TcCanonical.hs 78.2 KB
Newer Older
1 2
{-# LANGUAGE CPP #-}

3
module TcCanonical(
4 5
     canonicalize,
     unifyDerived,
6
     makeSuperClasses, maybeSym,
7 8
     StopOrContinue(..), stopWith, continueWith
  ) where
9 10 11 12

#include "HsVersions.h"

import TcRnTypes
13
import TcUnify( swapOverTyVars, metaTyVarUpdateOK )
14
import TcType
15
import Type
16 17
import TcFlatten
import TcSMonad
18
import TcEvidence
19 20
import Class
import TyCon
21
import TyCoRep   -- cleverly decomposes types, good for completeness checking
22 23 24
import Coercion
import FamInstEnv ( FamInstEnvs )
import FamInst ( tcTopNormaliseNewTypeTF_maybe )
25
import Var
26 27
import VarEnv( mkInScopeSet )
import VarSet( extendVarSetList )
28
import Outputable
29
import DynFlags( DynFlags )
30
import NameSet
31
import RdrName
32

33
import Pair
34
import Util
35
import Bag
36 37
import MonadUtils
import Control.Monad
38
import Data.Maybe ( isJust )
39
import Data.List  ( zip4, foldl' )
40
import BasicTypes
41

42 43
import Data.Bifunctor ( bimap )

Austin Seipp's avatar
Austin Seipp committed
44 45 46 47 48 49
{-
************************************************************************
*                                                                      *
*                      The Canonicaliser                               *
*                                                                      *
************************************************************************
50

51 52
Note [Canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~
53

54
Canonicalization converts a simple constraint to a canonical form. It is
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
unary (i.e. treats individual constraints one at a time).

Constraints originating from user-written code come into being as
CNonCanonicals (except for CHoleCans, arising from holes). We know nothing
about these constraints. So, first:

     Classify CNonCanoncal constraints, depending on whether they
     are equalities, class predicates, or other.

Then proceed depending on the shape of the constraint. Generally speaking,
each constraint gets flattened and then decomposed into one of several forms
(see type Ct in TcRnTypes).

When an already-canonicalized constraint gets kicked out of the inert set,
it must be recanonicalized. But we know a bit about its shape from the
last time through, so we can skip the classification step.

Austin Seipp's avatar
Austin Seipp committed
72
-}
73

74 75 76
-- Top-level canonicalization
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

77
canonicalize :: Ct -> TcS (StopOrContinue Ct)
78
canonicalize ct@(CNonCanonical { cc_ev = ev })
79
  = do { traceTcS "canonicalize (non-canonical)" (ppr ct)
80
       ; {-# SCC "canEvVar" #-}
81
         canEvNC ev }
82

83 84
canonicalize (CDictCan { cc_ev = ev, cc_class  = cls
                       , cc_tyargs = xis, cc_pend_sc = pend_sc })
85
  = {-# SCC "canClass" #-}
86 87
    canClass ev cls xis pend_sc

88
canonicalize (CTyEqCan { cc_ev = ev
89
                       , cc_tyvar  = tv
90 91
                       , cc_rhs    = xi
                       , cc_eq_rel = eq_rel })
92
  = {-# SCC "canEqLeafTyVarEq" #-}
93 94 95
    canEqNC ev eq_rel (mkTyVarTy tv) xi
      -- NB: Don't use canEqTyVar because that expects flattened types,
      -- and tv and xi may not be flat w.r.t. an updated inert set
96

97
canonicalize (CFunEqCan { cc_ev = ev
98 99
                        , cc_fun    = fn
                        , cc_tyargs = xis1
100
                        , cc_fsk    = fsk })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
101
  = {-# SCC "canEqLeafFunEq" #-}
102
    canCFunEqCan ev fn xis1 fsk
103

104 105
canonicalize (CIrredEvCan { cc_ev = ev })
  = canIrred ev
106 107
canonicalize (CHoleCan { cc_ev = ev, cc_hole = hole })
  = canHole ev hole
108

109
canEvNC :: CtEvidence -> TcS (StopOrContinue Ct)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
110
-- Called only for non-canonical EvVars
111
canEvNC ev
112
  = case classifyPredType (ctEvPred ev) of
113 114 115 116 117 118
      ClassPred cls tys     -> do traceTcS "canEvNC:cls" (ppr cls <+> ppr tys)
                                  canClassNC ev cls tys
      EqPred eq_rel ty1 ty2 -> do traceTcS "canEvNC:eq" (ppr ty1 $$ ppr ty2)
                                  canEqNC    ev eq_rel ty1 ty2
      IrredPred {}          -> do traceTcS "canEvNC:irred" (ppr (ctEvPred ev))
                                  canIrred   ev
Austin Seipp's avatar
Austin Seipp committed
119 120 121 122 123 124 125
{-
************************************************************************
*                                                                      *
*                      Class Canonicalization
*                                                                      *
************************************************************************
-}
126

127
canClassNC :: CtEvidence -> Class -> [Type] -> TcS (StopOrContinue Ct)
128 129
-- "NC" means "non-canonical"; that is, we have got here
-- from a NonCanonical constrataint, not from a CDictCan
Simon Peyton Jones's avatar
Simon Peyton Jones committed
130
-- Precondition: EvVar is class evidence
131 132 133 134 135 136 137
canClassNC ev cls tys
  | isGiven ev  -- See Note [Eagerly expand given superclasses]
  = do { sc_cts <- mkStrictSuperClasses ev cls tys
       ; emitWork sc_cts
       ; canClass ev cls tys False }
  | otherwise
  = canClass ev cls tys (has_scs cls)
138 139
  where
    has_scs cls = not (null (classSCTheta cls))
140

141 142 143 144
canClass :: CtEvidence
         -> Class -> [Type]
         -> Bool            -- True <=> un-explored superclasses
         -> TcS (StopOrContinue Ct)
145
-- Precondition: EvVar is class evidence
146

147
canClass ev cls tys pend_sc
148 149
  =   -- all classes do *nominal* matching
    ASSERT2( ctEvRole ev == Nominal, ppr ev $$ ppr cls $$ ppr tys )
150
    do { (xis, cos) <- flattenManyNom ev tys
Joachim Breitner's avatar
Joachim Breitner committed
151
       ; let co = mkTcTyConAppCo Nominal (classTyCon cls) cos
152
             xi = mkClassPred cls xis
153
             mk_ct new_ev = CDictCan { cc_ev = new_ev
154 155 156
                                     , cc_tyargs = xis
                                     , cc_class = cls
                                     , cc_pend_sc = pend_sc }
157
       ; mb <- rewriteEvidence ev xi co
158
       ; traceTcS "canClass" (vcat [ ppr ev
Simon Peyton Jones's avatar
Simon Peyton Jones committed
159
                                   , ppr xi, ppr mb ])
160
       ; return (fmap mk_ct mb) }
dimitris's avatar
dimitris committed
161

162 163 164 165
{- Note [The superclass story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to add superclass constraints for two reasons:

166
* For givens [G], they give us a route to to proof.  E.g.
167 168 169 170 171
    f :: Ord a => a -> Bool
    f x = x == x
  We get a Wanted (Eq a), which can only be solved from the superclass
  of the Given (Ord a).

172 173
* For wanteds [W], and deriveds [WD], [D], they may give useful
  functional dependencies.  E.g.
174 175
     class C a b | a -> b where ...
     class C a b => D a b where ...
176
  Now a [W] constraint (D Int beta) has (C Int beta) as a superclass
177
  and that might tell us about beta, via C's fundeps.  We can get this
178
  by generating a [D] (C Int beta) constraint.  It's derived because
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  we don't actually have to cough up any evidence for it; it's only there
  to generate fundep equalities.

See Note [Why adding superclasses can help].

For these reasons we want to generate superclass constraints for both
Givens and Wanteds. But:

* (Minor) they are often not needed, so generating them aggressively
  is a waste of time.

* (Major) if we want recursive superclasses, there would be an infinite
  number of them.  Here is a real-life example (Trac #10318);

     class (Frac (Frac a) ~ Frac a,
            Fractional (Frac a),
            IntegralDomain (Frac a))
         => IntegralDomain a where
      type Frac a :: *

  Notice that IntegralDomain has an associated type Frac, and one
  of IntegralDomain's superclasses is another IntegralDomain constraint.

So here's the plan:

204 205 206 207 208 209 210
1. Eagerly generate superclasses for given (but not wanted)
   constraints; see Note [Eagerly expand given superclasses].
   This is done in canClassNC, when we take a non-canonical constraint
   and cannonicalise it.

   However stop if you encounter the same class twice.  That is,
   expand eagerly, but have a conservative termination condition: see
211 212
   Note [Expanding superclasses] in TcType.

213 214 215 216 217 218 219 220 221
2. Solve the wanteds as usual, but do no further expansion of
   superclasses for canonical CDictCans in solveSimpleGivens or
   solveSimpleWanteds; Note [Danger of adding superclasses during solving]

   However, /do/ continue to eagerly expand superlasses for /given/
   non-canonical constraints (canClassNC does this).  As Trac #12175
   showed, a type-family application can expand to a class constraint,
   and we want to see its superclasses for just the same reason as
   Note [Eagerly expand given superclasses].
222

223 224 225 226 227 228
3. If we have any remaining unsolved wanteds
        (see Note [When superclasses help] in TcRnTypes)
   try harder: take both the Givens and Wanteds, and expand
   superclasses again.  This may succeed in generating (a finite
   number of) extra Givens, and extra Deriveds. Both may help the
   proof.  This is done in TcSimplify.expandSuperClasses.
229 230 231 232

4. Go round to (2) again.  This loop (2,3,4) is implemented
   in TcSimplify.simpl_loop.

233 234 235
The cc_pend_sc flag in a CDictCan records whether the superclasses of
this constraint have been expanded.  Specifically, in Step 3 we only
expand superclasses for constraints with cc_pend_sc set to true (i.e.
236 237
isPendingScDict holds).

238 239 240 241 242 243 244 245 246
Why do we do this?  Two reasons:

* To avoid repeated work, by repeatedly expanding the superclasses of
  same constraint,

* To terminate the above loop, at least in the -XNoRecursiveSuperClasses
  case.  If there are recursive superclasses we could, in principle,
  expand forever, always encountering new constraints.

247 248 249
When we take a CNonCanonical or CIrredCan, but end up classifying it
as a CDictCan, we set the cc_pend_sc flag to False.

250 251 252 253 254
Note [Eagerly expand given superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In step (1) of Note [The superclass story], why do we eagerly expand
Given superclasses by one layer?  Mainly because of some very obscure
cases like this:
255 256 257 258 259 260 261 262 263 264 265

   instance Bad a => Eq (T a)

   f :: (Ord (T a)) => blah
   f x = ....needs Eq (T a), Ord (T a)....

Here if we can't satisfy (Eq (T a)) from the givens we'll use the
instance declaration; but then we are stuck with (Bad a).  Sigh.
This is really a case of non-confluent proofs, but to stop our users
complaining we expand one layer in advance.

266 267 268 269 270 271 272 273 274 275 276 277 278
Note [Instance and Given overlap] in TcInteract.

We also want to do this if we have

   f :: F (T a) => blah

where
   type instance F (T a) = Ord (T a)

So we may need to do a little work on the givens to expose the
class that has the superclasses.  That's why the superclass
expansion for Givens happens in canClassNC.

279 280 281
Note [Why adding superclasses can help]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Examples of how adding superclasses can help:
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

    --- Example 1
        class C a b | a -> b
    Suppose we want to solve
         [G] C a b
         [W] C a beta
    Then adding [D] beta~b will let us solve it.

    -- Example 2 (similar but using a type-equality superclass)
        class (F a ~ b) => C a b
    And try to sllve:
         [G] C a b
         [W] C a beta
    Follow the superclass rules to add
         [G] F a ~ b
         [D] F a ~ beta
    Now we we get [D] beta ~ b, and can solve that.

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    -- Example (tcfail138)
      class L a b | a -> b
      class (G a, L a b) => C a b

      instance C a b' => G (Maybe a)
      instance C a b  => C (Maybe a) a
      instance L (Maybe a) a

    When solving the superclasses of the (C (Maybe a) a) instance, we get
      [G] C a b, and hance by superclasses, [G] G a, [G] L a b
      [W] G (Maybe a)
    Use the instance decl to get
      [W] C a beta
    Generate its derived superclass
      [D] L a beta.  Now using fundeps, combine with [G] L a b to get
      [D] beta ~ b
    which is what we want.

318 319
Note [Danger of adding superclasses during solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
320
Here's a serious, but now out-dated example, from Trac #4497:
Simon Peyton Jones's avatar
Simon Peyton Jones committed
321

322 323 324
   class Num (RealOf t) => Normed t
   type family RealOf x

Simon Peyton Jones's avatar
Simon Peyton Jones committed
325
Assume the generated wanted constraint is:
326 327 328
   [W] RealOf e ~ e
   [W] Normed e

Simon Peyton Jones's avatar
Simon Peyton Jones committed
329
If we were to be adding the superclasses during simplification we'd get:
330 331 332 333
   [W] RealOf e ~ e
   [W] Normed e
   [D] RealOf e ~ fuv
   [D] Num fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
334
==>
335
   e := fuv, Num fuv, Normed fuv, RealOf fuv ~ fuv
Simon Peyton Jones's avatar
Simon Peyton Jones committed
336

337 338 339
While looks exactly like our original constraint. If we add the
superclass of (Normed fuv) again we'd loop.  By adding superclasses
definitely only once, during canonicalisation, this situation can't
340
happen.
341 342 343 344

Mind you, now that Wanteds cannot rewrite Derived, I think this particular
situation can't happen.
  -}
345

346 347 348 349
makeSuperClasses :: [Ct] -> TcS [Ct]
-- Returns strict superclasses, transitively, see Note [The superclasses story]
-- See Note [The superclass story]
-- The loop-breaking here follows Note [Expanding superclasses] in TcType
350 351 352 353 354 355 356 357 358 359
-- Specifically, for an incoming (C t) constraint, we return all of (C t)'s
--    superclasses, up to /and including/ the first repetition of C
--
-- Example:  class D a => C a
--           class C [a] => D a
-- makeSuperClasses (C x) will return (D x, C [x])
--
-- NB: the incoming constraints have had their cc_pend_sc flag already
--     flipped to False, by isPendingScDict, so we are /obliged/ to at
--     least produce the immediate superclasses
360 361 362
makeSuperClasses cts = concatMapM go cts
  where
    go (CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
363
          = mkStrictSuperClasses ev cls tys
364 365
    go ct = pprPanic "makeSuperClasses" (ppr ct)

366 367 368 369 370
mkStrictSuperClasses :: CtEvidence -> Class -> [Type] -> TcS [Ct]
-- Return constraints for the strict superclasses of (c tys)
mkStrictSuperClasses ev cls tys
  = mk_strict_superclasses (unitNameSet (className cls)) ev cls tys

371 372 373 374 375 376 377 378 379 380
mk_superclasses :: NameSet -> CtEvidence -> TcS [Ct]
-- Return this constraint, plus its superclasses, if any
mk_superclasses rec_clss ev
  | ClassPred cls tys <- classifyPredType (ctEvPred ev)
  = mk_superclasses_of rec_clss ev cls tys

  | otherwise   -- Superclass is not a class predicate
  = return [mkNonCanonical ev]

mk_superclasses_of :: NameSet -> CtEvidence -> Class -> [Type] -> TcS [Ct]
381 382
-- Always return this class constraint,
-- and expand its superclasses
383
mk_superclasses_of rec_clss ev cls tys
384 385 386 387 388 389 390
  | loop_found = do { traceTcS "mk_superclasses_of: loop" (ppr cls <+> ppr tys)
                    ; return [this_ct] }  -- cc_pend_sc of this_ct = True
  | otherwise  = do { traceTcS "mk_superclasses_of" (vcat [ ppr cls <+> ppr tys
                                                          , ppr (isCTupleClass cls)
                                                          , ppr rec_clss
                                                          ])
                    ; sc_cts <- mk_strict_superclasses rec_clss' ev cls tys
391 392
                    ; return (this_ct : sc_cts) }
                                   -- cc_pend_sc of this_ct = False
393 394
  where
    cls_nm     = className cls
395
    loop_found = not (isCTupleClass cls) && cls_nm `elemNameSet` rec_clss
396
                 -- Tuples never contribute to recursion, and can be nested
397
    rec_clss'  = rec_clss `extendNameSet` cls_nm
398 399
    this_ct    = CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys
                          , cc_pend_sc = loop_found }
400 401
                 -- NB: If there is a loop, we cut off, so we have not
                 --     added the superclasses, hence cc_pend_sc = True
402 403

mk_strict_superclasses :: NameSet -> CtEvidence -> Class -> [Type] -> TcS [Ct]
404 405 406
-- Always return the immediate superclasses of (cls tys);
-- and expand their superclasses, provided none of them are in rec_clss
-- nor are repeated
407 408 409 410 411
mk_strict_superclasses rec_clss ev cls tys
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { sc_evs <- newGivenEvVars (mk_given_loc loc)
                                  (mkEvScSelectors (EvId evar) cls tys)
       ; concatMapM (mk_superclasses rec_clss) sc_evs }
dimitris's avatar
dimitris committed
412

413
  | all noFreeVarsOfType tys
414
  = return [] -- Wanteds with no variables yield no deriveds.
415
              -- See Note [Improvement from Ground Wanteds]
416

417 418
  | otherwise -- Wanted/Derived case, just add Derived superclasses
              -- that can lead to improvement.
419 420 421
  = do { let loc = ctEvLoc ev
       ; sc_evs <- mapM (newDerivedNC loc) (immSuperClasses cls tys)
       ; concatMapM (mk_superclasses rec_clss) sc_evs }
422
  where
423
    size = sizeTypes tys
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    mk_given_loc loc
       | isCTupleClass cls
       = loc   -- For tuple predicates, just take them apart, without
               -- adding their (large) size into the chain.  When we
               -- get down to a base predicate, we'll include its size.
               -- Trac #10335

       | GivenOrigin skol_info <- ctLocOrigin loc
         -- See Note [Solving superclass constraints] in TcInstDcls
         -- for explantation of this transformation for givens
       = case skol_info of
            InstSkol -> loc { ctl_origin = GivenOrigin (InstSC size) }
            InstSC n -> loc { ctl_origin = GivenOrigin (InstSC (n `max` size)) }
            _        -> loc

       | otherwise  -- Probably doesn't happen, since this function
       = loc        -- is only used for Givens, but does no harm
441

442

Austin Seipp's avatar
Austin Seipp committed
443 444 445 446 447 448 449
{-
************************************************************************
*                                                                      *
*                      Irreducibles canonicalization
*                                                                      *
************************************************************************
-}
450

451
canIrred :: CtEvidence -> TcS (StopOrContinue Ct)
452
-- Precondition: ty not a tuple and no other evidence form
453
canIrred old_ev
Simon Peyton Jones's avatar
Simon Peyton Jones committed
454 455
  = do { let old_ty = ctEvPred old_ev
       ; traceTcS "can_pred" (text "IrredPred = " <+> ppr old_ty)
456
       ; (xi,co) <- flatten FM_FlattenAll old_ev old_ty -- co :: xi ~ old_ty
457
       ; rewriteEvidence old_ev xi co `andWhenContinue` \ new_ev ->
458 459
    do { -- Re-classify, in case flattening has improved its shape
       ; case classifyPredType (ctEvPred new_ev) of
460 461 462 463
           ClassPred cls tys     -> canClassNC new_ev cls tys
           EqPred eq_rel ty1 ty2 -> canEqNC new_ev eq_rel ty1 ty2
           _                     -> continueWith $
                                    CIrredEvCan { cc_ev = new_ev } } }
464

465 466
canHole :: CtEvidence -> Hole -> TcS (StopOrContinue Ct)
canHole ev hole
467 468
  = do { let ty = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev ty -- co :: xi ~ ty
469 470
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
    do { emitInsoluble (CHoleCan { cc_ev = new_ev
471
                                 , cc_hole = hole })
472
       ; stopWith new_ev "Emit insoluble hole" } }
473

Austin Seipp's avatar
Austin Seipp committed
474 475 476 477 478 479
{-
************************************************************************
*                                                                      *
*        Equalities
*                                                                      *
************************************************************************
480 481 482 483 484 485 486 487 488 489 490 491 492

Note [Canonicalising equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to canonicalise an equality, we look at the structure of the
two types at hand, looking for similarities. A difficulty is that the
types may look dissimilar before flattening but similar after flattening.
However, we don't just want to jump in and flatten right away, because
this might be wasted effort. So, after looking for similarities and failing,
we flatten and then try again. Of course, we don't want to loop, so we
track whether or not we've already flattened.

It is conceivable to do a better job at tracking whether or not a type
is flattened, but this is left as future work. (Mar '15)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511


Note [FunTy and decomposing tycon applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When can_eq_nc' attempts to decompose a tycon application we haven't yet zonked.
This means that we may very well have a FunTy containing a type of some unknown
kind. For instance, we may have,

    FunTy (a :: k) Int

Where k is a unification variable. tcRepSplitTyConApp_maybe panics in the event
that it sees such a type as it cannot determine the RuntimeReps which the (->)
is applied to. Consequently, it is vital that we instead use
tcRepSplitTyConApp_maybe', which simply returns Nothing in such a case.

When this happens can_eq_nc' will fail to decompose, zonk, and try again.
Zonking should fill the variable k, meaning that decomposition will succeed the
second time around.
Austin Seipp's avatar
Austin Seipp committed
512
-}
513

514 515
canEqNC :: CtEvidence -> EqRel -> Type -> Type -> TcS (StopOrContinue Ct)
canEqNC ev eq_rel ty1 ty2
516 517 518 519
  = do { result <- zonk_eq_types ty1 ty2
       ; case result of
           Left (Pair ty1' ty2') -> can_eq_nc False ev eq_rel ty1' ty1 ty2' ty2
           Right ty              -> canEqReflexive ev eq_rel ty }
520

521
can_eq_nc
522 523
   :: Bool            -- True => both types are flat
   -> CtEvidence
524
   -> EqRel
Austin Seipp's avatar
Austin Seipp committed
525 526
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
527
   -> TcS (StopOrContinue Ct)
528
can_eq_nc flat ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Austin Seipp's avatar
Austin Seipp committed
529
  = do { traceTcS "can_eq_nc" $
530
         vcat [ ppr flat, ppr ev, ppr eq_rel, ppr ty1, ppr ps_ty1, ppr ty2, ppr ps_ty2 ]
531 532
       ; rdr_env <- getGlobalRdrEnvTcS
       ; fam_insts <- getFamInstEnvs
533
       ; can_eq_nc' flat rdr_env fam_insts ev eq_rel ty1 ps_ty1 ty2 ps_ty2 }
534 535

can_eq_nc'
536 537
   :: Bool           -- True => both input types are flattened
   -> GlobalRdrEnv   -- needed to see which newtypes are in scope
538 539 540 541 542 543
   -> FamInstEnvs    -- needed to unwrap data instances
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)
544 545

-- Expand synonyms first; see Note [Type synonyms and canonicalization]
546
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
Ben Gamari's avatar
Ben Gamari committed
547 548
  | Just ty1' <- tcView ty1 = can_eq_nc flat ev eq_rel ty1' ps_ty1 ty2  ps_ty2
  | Just ty2' <- tcView ty2 = can_eq_nc flat ev eq_rel ty1  ps_ty1 ty2' ps_ty2
549 550

-- need to check for reflexivity in the ReprEq case.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
551
-- See Note [Eager reflexivity check]
552 553 554
-- Check only when flat because the zonk_eq_types check in canEqNC takes
-- care of the non-flat case.
can_eq_nc' True _rdr_env _envs ev ReprEq ty1 _ ty2 _
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
555
  | ty1 `tcEqType` ty2
556 557 558 559
  = canEqReflexive ev ReprEq ty1

-- When working with ReprEq, unwrap newtypes.
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 _ ty2 ps_ty2
560 561
  | Just stuff1 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty1
  = can_eq_newtype_nc ev NotSwapped ty1 stuff1 ty2 ps_ty2
562
can_eq_nc' _flat rdr_env envs ev ReprEq ty1 ps_ty1 ty2 _
563 564
  | Just stuff2 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty2
  = can_eq_newtype_nc ev IsSwapped  ty2 stuff2 ty1 ps_ty1
565

566 567 568 569 570 571
-- Then, get rid of casts
can_eq_nc' flat _rdr_env _envs ev eq_rel (CastTy ty1 co1) _ ty2 ps_ty2
  = canEqCast flat ev eq_rel NotSwapped ty1 co1 ty2 ps_ty2
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 (CastTy ty2 co2) _
  = canEqCast flat ev eq_rel IsSwapped ty2 co2 ty1 ps_ty1

572 573 574 575 576
----------------------
-- Otherwise try to decompose
----------------------

-- Literals
577
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1@(LitTy l1) _ (LitTy l2) _
578
 | l1 == l2
579
  = do { setEqIfWanted ev (mkReflCo (eqRelRole eq_rel) ty1)
580
       ; stopWith ev "Equal LitTy" }
581

Simon Peyton Jones's avatar
Simon Peyton Jones committed
582 583
-- Try to decompose type constructor applications
-- Including FunTy (s -> t)
584
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1 _ ty2 _
585 586 587
    --- See Note [FunTy and decomposing type constructor applications].
  | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe' ty1
  , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe' ty2
588 589
  , not (isTypeFamilyTyCon tc1)
  , not (isTypeFamilyTyCon tc2)
590
  = canTyConApp ev eq_rel tc1 tys1 tc2 tys2
591

592
can_eq_nc' _flat _rdr_env _envs ev eq_rel
593
           s1@(ForAllTy {}) _ s2@(ForAllTy {}) _
594
  = can_eq_nc_forall ev eq_rel s1 s2
595

596
-- See Note [Canonicalising type applications] about why we require flat types
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
597
can_eq_nc' True _rdr_env _envs ev eq_rel (AppTy t1 s1) _ ty2 _
598
  | Just (t2, s2) <- tcSplitAppTy_maybe ty2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
599 600
  = can_eq_app ev eq_rel t1 s1 t2 s2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 _ (AppTy t2 s2) _
601
  | Just (t1, s1) <- tcSplitAppTy_maybe ty1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
602
  = can_eq_app ev eq_rel t1 s1 t2 s2
603

604
-- No similarity in type structure detected. Flatten and try again.
605 606 607
can_eq_nc' False rdr_env envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ps_ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ps_ty2
608
       ; rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
609
         `andWhenContinue` \ new_ev ->
610 611
         can_eq_nc' True rdr_env envs new_ev eq_rel xi1 xi1 xi2 xi2 }

612 613
-- Type variable on LHS or RHS are last.
-- NB: pattern match on True: we want only flat types sent to canEqTyVar.
614
-- See also Note [No top-level newtypes on RHS of representational equalities]
615 616 617 618
can_eq_nc' True _rdr_env _envs ev eq_rel (TyVarTy tv1) ps_ty1 ty2 ps_ty2
  = canEqTyVar ev eq_rel NotSwapped tv1 ps_ty1 ty2 ps_ty2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 ps_ty1 (TyVarTy tv2) ps_ty2
  = canEqTyVar ev eq_rel IsSwapped tv2 ps_ty2 ty1 ps_ty1
619 620

-- We've flattened and the types don't match. Give up.
621 622 623 624
can_eq_nc' True _rdr_env _envs ev _eq_rel _ ps_ty1 _ ps_ty2
  = do { traceTcS "can_eq_nc' catch-all case" (ppr ps_ty1 $$ ppr ps_ty2)
       ; canEqHardFailure ev ps_ty1 ps_ty2 }

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
---------------------------------
can_eq_nc_forall :: CtEvidence -> EqRel
                 -> Type -> Type    -- LHS and RHS
                 -> TcS (StopOrContinue Ct)
-- (forall as. phi1) ~ (forall bs. phi2)
-- Check for length match of as, bs
-- Then build an implication constraint: forall as. phi1 ~ phi2[as/bs]
-- But remember also to unify the kinds of as and bs
--  (this is the 'go' loop), and actually substitute phi2[as |> cos / bs]
-- Remember also that we might have forall z (a:z). blah
--  so we must proceed one binder at a time (Trac #13879)

can_eq_nc_forall ev eq_rel s1 s2
 | CtWanted { ctev_loc = loc, ctev_dest = orig_dest } <- ev
 = do { let free_tvs1 = tyCoVarsOfType s1
            free_tvs2 = tyCoVarsOfType s2
            (bndrs1, phi1) = tcSplitForAllTyVarBndrs s1
            (bndrs2, phi2) = tcSplitForAllTyVarBndrs s2
      ; if not (equalLength bndrs1 bndrs2)
        then do { traceTcS "Forall failure" $
                     vcat [ ppr s1, ppr s2, ppr bndrs1, ppr bndrs2
                          , ppr (map binderArgFlag bndrs1)
                          , ppr (map binderArgFlag bndrs2) ]
                ; canEqHardFailure ev s1 s2 }
        else
   do { traceTcS "Creating implication for polytype equality" $ ppr ev
      ; let empty_subst1 = mkEmptyTCvSubst $ mkInScopeSet free_tvs1
      ; (subst1, skol_tvs) <- tcInstSkolTyVarsX empty_subst1 $
                              binderVars bndrs1

      ; let skol_info = UnifyForAllSkol phi1
            phi1' = substTy subst1 phi1

            -- Unify the kinds, extend the substitution
            go (skol_tv:skol_tvs) subst (bndr2:bndrs2)
              = do { let tv2 = binderVar bndr2
                   ; kind_co <- unifyWanted loc Nominal
                                            (tyVarKind skol_tv)
                                            (substTy subst (tyVarKind tv2))
                   ; let subst' = extendTvSubst subst tv2
                                       (mkCastTy (mkTyVarTy skol_tv) kind_co)
                   ; co <- go skol_tvs subst' bndrs2
                   ; return (mkForAllCo skol_tv kind_co co) }

            -- Done: unify phi1 ~ phi2
            go [] subst bndrs2
              = ASSERT( null bndrs2 )
                unifyWanted loc (eqRelRole eq_rel)
                            phi1' (substTy subst phi2)

            go _ _ _ = panic "cna_eq_nc_forall"  -- case (s:ss) []

            empty_subst2 = mkEmptyTCvSubst $ mkInScopeSet $
                           free_tvs2 `extendVarSetList` skol_tvs

      ; (implic, _ev_binds, all_co) <- buildImplication skol_info skol_tvs [] $
                                       go skol_tvs empty_subst2 bndrs2
           -- We have nowhere to put these bindings
           -- but TcSimplify.setImplicationStatus
           -- checks that we don't actually use them
           -- when skol_info = UnifyForAllSkol

      ; updWorkListTcS (extendWorkListImplic implic)
      ; setWantedEq orig_dest all_co
      ; stopWith ev "Deferred polytype equality" } }

 | otherwise
 = do { traceTcS "Omitting decomposition of given polytype equality" $
        pprEq s1 s2    -- See Note [Do not decompose given polytype equalities]
      ; stopWith ev "Discard given polytype equality" }

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
---------------------------------
-- | Compare types for equality, while zonking as necessary. Gives up
-- as soon as it finds that two types are not equal.
-- This is quite handy when some unification has made two
-- types in an inert wanted to be equal. We can discover the equality without
-- flattening, which is sometimes very expensive (in the case of type functions).
-- In particular, this function makes a ~20% improvement in test case
-- perf/compiler/T5030.
--
-- Returns either the (partially zonked) types in the case of
-- inequality, or the one type in the case of equality. canEqReflexive is
-- a good next step in the 'Right' case. Returning 'Left' is always safe.
--
-- NB: This does *not* look through type synonyms. In fact, it treats type
-- synonyms as rigid constructors. In the future, it might be convenient
-- to look at only those arguments of type synonyms that actually appear
-- in the synonym RHS. But we're not there yet.
zonk_eq_types :: TcType -> TcType -> TcS (Either (Pair TcType) TcType)
zonk_eq_types = go
  where
    go (TyVarTy tv1) (TyVarTy tv2) = tyvar_tyvar tv1 tv2
    go (TyVarTy tv1) ty2           = tyvar NotSwapped tv1 ty2
    go ty1 (TyVarTy tv2)           = tyvar IsSwapped  tv2 ty1

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    -- We handle FunTys explicitly here despite the fact that they could also be
    -- treated as an application. Why? Well, for one it's cheaper to just look
    -- at two types (the argument and result types) than four (the argument,
    -- result, and their RuntimeReps). Also, we haven't completely zonked yet,
    -- so we may run into an unzonked type variable while trying to compute the
    -- RuntimeReps of the argument and result types. This can be observed in
    -- testcase tc269.
    go ty1 ty2
      | Just (arg1, res1) <- split1
      , Just (arg2, res2) <- split2
      = do { res_a <- go arg1 arg2
           ; res_b <- go res1 res2
           ; return $ combine_rev mkFunTy res_b res_a
           }
      | isJust split1 || isJust split2
      = bale_out ty1 ty2
      where
        split1 = tcSplitFunTy_maybe ty1
        split2 = tcSplitFunTy_maybe ty2

740 741 742
    go ty1 ty2
      | Just (tc1, tys1) <- tcRepSplitTyConApp_maybe ty1
      , Just (tc2, tys2) <- tcRepSplitTyConApp_maybe ty2
743 744 745 746 747 748 749 750 751
      = if tc1 == tc2 && tys1 `equalLength` tys2
          -- Crucial to check for equal-length args, because
          -- we cannot assume that the two args to 'go' have
          -- the same kind.  E.g go (Proxy *      (Maybe Int))
          --                        (Proxy (*->*) Maybe)
          -- We'll call (go (Maybe Int) Maybe)
          -- See Trac #13083
        then tycon tc1 tys1 tys2
        else bale_out ty1 ty2
752 753 754 755 756 757 758 759 760 761 762 763

    go ty1 ty2
      | Just (ty1a, ty1b) <- tcRepSplitAppTy_maybe ty1
      , Just (ty2a, ty2b) <- tcRepSplitAppTy_maybe ty2
      = do { res_a <- go ty1a ty2a
           ; res_b <- go ty1b ty2b
           ; return $ combine_rev mkAppTy res_b res_a }

    go ty1@(LitTy lit1) (LitTy lit2)
      | lit1 == lit2
      = return (Right ty1)

764 765 766 767
    go ty1 ty2 = bale_out ty1 ty2
      -- We don't handle more complex forms here

    bale_out ty1 ty2 = return $ Left (Pair ty1 ty2)
768 769 770

    tyvar :: SwapFlag -> TcTyVar -> TcType
          -> TcS (Either (Pair TcType) TcType)
771
      -- Try to do as little as possible, as anything we do here is redundant
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
      -- with flattening. In particular, no need to zonk kinds. That's why
      -- we don't use the already-defined zonking functions
    tyvar swapped tv ty
      = case tcTyVarDetails tv of
          MetaTv { mtv_ref = ref }
            -> do { cts <- readTcRef ref
                  ; case cts of
                      Flexi        -> give_up
                      Indirect ty' -> unSwap swapped go ty' ty }
          _ -> give_up
      where
        give_up = return $ Left $ unSwap swapped Pair (mkTyVarTy tv) ty

    tyvar_tyvar tv1 tv2
      | tv1 == tv2 = return (Right (mkTyVarTy tv1))
      | otherwise  = do { (ty1', progress1) <- quick_zonk tv1
                        ; (ty2', progress2) <- quick_zonk tv2
                        ; if progress1 || progress2
                          then go ty1' ty2'
                          else return $ Left (Pair (TyVarTy tv1) (TyVarTy tv2)) }

    quick_zonk tv = case tcTyVarDetails tv of
      MetaTv { mtv_ref = ref }
        -> do { cts <- readTcRef ref
              ; case cts of
                  Flexi        -> return (TyVarTy tv, False)
                  Indirect ty' -> return (ty', True) }
      _ -> return (TyVarTy tv, False)

      -- This happens for type families, too. But recall that failure
      -- here just means to try harder, so it's OK if the type function
      -- isn't injective.
    tycon :: TyCon -> [TcType] -> [TcType]
          -> TcS (Either (Pair TcType) TcType)
    tycon tc tys1 tys2
      = do { results <- zipWithM go tys1 tys2
           ; return $ case combine_results results of
               Left tys  -> Left (mkTyConApp tc <$> tys)
               Right tys -> Right (mkTyConApp tc tys) }

    combine_results :: [Either (Pair TcType) TcType]
                    -> Either (Pair [TcType]) [TcType]
    combine_results = bimap (fmap reverse) reverse .
                      foldl' (combine_rev (:)) (Right [])

      -- combine (in reverse) a new result onto an already-combined result
    combine_rev :: (a -> b -> c)
                -> Either (Pair b) b
                -> Either (Pair a) a
                -> Either (Pair c) c
    combine_rev f (Left list) (Left elt) = Left (f <$> elt     <*> list)
    combine_rev f (Left list) (Right ty) = Left (f <$> pure ty <*> list)
    combine_rev f (Right tys) (Left elt) = Left (f <$> elt     <*> pure tys)
    combine_rev f (Right tys) (Right ty) = Right (f ty tys)
826

827
{-
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
Note [Newtypes can blow the stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)
  newtype Y = MkY (Int -> Y)

and now wish to prove

  [W] X ~R Y

This Wanted will loop, expanding out the newtypes ever deeper looking
for a solid match or a solid discrepancy. Indeed, there is something
appropriate to this looping, because X and Y *do* have the same representation,
in the limit -- they're both (Fix ((->) Int)). However, no finitely-sized
coercion will ever witness it. This loop won't actually cause GHC to hang,
though, because we check our depth when unwrapping newtypes.

846 847 848 849 850 851 852 853 854
Note [Eager reflexivity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)

and

  [W] X ~R X
855

856 857 858 859 860
Naively, we would start unwrapping X and end up in a loop. Instead,
we do this eager reflexivity check. This is necessary only for representational
equality because the flattener technology deals with the similar case
(recursive type families) for nominal equality.

861 862
Note that this check does not catch all cases, but it will catch the cases
we're most worried about, types like X above that are actually inhabited.
863

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
864
Here's another place where this reflexivity check is key:
865 866 867 868 869 870 871 872 873 874 875 876 877
Consider trying to prove (f a) ~R (f a). The AppTys in there can't
be decomposed, because representational equality isn't congruent with respect
to AppTy. So, when canonicalising the equality above, we get stuck and
would normally produce a CIrredEvCan. However, we really do want to
be able to solve (f a) ~R (f a). So, in the representational case only,
we do a reflexivity check.

(This would be sound in the nominal case, but unnecessary, and I [Richard
E.] am worried that it would slow down the common case.)
-}

------------------------
-- | We're able to unwrap a newtype. Update the bits accordingly.
878
can_eq_newtype_nc :: CtEvidence           -- ^ :: ty1 ~ ty2
879
                  -> SwapFlag
880 881
                  -> TcType                                    -- ^ ty1
                  -> ((Bag GlobalRdrElt, TcCoercion), TcType)  -- ^ :: ty1 ~ ty1'
882 883 884
                  -> TcType               -- ^ ty2
                  -> TcType               -- ^ ty2, with type synonyms
                  -> TcS (StopOrContinue Ct)
885
can_eq_newtype_nc ev swapped ty1 ((gres, co), ty1') ty2 ps_ty2
886
  = do { traceTcS "can_eq_newtype_nc" $
887
         vcat [ ppr ev, ppr swapped, ppr co, ppr gres, ppr ty1', ppr ty2 ]
888 889

         -- check for blowing our stack:
890 891
         -- See Note [Newtypes can blow the stack]
       ; checkReductionDepth (ctEvLoc ev) ty1
892
       ; addUsedGREs (bagToList gres)
893 894 895
           -- we have actually used the newtype constructor here, so
           -- make sure we don't warn about importing it!

896
       ; rewriteEqEvidence ev swapped ty1' ps_ty2
897 898
                           (mkTcSymCo co) (mkTcReflCo Representational ps_ty2)
         `andWhenContinue` \ new_ev ->
899
         can_eq_nc False new_ev ReprEq ty1' ty1' ty2 ps_ty2 }
900

901
---------
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
902
-- ^ Decompose a type application.
903
-- All input types must be flat. See Note [Canonicalising type applications]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
904 905
can_eq_app :: CtEvidence       -- :: s1 t1 ~r s2 t2
           -> EqRel            -- r
906 907 908
           -> Xi -> Xi         -- s1 t1
           -> Xi -> Xi         -- s2 t2
           -> TcS (StopOrContinue Ct)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
909 910

-- AppTys only decompose for nominal equality, so this case just leads
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
911
-- to an irreducible constraint; see typecheck/should_compile/T10494
Simon Peyton Jones's avatar
Simon Peyton Jones committed
912
-- See Note [Decomposing equality], note {4}
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
913 914 915
can_eq_app ev ReprEq _ _ _ _
  = do { traceTcS "failing to decompose representational AppTy equality" (ppr ev)
       ; continueWith (CIrredEvCan { cc_ev = ev }) }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
916 917
          -- no need to call canEqFailure, because that flattens, and the
          -- types involved here are already flat
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
918 919

can_eq_app ev NomEq s1 t1 s2 t2
920
  | CtDerived { ctev_loc = loc } <- ev
921 922 923 924
  = do { unifyDeriveds loc [Nominal, Nominal] [s1, t1] [s2, t2]
       ; stopWith ev "Decomposed [D] AppTy" }
  | CtWanted { ctev_dest = dest, ctev_loc = loc } <- ev
  = do { co_s <- unifyWanted loc Nominal s1 s2
925
       ; co_t <- unifyWanted loc Nominal t1 t2
926 927 928
       ; let co = mkAppCo co_s co_t
       ; setWantedEq dest co
       ; stopWith ev "Decomposed [W] AppTy" }
929 930
  | CtGiven { ctev_evar = evar, ctev_loc = loc } <- ev
  = do { let co   = mkTcCoVarCo evar
931 932
             co_s = mkTcLRCo CLeft  co
             co_t = mkTcLRCo CRight co
933 934 935 936
       ; evar_s <- newGivenEvVar loc ( mkTcEqPredLikeEv ev s1 s2
                                     , EvCoercion co_s )
       ; evar_t <- newGivenEvVar loc ( mkTcEqPredLikeEv ev t1 t2
                                     , EvCoercion co_t )
937 938 939 940
       ; emitWorkNC [evar_t]
       ; canEqNC evar_s NomEq s1 s2 }
  | otherwise  -- Can't happen
  = error "can_eq_app"
941

942 943
-----------------------
-- | Break apart an equality over a casted type
Simon Peyton Jones's avatar
Simon Peyton Jones committed
944
-- looking like   (ty1 |> co1) ~ ty2   (modulo a swap-flag)
945 946 947 948
canEqCast :: Bool         -- are both types flat?
          -> CtEvidence
          -> EqRel
          -> SwapFlag
Simon Peyton Jones's avatar
Simon Peyton Jones committed
949 950
          -> TcType -> Coercion   -- LHS (res. RHS), ty1 |> co1
          -> TcType -> TcType     -- RHS (res. LHS), ty2 both normal and pretty
951 952 953 954 955 956 957 958 959 960 961 962 963 964
          -> TcS (StopOrContinue Ct)
canEqCast flat ev eq_rel swapped ty1 co1 ty2 ps_ty2
  = do { traceTcS "Decomposing cast" (vcat [ ppr ev
                                           , ppr ty1 <+> text "|>" <+> ppr co1
                                           , ppr ps_ty2 ])
       ; rewriteEqEvidence ev swapped ty1 ps_ty2
                           (mkTcReflCo role ty1
                              `mkTcCoherenceRightCo` co1)
                           (mkTcReflCo role ps_ty2)
         `andWhenContinue` \ new_ev ->
         can_eq_nc flat new_ev eq_rel ty1 ty1 ty2 ps_ty2 }
  where
    role = eqRelRole eq_rel

965
------------------------
966 967 968 969
canTyConApp :: CtEvidence -> EqRel
            -> TyCon -> [TcType]
            -> TyCon -> [TcType]
            -> TcS (StopOrContinue Ct)
970
-- See Note [Decomposing TyConApps]
971
canTyConApp ev eq_rel tc1 tys1 tc2 tys2
972
  | tc1 == tc2
973
  , tys1 `equalLength` tys2
974
  = do { inerts <- getTcSInerts
975 976
       ; if can_decompose inerts
         then do { traceTcS "canTyConApp"
977 978 979 980
                       (ppr ev $$ ppr eq_rel $$ ppr tc1 $$ ppr tys1 $$ ppr tys2)
                 ; canDecomposableTyConAppOK ev eq_rel tc1 tys1 tys2
                 ; stopWith ev "Decomposed TyConApp" }
         else canEqFailure ev eq_rel ty1 ty2 }
981

982 983
  -- See Note [Skolem abstract data] (at tyConSkolem)
  | tyConSkolem tc1 || tyConSkolem tc2
984 985 986
  = do { traceTcS "canTyConApp: skolem abstract" (ppr tc1 $$ ppr tc2)
       ; continueWith (CIrredEvCan { cc_ev = ev }) }

987 988
  -- Fail straight away for better error messages
  -- See Note [Use canEqFailure in canDecomposableTyConApp]
989 990
  | eq_rel == ReprEq && not (isGenerativeTyCon tc1 Representational &&
                             isGenerativeTyCon tc2 Representational)
991 992
  = canEqFailure ev eq_rel ty1 ty2
  | otherwise
993
  = canEqHardFailure ev ty1 ty2
994 995 996 997
  where
    ty1 = mkTyConApp tc1 tys1
    ty2 = mkTyConApp tc2 tys2

998 999 1000
    loc  = ctEvLoc ev
    pred = ctEvPred ev

1001 1002 1003 1004 1005
     -- See Note [Decomposing equality]
    can_decompose inerts
      =  isInjectiveTyCon tc1 (eqRelRole eq_rel)
      || (ctEvFlavour ev /= Given && isEmptyBag (matchableGivens loc pred inerts))

1006 1007 1008 1009 1010
{-
Note [Use canEqFailure in canDecomposableTyConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must use canEqFailure, not canEqHardFailure here, because there is
the possibility of success if working with a representational equality.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1011
Here is one case:
1012 1013 1014 1015 1016

  type family TF a where TF Char = Bool
  data family DF a
  newtype instance DF Bool = MkDF Int

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1017
Suppose we are canonicalising (Int ~R DF (TF a)), where we don't yet
1018 1019
know `a`. This is *not* a hard failure, because we might soon learn
that `a` is, in fact, Char, and then the equality succeeds.
1020

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1021 1022
Here is another case:

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1023
  [G] Age ~R Int
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1024 1025 1026 1027

where Age's constructor is not in scope. We don't want to report
an "inaccessible code" error in the context of this Given!

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
For example, see typecheck/should_compile/T10493, repeated here:

  import Data.Ord (Down)  -- no constructor

  foo :: Coercible (Down Int) Int => Down Int -> Int
  foo = coerce

That should compile, but only because we use canEqFailure and not
canEqHardFailure.

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
Note [Decomposing equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a constraint (of any flavour and role) that looks like
T tys1 ~ T tys2, what can we conclude about tys1 and tys2? The answer,
of course, is "it depends". This Note spells it all out.

In this Note, "decomposition" refers to taking the constraint
  [fl] (T tys1 ~X T tys2)
(for some flavour fl and some role X) and replacing it with
  [fls'] (tys1 ~Xs' tys2)
where that notation indicates a list of new constraints, where the
new constraints may have different flavours and different roles.

The key property to consider is injectivity. When decomposing a Given the
decomposition is sound if and only if T is injective in all of its type
arguments. When decomposing a Wanted, the decomposition is sound (assuming the
correct roles in the produced equality constraints), but it may be a guess --
that is, an unforced decision by the constraint solver. Decomposing Wanteds
over injective TyCons does not entail guessing. But sometimes we want to
decompose a Wanted even when the TyCon involved is not injective! (See below.)

So, in broad strokes, we want this rule:

(*) Decompose a constraint (T tys1 ~X T tys2) if and only if T is injective
at role X.

Pursuing the details requires exploring three axes:
* Flavour: Given vs. Derived vs. Wanted
* Role: Nominal vs. Representational
* TyCon species: datatype vs. newtype vs. data family vs. type family vs. type variable

(So a type variable isn't a TyCon, but it's convenient to put the AppTy case
in the same table.)

Right away, we can say that Derived behaves just as Wanted for the purposes
of decomposition. The difference between Derived and Wanted is the handling of
evidence. Since decomposition in these cases isn't a matter of soundness but of
guessing, we want the same behavior regardless of evidence.

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1077 1078 1079 1080 1081 1082
Here is a table (discussion following) detailing where decomposition of
   (T s1 ... sn) ~r (T t1 .. tn)
is allowed.  The first four lines (Data types ... type family) refer
to TyConApps with various TyCons T; the last line is for AppTy, where
there is presumably a type variable at the head, so it's actually
   (s s1 ... sn) ~r (t t1 .. tn)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

NOMINAL               GIVEN                       WANTED

Datatype               YES                         YES
Newtype                YES                         YES
Data family            YES                         YES
Type family            YES, in injective args{1}   YES, in injective args{1}
Type variable          YES                         YES

REPRESENTATIONAL      GIVEN                       WANTED

Datatype               YES                         YES
Newtype                NO{2}                      MAYBE{2}
Data family            NO{3}                      MAYBE{3}
Type family             NO                          NO
Type variable          NO{4}                       NO{4}

{1}: Type families can be injective in some, but not all, of their arguments,
so we want to do partial decomposition. This is quite different than the way
other decomposition is done, where the decomposed equalities replace the original
one. We thus proceed much like we do with superclasses: emitting new Givens
when "decomposing" a partially-injective type family Given and new Deriveds
when "decomposing" a partially-injective type family Wanted. (As of the time of
writing, 13 June 2015, the implementation of injective type families has not
been merged, but it should be soon. Please delete this parenthetical if the
implementation is indeed merged.)

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1110
{2}: See Note [Decomposing newtypes at representational role]
1111

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1112 1113 1114
{3}: Because of the possibility of newtype instances, we must treat
data families like newtypes. See also Note [Decomposing newtypes at
representational role]. See #10534 and test case
1115
typecheck/should_fail/T10534.
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

{4}: Because type variables can stand in for newtypes, we conservatively do not
decompose AppTys over representational equality.

In the implementation of can_eq_nc and friends, we don't directly pattern
match using lines like in the tables above, as those tables don't cover
all cases (what about PrimTyCon? tuples?). Instead we just ask about injectivity,
boiling the tables above down to rule (*). The exceptions to rule (*) are for
injective type families, which are handled separately from other decompositions,
and the MAYBE entries above.

Simon Peyton Jones's avatar
Simon Peyton Jones committed
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
Note [Decomposing newtypes at representational role]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This note discusses the 'newtype' line in the REPRESENTATIONAL table
in Note [Decomposing equality]. (At nominal role, newtypes are fully
decomposable.)

Here is a representative example of why representational equality over
newtypes is tricky:

  newtype Nt a = Mk Bool         -- NB: a is not used in the RHS,
  type role Nt representational  -- but the user gives it an R role anyway

If we have [W] Nt alpha ~R Nt beta, we *don't* want to decompose to
[W] alpha ~R beta, because it's possible that alpha and beta aren't
representationally equal. Here's another example.

  newtype Nt a = MkNt (Id a)
  type family Id a where Id a = a

  [W] Nt Int ~R Nt Age

Because of its use of a type family, Nt's parameter will get inferred to have
a nominal role. Thus, decomposing the wanted will yield [W] Int ~N Age, which
is unsatisfiable. Unwrapping, though, leads to a solution.

Conclusion:
 * Unwrap newtypes before attempting to decompose them.
   This is done in can_eq_nc'.

It all comes from the fact that newtypes aren't necessarily injective
w.r.t. representational equality.

1159
Furthermore, as explained in Note [NthCo and newtypes] in TyCoRep, we can't use
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
NthCo on representational coercions over newtypes. NthCo comes into play
only when decomposing givens.

Conclusion:
 * Do not decompose [G] N s ~R N t

Is it sensible to decompose *Wanted* constraints over newtypes?  Yes!
It's the only way we could ever prove (IO Int ~R IO Age), recalling
that IO is a newtype.

However we must be careful.  Consider

  type role Nt representational

  [G] Nt a ~R Nt b       (1)
  [W] NT alpha ~R Nt b   (2)
  [W] alpha ~ a          (3)

If we focus on (3) first, we'll substitute in (2), and now it's
identical to the given (1), so we succeed.  But if we focus on (2)
first, and decompose it, we'll get (alpha ~R b), which is not soluble.
This is exactly like the question of overlapping Givens for class
constraints: see Note [Instance and Given overlap] in TcInteract.

Conclusion:
  * Decompose [W] N s ~R N t  iff there no given constraint that could
    later solve it.
1187 1188 1189
-}

canDecomposableTyConAppOK :: CtEvidence -> EqRel
1190
                          -> TyCon -> [TcType] -> [TcType]
1191 1192
                          -> TcS ()
-- Precondition: tys1 and tys2 are the same length, hence "OK"
1193
canDecomposableTyConAppOK ev eq_rel tc tys1 tys2
1194
  = case ev of
1195
     CtDerived {}
1196
        -> unifyDeriveds loc tc_roles tys1 tys2
1197

1198 1199 1200
     CtWanted { ctev_dest = dest }
        -> do { cos <- zipWith4M unifyWanted new_locs tc_roles tys1 tys2
              ; setWantedEq dest (mkTyConAppCo role tc cos) }
1201

1202 1203
     CtGiven { ctev_evar = evar }
        -> do { let ev_co = mkCoVarCo evar
1204
              ; given_evs <- newGivenEvVars loc $
1205 1206
                             [ ( mkPrimEqPredRole r ty1 ty2
                               , EvCoercion (mkNthCo i ev_co) )
1207
                             | (r, ty1, ty2, i) <- zip4 tc_roles tys1 tys2 [0..]
1208 1209
                             , r /= Phantom
                             , not (isCoercionTy ty1) && not (isCoercionTy ty2) ]
1210 1211
              ; emitWorkNC given_evs }
  where
1212 1213 1214 1215 1216 1217
    loc        = ctEvLoc ev
    role       = eqRelRole eq_rel
    tc_roles   = tyConRolesX role tc

      -- the following makes a better distinction between "kind" and "type"
      -- in error messages
1218
    bndrs      = tyConBinders tc
1219
    kind_loc   = toKindLoc loc
1220
    is_kinds   = map isNamedTyConBinder bndrs
1221 1222 1223 1224 1225
    new_locs | Just KindLevel <- ctLocTypeOrKind_maybe loc
             = repeat loc
             | otherwise
             = map (\is_kind -> if is_kind then kind_loc else loc) is_kinds

1226 1227 1228

-- | Call when canonicalizing an equality fails, but if the equality is
-- representational, there is some hope for the future.
1229
-- Examples in Note [Use canEqFailure in canDecomposableTyConApp]
1230 1231
canEqFailure :: CtEvidence -> EqRel
             -> TcType -> TcType -> TcS (StopOrContinue Ct)
1232
canEqFailure ev NomEq ty1 ty2
1233
  = canEqHardFailure ev ty1 ty2
1234
canEqFailure ev ReprEq ty1 ty2
1235
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ty1
1236
       ; (xi2, co2) <- flatten FM_FlattenAll ev ty2
1237 1238 1239
            -- We must flatten the types before putting them in the
            -- inert set, so that we are sure to kick them out when
            -- new equalities become available
1240 1241
       ; traceTcS "canEqFailure with ReprEq" $
         vcat [ ppr ev, ppr ty1, ppr ty2, ppr xi1, ppr xi2 ]
1242
       ; rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
1243 1244
         `andWhenContinue` \ new_ev ->
         continueWith (CIrredEvCan { cc_ev = new_ev }) }
1245 1246

-- | Call when canonicalizing an equality fails with utterly no hope.
1247
canEqHardFailure :: CtEvidence
1248
                 -> TcType -> TcType -> TcS (StopOrContinue Ct)
1249
-- See Note [Make sure that insolubles are fully rewritten]
1250
canEqHardFailure ev ty1 ty2
1251 1252
  = do { (s1, co1) <- flatten FM_SubstOnly ev ty1
       ; (s2, co2) <- flatten FM_SubstOnly ev ty2
1253
       ; rewriteEqEvidence ev NotSwapped s1 s2 co1 co2
1254 1255 1256
         `andWhenContinue` \ new_ev ->
    do { emitInsoluble (mkNonCanonical new_ev)
       ; stopWith new_ev "Definitely not equal" }}
1257

Austin Seipp's avatar
Austin Seipp committed
1258
{-
1259 1260 1261 1262 1263 1264
Note [Decomposing TyConApps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (T s1 t1 ~ T s2 t2), then we can just decompose to
  (s1 ~ s2, t1 ~ t2)
and push those back into the work list.  But if
  s1 = K k1    s2 = K k2
Jan Stolarek's avatar
Jan Stolarek committed
1265
then we will just decomopose s1~s2, and it might be better to
1266 1267 1268 1269 1270 1271
do so on the spot.  An important special case is where s1=s2,
and we get just Refl.

So canDecomposableTyCon is a fast-path decomposition that uses
unifyWanted etc to short-cut that work.

1272 1273 1274
Note [Canonicalising type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (s1 t1) ~ ty2, how should we proceed?
Austin Seipp's avatar
Austin Seipp committed
1275
The simple things is to see if ty2 is of form (s2 t2), and
1276
decompose.  By this time s1 and s2 can't be saturated type
Austin Seipp's avatar
Austin Seipp committed
1277 1278
function applications, because those have been dealt with
by an earlier equation in can_eq_nc, so it is always sound to
1279 1280
decompose.

Austin Seipp's avatar
Austin Seipp committed
1281
However, over-eager decomposition gives bad error messages
1282 1283 1284 1285 1286 1287 1288
for things like
   a b ~ Maybe c
   e f ~ p -> q
Suppose (in the first example) we already know a~Array.  Then if we
decompose the application eagerly, yielding
   a ~ Maybe
   b ~ c
Austin Seipp's avatar
Austin Seipp committed
1289
we get an error        "Can't match Array ~ Maybe",
1290 1291
but we'd prefer to get "Can't match Array b ~ Maybe c".

1292 1293 1294
So instead can_eq_wanted_app flattens the LHS and RHS, in the hope of
replacing (a b) by (Array b), before using try_decompose_app to
decompose it.
1295

1296 1297
Note [Make sure that insolubles are fully rewritten]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1298 1299
When an equality fails, we still want to rewrite the equality
all the way down, so that it accurately reflects
1300 1301
 (a) the mutable reference substitution in force at start of solving
 (b) any ty-binds in force at this point in solving
1302
See Note [Rewrite insolubles] in TcSMonad.
Simon Peyton Jones's avatar
Simon Peyton Jones committed
1303
And if we don't do this there is a bad danger that
1304 1305 1306
TcSimplify.applyTyVarDefaulting will find a variable
that has in fact been substituted.

1307
Note [Do not decompose Given polytype equalities]
1308 1309
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider [G] (forall a. t1 ~ forall a. t2).  Can we decompose this?
1310
No -- what would the evidence look like?  So instead we simply discard