StgCmmHeap.hs 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
-----------------------------------------------------------------------------
--
-- Stg to C--: heap management functions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module StgCmmHeap (
10 11
        getVirtHp, setVirtHp, setRealHp,
        getHpRelOffset, hpRel,
12

13
        entryHeapCheck, altHeapCheck, noEscapeHeapCheck, altHeapCheckReturnsTo,
14 15
        heapStackCheckGen,
        entryHeapCheck',
16

17 18
        mkVirtHeapOffsets, mkVirtConstrOffsets,
        mkStaticClosureFields, mkStaticClosure,
19

20
        allocDynClosure, allocDynClosureCmm,
21
        emitSetDynHdr
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    ) where

#include "HsVersions.h"

import StgSyn
import CLabel
import StgCmmLayout
import StgCmmUtils
import StgCmmMonad
import StgCmmProf
import StgCmmTicky
import StgCmmGran
import StgCmmClosure
import StgCmmEnv

37
import MkGraph
38

39
import Hoopl
40
import SMRep
41
import Cmm
42 43
import CmmUtils
import CostCentre
44
import IdInfo( CafInfo(..), mayHaveCafRefs )
45
import Module
46
import DynFlags
47
import FastString( mkFastString, fsLit )
48

49
import Control.Monad (when)
50
import Data.Maybe (isJust)
51

52
-----------------------------------------------------------
53
--              Initialise dynamic heap objects
54 55 56
-----------------------------------------------------------

allocDynClosure
Simon Marlow's avatar
Simon Marlow committed
57 58
        :: CmmInfoTable
        -> LambdaFormInfo
59 60 61 62 63 64 65
        -> CmmExpr              -- Cost Centre to stick in the object
        -> CmmExpr              -- Cost Centre to blame for this alloc
                                -- (usually the same; sometimes "OVERHEAD")

        -> [(NonVoid StgArg, VirtualHpOffset)]  -- Offsets from start of object
                                                -- ie Info ptr has offset zero.
                                                -- No void args in here
66
        -> FCode CmmExpr -- returns Hp+n
67

68 69 70 71 72
allocDynClosureCmm
        :: CmmInfoTable -> LambdaFormInfo -> CmmExpr -> CmmExpr
        -> [(CmmExpr, VirtualHpOffset)]
        -> FCode CmmExpr -- returns Hp+n

73
-- allocDynClosure allocates the thing in the heap,
74
-- and modifies the virtual Hp to account for this.
75 76 77
-- The second return value is the graph that sets the value of the
-- returned LocalReg, which should point to the closure after executing
-- the graph.
78

79 80 81 82 83 84 85 86 87 88
-- allocDynClosure returns an (Hp+8) CmmExpr, and hence the result is
-- only valid until Hp is changed.  The caller should assign the
-- result to a LocalReg if it is required to remain live.
--
-- The reason we don't assign it to a LocalReg here is that the caller
-- is often about to call regIdInfo, which immediately assigns the
-- result of allocDynClosure to a new temp in order to add the tag.
-- So by not generating a LocalReg here we avoid a common source of
-- new temporaries and save some compile time.  This can be quite
-- significant - see test T4801.
89 90


Simon Marlow's avatar
Simon Marlow committed
91
allocDynClosure info_tbl lf_info use_cc _blame_cc args_w_offsets
92 93
  = do  { let (args, offsets) = unzip args_w_offsets
        ; cmm_args <- mapM getArgAmode args     -- No void args
94
        ; allocDynClosureCmm info_tbl lf_info
Simon Marlow's avatar
Simon Marlow committed
95
                             use_cc _blame_cc (zip cmm_args offsets)
96 97
        }

Simon Marlow's avatar
Simon Marlow committed
98
allocDynClosureCmm info_tbl lf_info use_cc _blame_cc amodes_w_offsets
99 100 101
  = do  { virt_hp <- getVirtHp

        -- SAY WHAT WE ARE ABOUT TO DO
Simon Marlow's avatar
Simon Marlow committed
102 103 104
        ; let rep = cit_rep info_tbl
        ; tickyDynAlloc rep lf_info
        ; profDynAlloc rep use_cc
105 106 107 108 109 110 111 112

        -- FIND THE OFFSET OF THE INFO-PTR WORD
        ; let   info_offset = virt_hp + 1
                -- info_offset is the VirtualHpOffset of the first
                -- word of the new object
                -- Remember, virtHp points to last allocated word,
                -- ie 1 *before* the info-ptr word of new object.

Simon Marlow's avatar
Simon Marlow committed
113
                info_ptr = CmmLit (CmmLabel (cit_lbl info_tbl))
114 115 116

        -- ALLOCATE THE OBJECT
        ; base <- getHpRelOffset info_offset
117
        ; emitComment $ mkFastString "allocDynClosure"
118 119 120 121 122
        ; emitSetDynHdr base info_ptr  use_cc
        ; let (cmm_args, offsets) = unzip amodes_w_offsets
        ; hpStore base cmm_args offsets

        -- BUMP THE VIRTUAL HEAP POINTER
123 124
        ; dflags <- getDynFlags
        ; setVirtHp (virt_hp + heapClosureSize dflags rep)
125

126 127
        ; getHpRelOffset info_offset
        }
128 129

emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
130
emitSetDynHdr base info_ptr ccs
131 132
  = do dflags <- getDynFlags
       hpStore base (header dflags) [0..]
133
  where
134 135
    header :: DynFlags -> [CmmExpr]
    header dflags = [info_ptr] ++ dynProfHdr dflags ccs
136 137 138
        -- ToDo: Gransim stuff
        -- ToDo: Parallel stuff
        -- No ticky header
139 140 141 142

hpStore :: CmmExpr -> [CmmExpr] -> [VirtualHpOffset] -> FCode ()
-- Store the item (expr,off) in base[off]
hpStore base vals offs
143 144 145
  = do dflags <- getDynFlags
       let mk_store val off = mkStore (cmmOffsetW dflags base off) val
       emit (catAGraphs (zipWith mk_store vals offs))
146 147 148


-----------------------------------------------------------
149
--              Layout of static closures
150 151 152 153 154
-----------------------------------------------------------

-- Make a static closure, adding on any extra padding needed for CAFs,
-- and adding a static link field if necessary.

155
mkStaticClosureFields
156 157
        :: DynFlags
        -> CmmInfoTable
158
        -> CostCentreStack
159
        -> CafInfo
160 161
        -> [CmmLit]             -- Payload
        -> [CmmLit]             -- The full closure
162 163
mkStaticClosureFields dflags info_tbl ccs caf_refs payload
  = mkStaticClosure dflags info_lbl ccs payload padding
164
        static_link_field saved_info_field
165
  where
Simon Marlow's avatar
Simon Marlow committed
166
    info_lbl = cit_lbl info_tbl
167 168 169 170 171 172 173 174 175

    -- CAFs must have consistent layout, regardless of whether they
    -- are actually updatable or not.  The layout of a CAF is:
    --
    --        3 saved_info
    --        2 static_link
    --        1 indirectee
    --        0 info ptr
    --
Simon Marlow's avatar
Simon Marlow committed
176 177 178
    -- the static_link and saved_info fields must always be in the
    -- same place.  So we use isThunkRep rather than closureUpdReqd
    -- here:
179

Simon Marlow's avatar
Simon Marlow committed
180
    is_caf = isThunkRep (cit_rep info_tbl)
181

182
    padding
183 184
        | is_caf && null payload = [mkIntCLit dflags 0]
        | otherwise = []
185 186

    static_link_field
187
        | is_caf || staticClosureNeedsLink (mayHaveCafRefs caf_refs) info_tbl
Simon Marlow's avatar
Simon Marlow committed
188 189 190
        = [static_link_value]
        | otherwise
        = []
191 192

    saved_info_field
193
        | is_caf     = [mkIntCLit dflags 0]
194
        | otherwise  = []
195

196
        -- For a static constructor which has NoCafRefs, we set the
197 198
        -- static link field to a non-zero value so the garbage
        -- collector will ignore it.
199
    static_link_value
200 201
        | mayHaveCafRefs caf_refs  = mkIntCLit dflags 0
        | otherwise                = mkIntCLit dflags 1  -- No CAF refs
202 203


204
mkStaticClosure :: DynFlags -> CLabel -> CostCentreStack -> [CmmLit]
205
  -> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
206
mkStaticClosure dflags info_lbl ccs payload padding static_link_field saved_info_field
207 208
  =  [CmmLabel info_lbl]
  ++ variable_header_words
209
  ++ concatMap (padLitToWord dflags) payload
210
  ++ padding
211 212 213 214
  ++ static_link_field
  ++ saved_info_field
  where
    variable_header_words
215 216
        =  staticGranHdr
        ++ staticParHdr
217
        ++ staticProfHdr dflags ccs
218
        ++ staticTickyHdr
219

220 221
-- JD: Simon had ellided this padding, but without it the C back end asserts
-- failure. Maybe it's a bad assertion, and this padding is indeed unnecessary?
222 223 224
padLitToWord :: DynFlags -> CmmLit -> [CmmLit]
padLitToWord dflags lit = lit : padding pad_length
  where width = typeWidth (cmmLitType dflags lit)
225
        pad_length = wORD_SIZE dflags - widthInBytes width :: Int
226 227 228 229 230 231 232

        padding n | n <= 0 = []
                  | n `rem` 2 /= 0 = CmmInt 0 W8  : padding (n-1)
                  | n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n-2)
                  | n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n-4)
                  | otherwise      = CmmInt 0 W64 : padding (n-8)

233
-----------------------------------------------------------
234
--              Heap overflow checking
235 236 237 238 239 240 241 242 243 244 245 246
-----------------------------------------------------------

{- Note [Heap checks]
   ~~~~~~~~~~~~~~~~~~
Heap checks come in various forms.  We provide the following entry
points to the runtime system, all of which use the native C-- entry
convention.

  * gc() performs garbage collection and returns
    nothing to its caller

  * A series of canned entry points like
247
        r = gc_1p( r )
248 249
    where r is a pointer.  This performs gc, and
    then returns its argument r to its caller.
250

251
  * A series of canned entry points like
252
        gcfun_2p( f, x, y )
253 254 255 256 257 258 259 260 261
    where f is a function closure of arity 2
    This performs garbage collection, keeping alive the
    three argument ptrs, and then tail-calls f(x,y)

These are used in the following circumstances

* entryHeapCheck: Function entry
    (a) With a canned GC entry sequence
        f( f_clo, x:ptr, y:ptr ) {
262 263 264
             Hp = Hp+8
             if Hp > HpLim goto L
             ...
265 266 267
          L: HpAlloc = 8
             jump gcfun_2p( f_clo, x, y ) }
     Note the tail call to the garbage collector;
268
     it should do no register shuffling
269 270 271

    (b) No canned sequence
        f( f_clo, x:ptr, y:ptr, ...etc... ) {
272 273 274
          T: Hp = Hp+8
             if Hp > HpLim goto L
             ...
275
          L: HpAlloc = 8
276 277
             call gc()  -- Needs an info table
             goto T }
278 279

* altHeapCheck: Immediately following an eval
280 281
  Started as
        case f x y of r { (p,q) -> rhs }
282 283 284
  (a) With a canned sequence for the results of f
       (which is the very common case since
       all boxed cases return just one pointer
285 286 287 288 289 290
           ...
           r = f( x, y )
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
291

292 293
        L: r = gc_1p( r )
           goto K }
294

295 296 297 298
        Here, the info table needed by the call
        to gc_1p should be the *same* as the
        one for the call to f; the C-- optimiser
        spots this sharing opportunity)
299 300 301

   (b) No canned sequence for results of f
       Note second info table
302 303 304 305 306 307
           ...
           (r1,r2,r3) = call f( x, y )
        K:
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
308

309 310
        L: call gc()    -- Extra info table here
           goto K
311 312 313

* generalHeapCheck: Anywhere else
  e.g. entry to thunk
314
       case branch *not* following eval,
315 316 317
       or let-no-escape
  Exactly the same as the previous case:

318 319 320 321
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...
322

323 324
        L: call gc()
           goto K
325 326 327 328 329
-}

--------------------------------------------------------------
-- A heap/stack check at a function or thunk entry point.

330 331 332 333 334 335
entryHeapCheck :: ClosureInfo
               -> Maybe LocalReg -- Function (closure environment)
               -> Int            -- Arity -- not same as len args b/c of voids
               -> [LocalReg]     -- Non-void args (empty for thunk)
               -> FCode ()
               -> FCode ()
336

337
entryHeapCheck cl_info nodeSet arity args code
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  = entryHeapCheck' is_fastf node arity args code
  where
    node = case nodeSet of
              Just r  -> CmmReg (CmmLocal r)
              Nothing -> CmmLit (CmmLabel $ staticClosureLabel cl_info)

    is_fastf = case closureFunInfo cl_info of
                 Just (_, ArgGen _) -> False
                 _otherwise         -> True

-- | lower-level version for CmmParse
entryHeapCheck' :: Bool           -- is a known function pattern
                -> CmmExpr        -- expression for the closure pointer
                -> Int            -- Arity -- not same as len args b/c of voids
                -> [LocalReg]     -- Non-void args (empty for thunk)
                -> FCode ()
                -> FCode ()
entryHeapCheck' is_fastf node arity args code
356 357
  = do dflags <- getDynFlags
       let is_thunk = arity == 0
358 359

           args' = map (CmmReg . CmmLocal) args
360 361 362 363 364 365 366
           stg_gc_fun    = CmmReg (CmmGlobal GCFun)
           stg_gc_enter1 = CmmReg (CmmGlobal GCEnter1)

           {- Thunks:          jump stg_gc_enter_1

              Function (fast): call (NativeNode) stg_gc_fun(fun, args)

367
              Function (slow): call (slow) stg_gc_fun(fun, args)
368 369 370
           -}
           gc_call upd
               | is_thunk
371
                 = mkJump dflags NativeNodeCall stg_gc_enter1 [node] upd
372 373

               | is_fastf
374
                 = mkJump dflags NativeNodeCall stg_gc_fun (node : args') upd
375 376

               | otherwise
377
                 = mkJump dflags Slow stg_gc_fun (node : args') upd
378 379

       updfr_sz <- getUpdFrameOff
380 381 382

       loop_id <- newLabelC
       emitLabel loop_id
383
       heapCheck True True (gc_call updfr_sz <*> mkBranch loop_id) code
384

385 386
-- ------------------------------------------------------------
-- A heap/stack check in a case alternative
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

-- If there are multiple alts and we need to GC, but don't have a
-- continuation already (the scrut was simple), then we should
-- pre-generate the continuation.  (if there are multiple alts it is
-- always a canned GC point).

-- altHeapCheck:
-- If we have a return continuation,
--   then if it is a canned GC pattern,
--           then we do mkJumpReturnsTo
--           else we do a normal call to stg_gc_noregs
--   else if it is a canned GC pattern,
--           then generate the continuation and do mkCallReturnsTo
--           else we do a normal call to stg_gc_noregs

403
altHeapCheck :: [LocalReg] -> FCode a -> FCode a
404 405 406 407
altHeapCheck regs code = altOrNoEscapeHeapCheck False regs code

altOrNoEscapeHeapCheck :: Bool -> [LocalReg] -> FCode a -> FCode a
altOrNoEscapeHeapCheck checkYield regs code = do
408 409
    dflags <- getDynFlags
    case cannedGCEntryPoint dflags regs of
410
      Nothing -> genericGC checkYield code
411 412
      Just gc -> do
        lret <- newLabelC
413
        let (off, _, copyin) = copyInOflow dflags NativeReturn (Young lret) regs []
414 415 416
        lcont <- newLabelC
        emitOutOfLine lret (copyin <*> mkBranch lcont)
        emitLabel lcont
417
        cannedGCReturnsTo checkYield False gc regs lret off code
418 419 420

altHeapCheckReturnsTo :: [LocalReg] -> Label -> ByteOff -> FCode a -> FCode a
altHeapCheckReturnsTo regs lret off code
421 422
  = do dflags <- getDynFlags
       case cannedGCEntryPoint dflags regs of
423 424 425 426 427 428 429 430
           Nothing -> genericGC False code
           Just gc -> cannedGCReturnsTo False True gc regs lret off code

-- noEscapeHeapCheck is implemented identically to altHeapCheck (which
-- is more efficient), but cannot be optimized away in the non-allocating
-- case because it may occur in a loop
noEscapeHeapCheck :: [LocalReg] -> FCode a -> FCode a
noEscapeHeapCheck regs code = altOrNoEscapeHeapCheck True regs code
431

432
cannedGCReturnsTo :: Bool -> Bool -> CmmExpr -> [LocalReg] -> Label -> ByteOff
433 434
                  -> FCode a
                  -> FCode a
435
cannedGCReturnsTo checkYield cont_on_stack gc regs lret off code
436 437
  = do dflags <- getDynFlags
       updfr_sz <- getUpdFrameOff
438
       heapCheck False checkYield (gc_call dflags gc updfr_sz) code
439 440
  where
    reg_exprs = map (CmmReg . CmmLocal) regs
441
      -- Note [stg_gc arguments]
442

443 444 445 446
      -- NB. we use the NativeReturn convention for passing arguments
      -- to the canned heap-check routines, because we are in a case
      -- alternative and hence the [LocalReg] was passed to us in the
      -- NativeReturn convention.
447
    gc_call dflags label sp
448 449 450 451
      | cont_on_stack
      = mkJumpReturnsTo dflags label NativeReturn reg_exprs lret off sp
      | otherwise
      = mkCallReturnsTo dflags label NativeReturn reg_exprs lret off sp []
452

453 454
genericGC :: Bool -> FCode a -> FCode a
genericGC checkYield code
455 456 457
  = do updfr_sz <- getUpdFrameOff
       lretry <- newLabelC
       emitLabel lretry
458
       call <- mkCall generic_gc (GC, GC) [] [] updfr_sz []
459
       heapCheck False checkYield (call <*> mkBranch lretry) code
460

461 462
cannedGCEntryPoint :: DynFlags -> [LocalReg] -> Maybe CmmExpr
cannedGCEntryPoint dflags regs
463
  = case map localRegType regs of
464
      []  -> Just (mkGcLabel "stg_gc_noregs")
465
      [ty]
466 467 468 469 470 471
          | isGcPtrType ty -> Just (mkGcLabel "stg_gc_unpt_r1")
          | isFloatType ty -> case width of
                                  W32       -> Just (mkGcLabel "stg_gc_f1")
                                  W64       -> Just (mkGcLabel "stg_gc_d1")
                                  _         -> Nothing
        
472 473 474
          | width == wordWidth dflags -> Just (mkGcLabel "stg_gc_unbx_r1")
          | width == W64              -> Just (mkGcLabel "stg_gc_l1")
          | otherwise                 -> Nothing
475 476
          where
              width = typeWidth ty
477 478 479 480 481 482 483 484 485 486 487 488
      [ty1,ty2]
          |  isGcPtrType ty1
          && isGcPtrType ty2 -> Just (mkGcLabel "stg_gc_pp")
      [ty1,ty2,ty3]
          |  isGcPtrType ty1
          && isGcPtrType ty2
          && isGcPtrType ty3 -> Just (mkGcLabel "stg_gc_ppp")
      [ty1,ty2,ty3,ty4]
          |  isGcPtrType ty1
          && isGcPtrType ty2
          && isGcPtrType ty3
          && isGcPtrType ty4 -> Just (mkGcLabel "stg_gc_pppp")
489
      _otherwise -> Nothing
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
-- Note [stg_gc arguments]
-- It might seem that we could avoid passing the arguments to the
-- stg_gc function, because they are already in the right registers.
-- While this is usually the case, it isn't always.  Sometimes the
-- code generator has cleverly avoided the eval in a case, e.g. in
-- ffi/should_run/4221.hs we found
--
--   case a_r1mb of z
--     FunPtr x y -> ...
--
-- where a_r1mb is bound a top-level constructor, and is known to be
-- evaluated.  The codegen just assigns x, y and z, and continues;
-- R1 is never assigned.
--
-- So we'll have to rely on optimisations to eliminatethese
-- assignments where possible.

508

509 510
-- | The generic GC procedure; no params, no results
generic_gc :: CmmExpr
511
generic_gc = mkGcLabel "stg_gc_noregs"
512 513

-- | Create a CLabel for calling a garbage collector entry point
514 515
mkGcLabel :: String -> CmmExpr
mkGcLabel s = CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit s)))
516 517

-------------------------------
518 519
heapCheck :: Bool -> Bool -> CmmAGraph -> FCode a -> FCode a
heapCheck checkStack checkYield do_gc code
520
  = getHeapUsage $ \ hpHw ->
521 522
    -- Emit heap checks, but be sure to do it lazily so
    -- that the conditionals on hpHw don't cause a black hole
523 524 525 526 527 528 529
    do  { dflags <- getDynFlags
        ; let mb_alloc_bytes
                 | hpHw > 0  = Just (mkIntExpr dflags (hpHw * (wORD_SIZE dflags)))
                 | otherwise = Nothing
              stk_hwm | checkStack = Just (CmmLit CmmHighStackMark)
                      | otherwise  = Nothing
        ; codeOnly $ do_checks stk_hwm checkYield mb_alloc_bytes do_gc
530 531 532 533
        ; tickyAllocHeap hpHw
        ; doGranAllocate hpHw
        ; setRealHp hpHw
        ; code }
534

535 536 537 538 539 540 541 542 543
heapStackCheckGen :: Maybe CmmExpr -> Maybe CmmExpr -> FCode ()
heapStackCheckGen stk_hwm mb_bytes
  = do updfr_sz <- getUpdFrameOff
       lretry <- newLabelC
       emitLabel lretry
       call <- mkCall generic_gc (GC, GC) [] [] updfr_sz []
       do_checks stk_hwm False  mb_bytes (call <*> mkBranch lretry)

do_checks :: Maybe CmmExpr    -- Should we check the stack?
544
          -> Bool       -- Should we check for preemption?
545
          -> Maybe CmmExpr    -- Heap headroom (bytes)
546
          -> CmmAGraph  -- What to do on failure
547
          -> FCode ()
548
do_checks mb_stk_hwm checkYield mb_alloc_lit do_gc = do
549
  dflags <- getDynFlags
550 551
  gc_id <- newLabelC

552
  let
553 554 555
    Just alloc_lit = mb_alloc_lit

    bump_hp   = cmmOffsetExprB dflags (CmmReg hpReg) alloc_lit
556 557

    -- Sp overflow if (Sp - CmmHighStack < SpLim)
558 559
    sp_oflo sp_hwm =
         CmmMachOp (mo_wordULt dflags)
560
                  [CmmMachOp (MO_Sub (typeWidth (cmmRegType dflags spReg)))
561
                             [CmmReg spReg, sp_hwm],
562 563 564 565 566 567
                   CmmReg spLimReg]

    -- Hp overflow if (Hp > HpLim)
    -- (Hp has been incremented by now)
    -- HpLim points to the LAST WORD of valid allocation space.
    hp_oflo = CmmMachOp (mo_wordUGt dflags)
568
                  [CmmReg hpReg, CmmReg (CmmGlobal HpLim)]
569

570
    alloc_n = mkAssign (CmmGlobal HpAlloc) alloc_lit
571

572 573 574
  case mb_stk_hwm of
    Nothing -> return ()
    Just stk_hwm -> emit =<< mkCmmIfGoto (sp_oflo stk_hwm) gc_id
575

576
  if (isJust mb_alloc_lit)
577
    then do
578 579
     emitAssign hpReg bump_hp
     emit =<< mkCmmIfThen hp_oflo (alloc_n <*> mkBranch gc_id)
580
    else do
ian@well-typed.com's avatar
ian@well-typed.com committed
581
      when (not (gopt Opt_OmitYields dflags) && checkYield) $ do
582 583 584 585 586
         -- Yielding if HpLim == 0
         let yielding = CmmMachOp (mo_wordEq dflags)
                                  [CmmReg (CmmGlobal HpLim),
                                   CmmLit (zeroCLit dflags)]
         emit =<< mkCmmIfGoto yielding gc_id
587 588

  emitOutOfLine gc_id $
589 590
     do_gc -- this is expected to jump back somewhere

591 592 593 594 595 596
                -- Test for stack pointer exhaustion, then
                -- bump heap pointer, and test for heap exhaustion
                -- Note that we don't move the heap pointer unless the
                -- stack check succeeds.  Otherwise we might end up
                -- with slop at the end of the current block, which can
                -- confuse the LDV profiler.