Simon Peyton Jones committed
683
--   it has a complete type signature,
684 685 686 687
tcPolyCheck prag_fn
            (CompleteSig { sig_bndr  = poly_id
                         , sig_ctxt  = ctxt
                         , sig_loc   = sig_loc })
688 689
            (dL->L loc (FunBind { fun_id = (dL->L nm_loc name)
                                , fun_matches = matches }))
690 691
  = setSrcSpan sig_loc $
    do { traceTc "tcPolyCheck" (ppr poly_id $$ ppr sig_loc)
692
       ; (tv_prs, theta, tau) <- tcInstType tcInstSkolTyVars poly_id
693 694 695 696 697
                -- See Note [Instantiate sig with fresh variables]

       ; mono_name <- newNameAt (nameOccName name) nm_loc
       ; ev_vars   <- newEvVars theta
       ; let mono_id   = mkLocalId mono_name tau
698
             skol_info = SigSkol ctxt (idType poly_id) tv_prs
699 700 701 702
             skol_tvs  = map snd tv_prs

       ; (ev_binds, (co_fn, matches'))
            <- checkConstraints skol_info skol_tvs ev_vars $
703
               tcExtendBinderStack [TcIdBndr mono_id NotTopLevel]  $
704
               tcExtendNameTyVarEnv tv_prs $
705
               setSrcSpan loc           $
706
               tcMatchesFun (cL nm_loc mono_name) matches (mkCheckExpType tau)
707 708

       ; let prag_sigs = lookupPragEnv prag_fn name
709 710
       ; spec_prags <- tcSpecPrags poly_id prag_sigs
       ; poly_id    <- addInlinePrags poly_id prag_sigs
711

712
       ; mod <- getModule
713
       ; tick <- funBindTicks nm_loc mono_id mod prag_sigs
714
       ; let bind' = FunBind { fun_id      = cL nm_loc mono_id
715 716
                             , fun_matches = matches'
                             , fun_co_fn   = co_fn
717
                             , fun_ext     = placeHolderNamesTc
718
                             , fun_tick    = tick }
719

720 721
             export = ABE { abe_ext   = noExtField
                          , abe_wrap  = idHsWrapper
722 723 724 725
                          , abe_poly  = poly_id
                          , abe_mono  = mono_id
                          , abe_prags = SpecPrags spec_prags }

726
             abs_bind = cL loc $
727
                        AbsBinds { abs_ext      = noExtField
728
                                 , abs_tvs      = skol_tvs
729 730 731
                                 , abs_ev_vars  = ev_vars
                                 , abs_ev_binds = [ev_binds]
                                 , abs_exports  = [export]
732
                                 , abs_binds    = unitBag (cL loc bind')
733
                                 , abs_sig      = True }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
734

735
       ; return (unitBag abs_bind, [poly_id]) }
736

737 738 739
tcPolyCheck _prag_fn sig bind
  = pprPanic "tcPolyCheck" (ppr sig $$ ppr bind)

740
funBindTicks :: SrcSpan -> TcId -> Module -> [LSig GhcRn]
741
             -> TcM [Tickish TcId]
742
funBindTicks loc fun_id mod sigs
743
  | (mb_cc_str : _) <- [ cc_name | (dL->L _ (SCCFunSig _ _ _ cc_name)) <- sigs ]
744 745 746 747
      -- this can only be a singleton list, as duplicate pragmas are rejected
      -- by the renamer
  , let cc_str
          | Just cc_str <- mb_cc_str
748
          = sl_fs $ unLoc cc_str
749 750 751
          | otherwise
          = getOccFS (Var.varName fun_id)
        cc_name = moduleNameFS (moduleName mod) `appendFS` consFS '.' cc_str
752 753 754 755
  = do
      flavour <- DeclCC <$> getCCIndexM cc_name
      let cc = mkUserCC cc_name mod loc flavour
      return [ProfNote cc True True]
756
  | otherwise
757
  = return []
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
{- Note [Instantiate sig with fresh variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's vital to instantiate a type signature with fresh variables.
For example:
      type T = forall a. [a] -> [a]
      f :: T;
      f = g where { g :: T; g = <rhs> }

 We must not use the same 'a' from the defn of T at both places!!
(Instantiation is only necessary because of type synonyms.  Otherwise,
it's all cool; each signature has distinct type variables from the renamer.)
-}


{- *********************************************************************
*                                                                      *
                         tcPolyInfer
*                                                                      *
********************************************************************* -}
778 779

tcPolyInfer
780
  :: RecFlag       -- Whether it's recursive after breaking
781
                   -- dependencies based on type signatures
782
  -> TcPragEnv -> TcSigFun
783
  -> Bool         -- True <=> apply the monomorphism restriction
784 785
  -> [LHsBind GhcRn]
  -> TcM (LHsBinds GhcTcId, [TcId])
786
tcPolyInfer rec_tc prag_fn tc_sig_fn mono bind_list
787
  = do { (tclvl, wanted, (binds', mono_infos))
788
             <- pushLevelAndCaptureConstraints  $
789 790
                tcMonoBinds rec_tc tc_sig_fn LetLclBndr bind_list

791 792 793 794
       ; let name_taus  = [ (mbi_poly_name info, idType (mbi_mono_id info))
                          | info <- mono_infos ]
             sigs       = [ sig | MBI { mbi_sig = Just sig } <- mono_infos ]
             infer_mode = if mono then ApplyMR else NoRestrictions
795

796 797
       ; mapM_ (checkOverloadedSig mono) sigs

798
       ; traceTc "simplifyInfer call" (ppr tclvl $$ ppr name_taus $$ ppr wanted)
799
       ; (qtvs, givens, ev_binds, residual, insoluble)
800
                 <- simplifyInfer tclvl infer_mode sigs name_taus wanted
801
       ; emitConstraints residual
802

803
       ; let inferred_theta = map evVarPred givens
804
       ; exports <- checkNoErrs $
805
                    mapM (mkExport prag_fn insoluble qtvs inferred_theta) mono_infos
thomasw's avatar
thomasw committed
806

807
       ; loc <- getSrcSpanM
808
       ; let poly_ids = map abe_poly exports
809
             abs_bind = cL loc $
810
                        AbsBinds { abs_ext = noExtField
811
                                 , abs_tvs = qtvs
812
                                 , abs_ev_vars = givens, abs_ev_binds = [ev_binds]
813 814
                                 , abs_exports = exports, abs_binds = binds'
                                 , abs_sig = False }
815

816 817
       ; traceTc "Binding:" (ppr (poly_ids `zip` map idType poly_ids))
       ; return (unitBag abs_bind, poly_ids) }
818
         -- poly_ids are guaranteed zonked by mkExport
819 820

--------------
821
mkExport :: TcPragEnv
822 823
         -> Bool                        -- True <=> there was an insoluble type error
                                        --          when typechecking the bindings
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
824
         -> [TyVar] -> TcThetaType      -- Both already zonked
Ian Lynagh's avatar
Ian Lynagh committed
825
         -> MonoBindInfo
826
         -> TcM (ABExport GhcTc)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
827
-- Only called for generalisation plan InferGen, not by CheckGen or NoGen
828 829 830
--
-- mkExport generates exports with
--      zonked type variables,
Ian Lynagh's avatar
Ian Lynagh committed
831
--      zonked poly_ids
832 833 834 835
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
836
-- type environment; see the invariant on TcEnv.tcExtendIdEnv
837

838
-- Pre-condition: the qtvs and theta are already zonked
839

840
mkExport prag_fn insoluble qtvs theta
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
841 842 843
         mono_info@(MBI { mbi_poly_name = poly_name
                        , mbi_sig       = mb_sig
                        , mbi_mono_id   = mono_id })
844
  = do  { mono_ty <- zonkTcType (idType mono_id)
845
        ; poly_id <- mkInferredPolyId insoluble qtvs theta poly_name mb_sig mono_ty
846 847

        -- NB: poly_id has a zonked type
848
        ; poly_id <- addInlinePrags poly_id prag_sigs
849
        ; spec_prags <- tcSpecPrags poly_id prag_sigs
Ian Lynagh's avatar
Ian Lynagh committed
850
                -- tcPrags requires a zonked poly_id
851

Gabor Greif's avatar
Gabor Greif committed
852
        -- See Note [Impedance matching]
853 854
        -- NB: we have already done checkValidType, including an ambiguity check,
        --     on the type; either when we checked the sig or in mkInferredPolyId
855
        ; let poly_ty     = idType poly_id
856
              sel_poly_ty = mkInfSigmaTy qtvs theta mono_ty
857
                -- This type is just going into tcSubType,
858
                -- so Inferred vs. Specified doesn't matter
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
859 860

        ; wrap <- if sel_poly_ty `eqType` poly_ty  -- NB: eqType ignores visibility
861
                  then return idHsWrapper  -- Fast path; also avoids complaint when we infer
862
                                           -- an ambiguous type and have AllowAmbiguousType
863
                                           -- e..g infer  x :: forall a. F a -> Int
Gabor Greif's avatar
Gabor Greif committed
864
                  else addErrCtxtM (mk_impedance_match_msg mono_info sel_poly_ty poly_ty) $
865
                       tcSubType_NC sig_ctxt sel_poly_ty poly_ty
866

manav's avatar
manav committed
867
        ; warn_missing_sigs <- woptM Opt_WarnMissingLocalSignatures
868 869
        ; when warn_missing_sigs $
              localSigWarn Opt_WarnMissingLocalSignatures poly_id mb_sig
870

871
        ; return (ABE { abe_ext = noExtField
872
                      , abe_wrap = wrap
873
                        -- abe_wrap :: idType poly_id ~ (forall qtvs. theta => mono_ty)
874 875 876
                      , abe_poly  = poly_id
                      , abe_mono  = mono_id
                      , abe_prags = SpecPrags spec_prags }) }
877
  where
878
    prag_sigs = lookupPragEnv prag_fn poly_name
879
    sig_ctxt  = InfSigCtxt poly_name
880

881 882 883
mkInferredPolyId :: Bool  -- True <=> there was an insoluble error when
                          --          checking the binding group for this Id
                 -> [TyVar] -> TcThetaType
884
                 -> Name -> Maybe TcIdSigInst -> TcType
885
                 -> TcM TcId
886
mkInferredPolyId insoluble qtvs inferred_theta poly_name mb_sig_inst mono_ty
887 888
  | Just (TISI { sig_inst_sig = sig })  <- mb_sig_inst
  , CompleteSig { sig_bndr = poly_id } <- sig
889 890 891 892
  = return poly_id

  | otherwise  -- Either no type sig or partial type sig
  = checkNoErrs $  -- The checkNoErrs ensures that if the type is ambiguous
Gabor Greif's avatar
Gabor Greif committed
893
                   -- we don't carry on to the impedance matching, and generate
894 895 896
                   -- a duplicate ambiguity error.  There is a similar
                   -- checkNoErrs for complete type signatures too.
    do { fam_envs <- tcGetFamInstEnvs
897
       ; let (_co, mono_ty') = normaliseType fam_envs Nominal mono_ty
898 899
               -- Unification may not have normalised the type,
               -- (see Note [Lazy flattening] in TcFlatten) so do it
900 901 902
               -- here to make it as uncomplicated as possible.
               -- Example: f :: [F Int] -> Bool
               -- should be rewritten to f :: [Char] -> Bool, if possible
903
               --
Gabor Greif's avatar
Gabor Greif committed
904
               -- We can discard the coercion _co, because we'll reconstruct
905
               -- it in the call to tcSubType below
906

eir@cis.upenn.edu's avatar