CNF.c 33.1 KB
Newer Older
gcampax's avatar
gcampax committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team 1998-2014
 *
 * GC support for immutable non-GCed structures, also known as Compact
 * Normal Forms (CNF for short). This provides the RTS support for
 * the 'compact' package and the Data.Compact module.
 *
 * ---------------------------------------------------------------------------*/

#define _GNU_SOURCE

#include "PosixSource.h"
#include <string.h>
#include "Rts.h"
#include "RtsUtils.h"

#include "Capability.h"
#include "GC.h"
#include "Storage.h"
#include "CNF.h"
#include "Hash.h"
#include "HeapAlloc.h"
#include "BlockAlloc.h"
25 26
#include "Trace.h"
#include "sm/ShouldCompact.h"
gcampax's avatar
gcampax committed
27 28 29 30 31 32 33 34

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
  Note [Compact Normal Forms]
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~

  A compact normal form (CNF) is a region of memory containing one or more
  Haskell data structures.  The goals are:

  * The CNF lives or dies as a single unit as far as the GC is concerned.  The
    GC does not traverse the data inside the CNF.

  * A CNF can be "serialized" (stored on disk or transmitted over a network).
    To "deserialize", all we need to do is adjust the addresses of the pointers
    within the CNF ("fixup"),  Deserializing can only be done in the context of
    the same Haskell binary that produced the CNF.

  Structure
  ~~~~~~~~~

  * In Data.Compact.Internal we have
    data Compact a = Compact Compact# a

  * The Compact# primitive object is operated on by the primitives.

  * A single CNF looks like this:

  .---------,       .-------------------------------.        ,-------------
  | Compact |    ,--+-> StgCompactNFDataBlock       |   ,--->| StgCompac...
  +---------+    `--+--- self                       |   |    |   self
  |    .----+-.  ,--+--- owner                      |   |    |   wner
  +---------+ |  |  |    next ----------------------+---'    |   next -------->
  |    .    | |  |  |-------------------------------+        +-------------
  `----+----' `--+--+-> StgCompactNFData (Compact#) |        | more data...
       |            |    totalW                     |        |
       |            |    autoblockW                 |        |
       |            |    nursery                    |        |
       |            |    hash                       |        |
       |            |    last                       |        |
       |            |-------------------------------|        |
       `------------+--> data ...                   |        |
                    |                               |        |
                    |                               |        |
                    `-------------------------------'        `-------------

  * Each block in a CNF starts with a StgCompactNFDataBlock header

  * The blocks in a CNF are chained through the next field

  * Multiple CNFs are chained together using the bdescr->link and bdescr->u.prev
    fields of the bdescr.

  * The first block of a CNF (only) contains the StgCompactNFData (aka
    Compact#), right after the StgCompactNFDataBlock header.

  * The data inside a CNF block is ordinary closures

  * During compaction (with sharing enabled) the hash field points to
    a HashTable mapping heap addresses outside the compact to
    addresses within it.  If a GC strikes during compaction, this
    HashTable must be scanned by the GC.

  Invariants
  ~~~~~~~~~~

  (1) A CNF is self-contained.  The data within it does not have any external
      pointers.  EXCEPT: pointers to static constructors that are guaranteed to
      never refer (directly or indirectly) to CAFs are allowed, because the
      garbage collector does not have to track or follow these.

  (2) A CNF contains only immutable data: no THUNKS, FUNs, or mutable
      objects.  This helps maintain invariant (1).

  Details
  ~~~~~~~

  Blocks are appended to the chain automatically as needed, or manually with a
  compactResize() call, which also adjust the size of automatically appended
  blocks.

  Objects can be appended to the block currently marked to the nursery, or any
  of the later blocks if the nursery block is too full to fit the entire
  object. For each block in the chain (which can be multiple block allocator
  blocks), we use the bdescr of its beginning to store how full it is.
  After an object is appended, it is scavenged for any outgoing pointers,
  and all pointed to objects are appended, recursively, in a manner similar
  to copying GC (further discussion in the note [Appending to a Compact])

  We also flag each bdescr in each block allocator block of a compact
  (including those there were obtained as second or later from a single
  allocGroup(n) call) with the BF_COMPACT. This allows the GC to quickly
  realize that a given pointer is in a compact region, and trigger the
  CNF path.

  These two facts combined mean that in any compact block where some object
  begins bdescrs must be valid. For this simplicity this is achieved by
  restricting the maximum size of a compact block to 252 block allocator
  blocks (so that the total with the bdescr is one megablock).

  Compacts as a whole live in special list in each generation, where the
  list is held through the bd->link field of the bdescr of the StgCompactNFData
  closure (as for large objects). They live in a different list than large
  objects because the operation to free them is different (all blocks in
  a compact must be freed individually), and stats/sanity behavior are
  slightly different. This is also the reason that compact allocates memory
  using a special function instead of just calling allocate().

  Compacts are also suitable for network or disk serialization, and to
  that extent they support a pointer fixup operation, which adjusts pointers
  from a previous layout of the chain in memory to the new allocation.
  This works by constructing a temporary binary search table (in the C heap)
  of the old block addresses (which are known from the block header), and
  then searching for each pointer in the table, and adjusting it.
  It relies on ABI compatibility and static linking (or no ASLR) because it
  does not attempt to reconstruct info tables, and uses info tables to detect
  pointers. In practice this means only the exact same binary should be
  used.
*/
gcampax's avatar
gcampax committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

typedef enum {
    ALLOCATE_APPEND,
    ALLOCATE_NEW,
    ALLOCATE_IMPORT_NEW,
    ALLOCATE_IMPORT_APPEND,
} AllocateOp;

static StgCompactNFDataBlock *
compactAllocateBlockInternal(Capability            *cap,
                             StgWord                aligned_size,
                             StgCompactNFDataBlock *first,
                             AllocateOp             operation)
{
    StgCompactNFDataBlock *self;
    bdescr *block, *head;
    uint32_t n_blocks;
    generation *g;

    n_blocks = aligned_size / BLOCK_SIZE;

    // Attempting to allocate an object larger than maxHeapSize
    // should definitely be disallowed.  (bug #1791)
    if ((RtsFlags.GcFlags.maxHeapSize > 0 &&
         n_blocks >= RtsFlags.GcFlags.maxHeapSize) ||
        n_blocks >= HS_INT32_MAX)   // avoid overflow when
                                    // calling allocGroup() below
    {
        heapOverflow();
        // heapOverflow() doesn't exit (see #2592), but we aren't
        // in a position to do a clean shutdown here: we
        // either have to allocate the memory or exit now.
        // Allocating the memory would be bad, because the user
        // has requested that we not exceed maxHeapSize, so we
        // just exit.
        stg_exit(EXIT_HEAPOVERFLOW);
    }

    // It is imperative that first is the first block in the compact
    // (or NULL if the compact does not exist yet)
    // because the evacuate code does not update the generation of
    // blocks other than the first (so we would get the statistics
    // wrong and crash in Sanity)
    if (first != NULL) {
        block = Bdescr((P_)first);
        g = block->gen;
    } else {
        g = g0;
    }

    ACQUIRE_SM_LOCK;
    block = allocGroup(n_blocks);
    switch (operation) {
    case ALLOCATE_NEW:
        ASSERT (first == NULL);
        ASSERT (g == g0);
        dbl_link_onto(block, &g0->compact_objects);
        g->n_compact_blocks += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_IMPORT_NEW:
        dbl_link_onto(block, &g0->compact_blocks_in_import);
        /* fallthrough */
    case ALLOCATE_IMPORT_APPEND:
        ASSERT (first == NULL);
        ASSERT (g == g0);
        g->n_compact_blocks_in_import += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_APPEND:
        g->n_compact_blocks += block->blocks;
        if (g == g0)
            g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    default:
#ifdef DEBUG
        ASSERT(!"code should not be reached");
231
#else
232
        RTS_UNREACHABLE;
gcampax's avatar
gcampax committed
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#endif
    }
    RELEASE_SM_LOCK;

    cap->total_allocated += aligned_size / sizeof(StgWord);

    self = (StgCompactNFDataBlock*) block->start;
    self->self = self;
    self->next = NULL;

    head = block;
    initBdescr(head, g, g);
    head->flags = BF_COMPACT;
    for (block = head + 1, n_blocks --; n_blocks > 0; block++, n_blocks--) {
        block->link = head;
        block->blocks = 0;
        block->flags = BF_COMPACT;
    }

    return self;
}

static inline StgCompactNFDataBlock *
compactGetFirstBlock(StgCompactNFData *str)
{
    return (StgCompactNFDataBlock*) ((W_)str - sizeof(StgCompactNFDataBlock));
}

static inline StgCompactNFData *
firstBlockGetCompact(StgCompactNFDataBlock *block)
{
    return (StgCompactNFData*) ((W_)block + sizeof(StgCompactNFDataBlock));
}

267 268
void
compactFree(StgCompactNFData *str)
gcampax's avatar
gcampax committed
269
{
270
    StgCompactNFDataBlock *block, *next;
gcampax's avatar
gcampax committed
271 272
    bdescr *bd;

273 274
    block = compactGetFirstBlock(str);

gcampax's avatar
gcampax committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    for ( ; block; block = next) {
        next = block->next;
        bd = Bdescr((StgPtr)block);
        ASSERT((bd->flags & BF_EVACUATED) == 0);
        freeGroup(bd);
    }
}

void
compactMarkKnown(StgCompactNFData *str)
{
    bdescr *bd;
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    for ( ; block; block = block->next) {
        bd = Bdescr((StgPtr)block);
        bd->flags |= BF_KNOWN;
    }
}

StgWord
countCompactBlocks(bdescr *outer)
{
    StgCompactNFDataBlock *block;
    W_ count;

    count = 0;
    while (outer) {
        bdescr *inner;

        block = (StgCompactNFDataBlock*)(outer->start);
        do {
            inner = Bdescr((P_)block);
            ASSERT (inner->flags & BF_COMPACT);

            count += inner->blocks;
            block = block->next;
        } while(block);

        outer = outer->link;
    }

    return count;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
#ifdef DEBUG
// Like countCompactBlocks, but adjusts the size so each mblock is assumed to
// only contain BLOCKS_PER_MBLOCK blocks.  Used in memInventory().
StgWord
countAllocdCompactBlocks(bdescr *outer)
{
    StgCompactNFDataBlock *block;
    W_ count;

    count = 0;
    while (outer) {
        bdescr *inner;

        block = (StgCompactNFDataBlock*)(outer->start);
        do {
            inner = Bdescr((P_)block);
            ASSERT (inner->flags & BF_COMPACT);

            count += inner->blocks;
            // See BlockAlloc.c:countAllocdBlocks()
            if (inner->blocks > BLOCKS_PER_MBLOCK) {
                count -= (MBLOCK_SIZE / BLOCK_SIZE - BLOCKS_PER_MBLOCK)
                    * (inner->blocks/(MBLOCK_SIZE/BLOCK_SIZE));
            }
            block = block->next;
        } while(block);

        outer = outer->link;
    }

    return count;
}
#endif

gcampax's avatar
gcampax committed
355 356 357 358 359 360 361 362
StgCompactNFData *
compactNew (Capability *cap, StgWord size)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    StgCompactNFData *self;
    bdescr *bd;

363
    aligned_size = BLOCK_ROUND_UP(size + sizeof(StgCompactNFData)
gcampax's avatar
gcampax committed
364
                                  + sizeof(StgCompactNFDataBlock));
365 366 367

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
gcampax's avatar
gcampax committed
368 369 370 371 372 373 374
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         ALLOCATE_NEW);

    self = firstBlockGetCompact(block);
375
    SET_HDR((StgClosure*)self, &stg_COMPACT_NFDATA_CLEAN_info, CCS_SYSTEM);
gcampax's avatar
gcampax committed
376 377 378
    self->autoBlockW = aligned_size / sizeof(StgWord);
    self->nursery = block;
    self->last = block;
379
    self->hash = NULL;
gcampax's avatar
gcampax committed
380 381 382 383 384

    block->owner = self;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)self + sizeof(StgCompactNFData));
385 386
    self->hp = bd->free;
    self->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;
gcampax's avatar
gcampax committed
387 388 389

    self->totalW = bd->blocks * BLOCK_SIZE_W;

390 391
    debugTrace(DEBUG_compact, "compactNew: size %" FMT_Word, size);

gcampax's avatar
gcampax committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    return self;
}

static StgCompactNFDataBlock *
compactAppendBlock (Capability       *cap,
                    StgCompactNFData *str,
                    StgWord           aligned_size)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;

    block = compactAllocateBlockInternal(cap, aligned_size,
                                         compactGetFirstBlock(str),
                                         ALLOCATE_APPEND);
    block->owner = str;
    block->next = NULL;

    ASSERT (str->last->next == NULL);
    str->last->next = block;
    str->last = block;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)block + sizeof(StgCompactNFDataBlock));
    ASSERT (bd->free == (StgPtr)block + sizeofW(StgCompactNFDataBlock));

    str->totalW += bd->blocks * BLOCK_SIZE_W;

    return block;
}

void
compactResize (Capability *cap, StgCompactNFData *str, StgWord new_size)
{
    StgWord aligned_size;

    aligned_size = BLOCK_ROUND_UP(new_size + sizeof(StgCompactNFDataBlock));
428 429 430

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
gcampax's avatar
gcampax committed
431 432 433 434 435 436 437
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    str->autoBlockW = aligned_size / sizeof(StgWord);
    compactAppendBlock(cap, str, aligned_size);
}

438 439
STATIC_INLINE bool
has_room_for  (bdescr *bd, StgWord sizeW)
gcampax's avatar
gcampax committed
440
{
441 442
    return (bd->free < bd->start + BLOCK_SIZE_W * BLOCKS_PER_MBLOCK
            && bd->free + sizeW <= bd->start + BLOCK_SIZE_W * bd->blocks);
gcampax's avatar
gcampax committed
443 444
}

Ben Gamari's avatar
Ben Gamari committed
445
static bool
gcampax's avatar
gcampax committed
446 447 448 449 450 451 452 453 454 455 456
block_is_full (StgCompactNFDataBlock *block)
{
    bdescr *bd;

    // We consider a block full if we could not fit
    // an entire closure with 7 payload items
    // (this leaves a slop of 64 bytes at most, but
    // it avoids leaving a block almost empty to fit
    // a large byte array, while at the same time
    // it avoids trying to allocate a large closure
    // in a chain of almost empty blocks)
457 458 459

    bd = Bdescr((StgPtr)block);
    return (!has_room_for(bd,7));
gcampax's avatar
gcampax committed
460 461
}

462 463 464 465
void *
allocateForCompact (Capability *cap,
                    StgCompactNFData *str,
                    StgWord sizeW)
gcampax's avatar
gcampax committed
466
{
467
    StgPtr to;
gcampax's avatar
gcampax committed
468
    StgWord next_size;
469 470 471 472 473 474 475
    StgCompactNFDataBlock *block;
    bdescr *bd;

    ASSERT(str->nursery != NULL);
    ASSERT(str->hp > Bdescr((P_)str->nursery)->start);
    ASSERT(str->hp <= Bdescr((P_)str->nursery)->start +
           Bdescr((P_)str->nursery)->blocks * BLOCK_SIZE_W);
gcampax's avatar
gcampax committed
476 477

 retry:
478 479 480 481 482 483 484 485
    if (str->hp + sizeW < str->hpLim) {
        to = str->hp;
        str->hp += sizeW;
        return to;
    }

    bd = Bdescr((P_)str->nursery);
    bd->free = str->hp;
gcampax's avatar
gcampax committed
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    // We know it doesn't fit in the nursery
    // if it is a large object, allocate a new block
    if (sizeW > LARGE_OBJECT_THRESHOLD/sizeof(W_)) {
        next_size = BLOCK_ROUND_UP(sizeW*sizeof(W_) +
                                   sizeof(StgCompactNFData));
        block = compactAppendBlock(cap, str, next_size);
        bd = Bdescr((P_)block);
        to = bd->free;
        bd->free += sizeW;
        return to;
    }

    // move the nursery past full blocks
    if (block_is_full (str->nursery)) {
        do {
gcampax's avatar
gcampax committed
502
            str->nursery = str->nursery->next;
503
        } while (str->nursery && block_is_full(str->nursery));
gcampax's avatar
gcampax committed
504

505 506 507 508 509 510 511 512 513
        if (str->nursery == NULL) {
            str->nursery = compactAppendBlock(cap, str,
                                              str->autoBlockW * sizeof(W_));
        }
        bd = Bdescr((P_)str->nursery);
        str->hp = bd->free;
        str->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;
        goto retry;
    }
gcampax's avatar
gcampax committed
514

515 516 517 518 519 520 521
    // try subsequent blocks
    for (block = str->nursery->next; block != NULL; block = block->next) {
        bd = Bdescr((P_)block);
        if (has_room_for(bd,sizeW)) {
            to = bd->free;
            bd->free += sizeW;
            return to;
gcampax's avatar
gcampax committed
522 523 524
        }
    }

525
    // If all else fails, allocate a new block of the right size.
526
    next_size = stg_max(str->autoBlockW * sizeof(StgWord),
527 528
                    BLOCK_ROUND_UP(sizeW * sizeof(StgWord)
                                   + sizeof(StgCompactNFDataBlock)));
gcampax's avatar
gcampax committed
529 530

    block = compactAppendBlock(cap, str, next_size);
531 532 533 534
    bd = Bdescr((P_)block);
    to = bd->free;
    bd->free += sizeW;
    return to;
gcampax's avatar
gcampax committed
535 536 537
}


538 539 540 541 542 543 544 545 546
void
insertCompactHash (Capability *cap,
                   StgCompactNFData *str,
                   StgClosure *p, StgClosure *to)
{
    insertHashTable(str->hash, (StgWord)p, (const void*)to);
    if (str->header.info == &stg_COMPACT_NFDATA_CLEAN_info) {
        str->header.info = &stg_COMPACT_NFDATA_DIRTY_info;
        recordClosureMutated(cap, (StgClosure*)str);
gcampax's avatar
gcampax committed
547 548 549
    }
}

550 551 552

StgWord
compactContains (StgCompactNFData *str, StgPtr what)
gcampax's avatar
gcampax committed
553 554 555
{
    bdescr *bd;

556 557 558 559
    // This check is the reason why this needs to be
    // implemented in C instead of (possibly faster) Cmm
    if (!HEAP_ALLOCED (what))
        return 0;
gcampax's avatar
gcampax committed
560

561 562 563
    // Note that we don't care about tags, they are eaten
    // away by the Bdescr operation anyway
    bd = Bdescr((P_)what);
gcampax's avatar
gcampax committed
564
    return (bd->flags & BF_COMPACT) != 0 &&
565
        (str == NULL || objectGetCompact((StgClosure*)what) == str);
gcampax's avatar
gcampax committed
566 567
}

568 569 570 571
StgCompactNFDataBlock *
compactAllocateBlock(Capability            *cap,
                     StgWord                size,
                     StgCompactNFDataBlock *previous)
gcampax's avatar
gcampax committed
572
{
573 574 575
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;
gcampax's avatar
gcampax committed
576

577
    aligned_size = BLOCK_ROUND_UP(size);
gcampax's avatar
gcampax committed
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    // We do not link the new object into the generation ever
    // - we cannot let the GC know about this object until we're done
    // importing it and we have fixed up all info tables and stuff
    //
    // but we do update n_compact_blocks, otherwise memInventory()
    // in Sanity will think we have a memory leak, because it compares
    // the blocks he knows about with the blocks obtained by the
    // block allocator
    // (if by chance a memory leak does happen due to a bug somewhere
    // else, memInventory will also report that all compact blocks
    // associated with this compact are leaked - but they are not really,
    // we have a pointer to them and we're not losing track of it, it's
    // just we can't use the GC until we're done with the import)
    //
    // (That btw means that the high level import code must be careful
    // not to lose the pointer, so don't use the primops directly
    // unless you know what you're doing!)
gcampax's avatar
gcampax committed
596

597 598 599 600
    // Other trickery: we pass NULL as first, which means our blocks
    // are always in generation 0
    // This is correct because the GC has never seen the blocks so
    // it had no chance of promoting them
gcampax's avatar
gcampax committed
601

602 603 604 605
    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         previous != NULL ? ALLOCATE_IMPORT_APPEND : ALLOCATE_IMPORT_NEW);
    if (previous != NULL)
        previous->next = block;
gcampax's avatar
gcampax committed
606

607 608
    bd = Bdescr((P_)block);
    bd->free = (P_)((W_)bd->start + size);
gcampax's avatar
gcampax committed
609

610
    return block;
gcampax's avatar
gcampax committed
611 612
}

613 614 615 616 617 618 619
//
// shouldCompact(c,p): returns:
//    SHOULDCOMPACT_IN_CNF if the object is in c
//    SHOULDCOMPACT_STATIC if the object is static
//    SHOULDCOMPACT_NOTIN_CNF if the object is dynamic and not in c
//
StgWord shouldCompact (StgCompactNFData *str, StgClosure *p)
gcampax's avatar
gcampax committed
620
{
621
    bdescr *bd;
gcampax's avatar
gcampax committed
622

623 624
    if (!HEAP_ALLOCED(p))
        return SHOULDCOMPACT_STATIC;  // we have to copy static closures too
gcampax's avatar
gcampax committed
625

626 627 628
    bd = Bdescr((P_)p);
    if (bd->flags & BF_PINNED) {
        return SHOULDCOMPACT_PINNED;
gcampax's avatar
gcampax committed
629
    }
630 631 632 633
    if ((bd->flags & BF_COMPACT) && objectGetCompact(p) == str) {
        return SHOULDCOMPACT_IN_CNF;
    } else {
        return SHOULDCOMPACT_NOTIN_CNF;
gcampax's avatar
gcampax committed
634 635 636
    }
}

637 638 639 640
/* -----------------------------------------------------------------------------
   Sanity-checking a compact
   -------------------------------------------------------------------------- */

gcampax's avatar
gcampax committed
641
#ifdef DEBUG
642 643
STATIC_INLINE void
check_object_in_compact (StgCompactNFData *str, StgClosure *p)
gcampax's avatar
gcampax committed
644
{
645
    bdescr *bd;
gcampax's avatar
gcampax committed
646

647 648 649 650 651
    // Only certain static closures are allowed to be referenced from
    // a compact, but let's be generous here and assume that all
    // static closures are OK.
    if (!HEAP_ALLOCED(p))
        return;
gcampax's avatar
gcampax committed
652

653 654
    bd = Bdescr((P_)p);
    ASSERT((bd->flags & BF_COMPACT) != 0 && objectGetCompact(p) == str);
gcampax's avatar
gcampax committed
655 656
}

657
static void
gcampax's avatar
gcampax committed
658 659 660 661 662 663 664 665
verify_mut_arr_ptrs (StgCompactNFData *str,
                     StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
666
        check_object_in_compact(str, UNTAG_CLOSURE(*(StgClosure**)p));
gcampax's avatar
gcampax committed
667 668
    }

669
    return;
gcampax's avatar
gcampax committed
670 671
}

672
static void
gcampax's avatar
gcampax committed
673 674 675 676 677 678 679 680 681 682 683 684
verify_consistency_block (StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    bdescr *bd;
    StgPtr p;
    const StgInfoTable *info;
    StgClosure *q;

    p = (P_)firstBlockGetCompact(block);
    bd = Bdescr((P_)block);
    while (p < bd->free) {
        q = (StgClosure*)p;

685
        ASSERT(LOOKS_LIKE_CLOSURE_PTR(q));
gcampax's avatar
gcampax committed
686 687 688 689

        info = get_itbl(q);
        switch (info->type) {
        case CONSTR_1_0:
690
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[0]));
gcampax's avatar
gcampax committed
691 692 693 694 695
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
696
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[1]));
gcampax's avatar
gcampax committed
697
        case CONSTR_1_1:
698
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[0]));
gcampax's avatar
gcampax committed
699 700 701 702 703 704
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
Simon Marlow's avatar
Simon Marlow committed
705
        case CONSTR_NOCAF:
gcampax's avatar
gcampax committed
706 707 708
        {
            uint32_t i;

709 710 711
            for (i = 0; i < info->layout.payload.ptrs; i++) {
                check_object_in_compact(str, UNTAG_CLOSURE(q->payload[i]));
            }
gcampax's avatar
gcampax committed
712 713 714 715 716 717 718 719 720 721 722
            p += sizeofW(StgClosure) + info->layout.payload.ptrs +
                info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
723
            verify_mut_arr_ptrs(str, (StgMutArrPtrs*)p);
gcampax's avatar
gcampax committed
724 725 726 727 728 729 730 731 732 733
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN:
        case SMALL_MUT_ARR_PTRS_FROZEN0:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++)
734
                check_object_in_compact(str, UNTAG_CLOSURE(arr->payload[i]));
gcampax's avatar
gcampax committed
735 736 737 738 739 740 741 742 743 744

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            p += sizeofW(StgCompactNFData);
            break;

        default:
745
            barf("verify_consistency_block");
gcampax's avatar
gcampax committed
746 747 748
        }
    }

749
    return;
gcampax's avatar
gcampax committed
750 751
}

752
static void
gcampax's avatar
gcampax committed
753 754 755 756 757 758
verify_consistency_loop (StgCompactNFData *str)
{
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    do {
759
        verify_consistency_block(str, block);
gcampax's avatar
gcampax committed
760 761 762 763
        block = block->next;
    } while (block && block->owner);
}

764
void verifyCompact (StgCompactNFData *str USED_IF_DEBUG)
gcampax's avatar
gcampax committed
765
{
766
    IF_DEBUG(sanity, verify_consistency_loop(str));
gcampax's avatar
gcampax committed
767
}
768
#endif // DEBUG
gcampax's avatar
gcampax committed
769

770 771 772
/* -----------------------------------------------------------------------------
   Fixing up pointers
   -------------------------------------------------------------------------- */
gcampax's avatar
gcampax committed
773

Ben Gamari's avatar
Ben Gamari committed
774
STATIC_INLINE bool
gcampax's avatar
gcampax committed
775 776 777 778 779 780 781 782
any_needs_fixup(StgCompactNFDataBlock *block)
{
    // ->next pointers are always valid, even if some blocks were
    // not allocated where we want them, because compactAllocateAt()
    // will take care to adjust them

    do {
        if (block->self != block)
Ben Gamari's avatar
Ben Gamari committed
783
            return true;
gcampax's avatar
gcampax committed
784 785 786
        block = block->next;
    } while (block && block->owner);

Ben Gamari's avatar
Ben Gamari committed
787
    return false;
gcampax's avatar
gcampax committed
788 789 790 791 792 793 794 795 796 797 798 799
}

#ifdef DEBUG
static void
spew_failing_pointer(StgWord *fixup_table, uint32_t count, StgWord address)
{
    uint32_t i;
    StgWord key, value;
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord size;

800
    debugBelch("Failed to adjust 0x%" FMT_HexWord ". Block dump follows...\n",
gcampax's avatar
gcampax committed
801 802 803 804 805 806 807 808 809 810
               address);

    for (i  = 0; i < count; i++) {
        key = fixup_table [2 * i];
        value = fixup_table [2 * i + 1];

        block = (StgCompactNFDataBlock*)value;
        bd = Bdescr((P_)block);
        size = (W_)bd->free - (W_)bd->start;

811 812 813
        debugBelch("%" FMT_Word32 ": was 0x%" FMT_HexWord "-0x%" FMT_HexWord
                   ", now 0x%" FMT_HexWord "-0x%" FMT_HexWord "\n", i, key,
                   key+size, value, value+size);
gcampax's avatar
gcampax committed
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    }
}
#endif

STATIC_INLINE StgCompactNFDataBlock *
find_pointer(StgWord *fixup_table, uint32_t count, StgClosure *q)
{
    StgWord address = (W_)q;
    uint32_t a, b, c;
    StgWord key, value;
    bdescr *bd;

    a = 0;
    b = count;
    while (a < b-1) {
        c = (a+b)/2;

        key = fixup_table[c * 2];
        value = fixup_table[c * 2 + 1];

        if (key > address)
            b = c;
        else
            a = c;
    }

    // three cases here: 0, 1 or 2 blocks to check
    for ( ; a < b; a++) {
        key = fixup_table[a * 2];
        value = fixup_table[a * 2 + 1];

        if (key > address)
            goto fail;

        bd = Bdescr((P_)value);

        if (key + bd->blocks * BLOCK_SIZE <= address)
            goto fail;

        return (StgCompactNFDataBlock*)value;
    }

 fail:
    // We should never get here

#ifdef DEBUG
    spew_failing_pointer(fixup_table, count, address);
#endif
    return NULL;
}

Ben Gamari's avatar
Ben Gamari committed
865
static bool
gcampax's avatar
gcampax committed
866 867 868 869 870 871
fixup_one_pointer(StgWord *fixup_table, uint32_t count, StgClosure **p)
{
    StgWord tag;
    StgClosure *q;
    StgCompactNFDataBlock *block;

872

gcampax's avatar
gcampax committed
873 874 875 876
    q = *p;
    tag = GET_CLOSURE_TAG(q);
    q = UNTAG_CLOSURE(q);

877 878 879 880 881 882
    // We can encounter a pointer outside the compact if it points to
    // a static constructor that does not (directly or indirectly)
    // reach any CAFs. (see Note [Compact Normal Forms])
    if (!HEAP_ALLOCED(q))
        return true;

gcampax's avatar
gcampax committed
883 884
    block = find_pointer(fixup_table, count, q);
    if (block == NULL)
Ben Gamari's avatar
Ben Gamari committed
885
        return false;
gcampax's avatar
gcampax committed
886
    if (block == block->self)
Ben Gamari's avatar
Ben Gamari committed
887
        return true;
gcampax's avatar
gcampax committed
888 889 890 891

    q = (StgClosure*)((W_)q - (W_)block->self + (W_)block);
    *p = TAG_CLOSURE(tag, q);

Ben Gamari's avatar
Ben Gamari committed
892
    return true;
gcampax's avatar
gcampax committed
893 894
}

Ben Gamari's avatar
Ben Gamari committed
895
static bool
gcampax's avatar
gcampax committed
896 897 898 899 900 901 902 903 904 905
fixup_mut_arr_ptrs (StgWord          *fixup_table,
                    uint32_t               count,
                    StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        if (!fixup_one_pointer(fixup_table, count, (StgClosure**)p))
Ben Gamari's avatar
Ben Gamari committed
906
            return false;
gcampax's avatar
gcampax committed
907 908
    }

Ben Gamari's avatar
Ben Gamari committed
909
    return true;
gcampax's avatar
gcampax committed
910 911
}

Ben Gamari's avatar
Ben Gamari committed
912
static bool
gcampax's avatar
gcampax committed
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
fixup_block(StgCompactNFDataBlock *block, StgWord *fixup_table, uint32_t count)
{
    const StgInfoTable *info;
    bdescr *bd;
    StgPtr p;

    bd = Bdescr((P_)block);
    p = bd->start + sizeofW(StgCompactNFDataBlock);
    while (p < bd->free) {
        ASSERT (LOOKS_LIKE_CLOSURE_PTR(p));
        info = get_itbl((StgClosure*)p);

        switch (info->type) {
        case CONSTR_1_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
Ben Gamari's avatar
Ben Gamari committed
929
                return false;
gcampax's avatar
gcampax committed
930 931 932 933 934 935 936
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[1]))
Ben Gamari's avatar
Ben Gamari committed
937
                return false;
gcampax's avatar
gcampax committed
938 939 940
        case CONSTR_1_1:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
Ben Gamari's avatar
Ben Gamari committed
941
                return false;
gcampax's avatar
gcampax committed
942 943 944 945 946 947
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
Simon Marlow's avatar
Simon Marlow committed
948
        case CONSTR_NOCAF:
gcampax's avatar
gcampax committed
949 950 951 952 953 954
        {
            StgPtr end;

            end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
            for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
                if (!fixup_one_pointer(fixup_table, count, (StgClosure **)p))
Ben Gamari's avatar
Ben Gamari committed
955
                    return false;
gcampax's avatar
gcampax committed
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
            }
            p += info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN:
        case MUT_ARR_PTRS_FROZEN0:
            fixup_mut_arr_ptrs(fixup_table, count, (StgMutArrPtrs*)p);
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN:
        case SMALL_MUT_ARR_PTRS_FROZEN0:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++) {
                if (!fixup_one_pointer(fixup_table, count,
                                       &arr->payload[i]))
Ben Gamari's avatar
Ben Gamari committed
980
                    return false;
gcampax's avatar
gcampax committed
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
            }

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            if (p == (bd->start + sizeofW(StgCompactNFDataBlock))) {
                // Ignore the COMPACT_NFDATA header
                // (it will be fixed up later)
                p += sizeofW(StgCompactNFData);
                break;
            }

            // fall through

        default:
            debugBelch("Invalid non-NFData closure (type %d) in Compact\n",
                       info->type);
Ben Gamari's avatar
Ben Gamari committed
1000
            return false;
gcampax's avatar
gcampax committed
1001 1002 1003
        }
    }

Ben Gamari's avatar
Ben Gamari committed
1004
    return true;
gcampax's avatar
gcampax committed
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
}

static int
cmp_fixup_table_item (const void *e1, const void *e2)
{
    const StgWord *w1 = e1;
    const StgWord *w2 = e2;

    return *w1 - *w2;
}

static StgWord *
build_fixup_table (StgCompactNFDataBlock *block, uint32_t *pcount)
{
    uint32_t count;
    StgCompactNFDataBlock *tmp;
    StgWord *table;

    count = 0;
    tmp = block;
    do {
        count++;
        tmp = tmp->next;
    } while(tmp && tmp->owner);

    table = stgMallocBytes(sizeof(StgWord) * 2 * count, "build_fixup_table");

    count = 0;
    do {
        table[count * 2] = (W_)block->self;
        table[count * 2 + 1] = (W_)block;
        count++;
        block = block->next;
    } while(block && block->owner);

    qsort(table, count, sizeof(StgWord) * 2, cmp_fixup_table_item);

    *pcount = count;
    return table;
}

Ben Gamari's avatar
Ben Gamari committed
1046
static bool
gcampax's avatar
gcampax committed
1047 1048 1049
fixup_loop(StgCompactNFDataBlock *block, StgClosure **proot)
{
    StgWord *table;
Ben Gamari's avatar
Ben Gamari committed
1050
    bool ok;
gcampax's avatar
gcampax committed
1051 1052 1053 1054 1055 1056
    uint32_t count;

    table = build_fixup_table (block, &count);

    do {
        if (!fixup_block(block, table, count)) {
Ben Gamari's avatar
Ben Gamari committed
1057
            ok = false;
gcampax's avatar
gcampax committed
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            goto out;
        }

        block = block->next;
    } while(block && block->owner);

    ok = fixup_one_pointer(table, count, proot);

 out:
    stgFree(table);
    return ok;
}

static void
fixup_early(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *last;

    do {
        last = block;
        block = block->next;
    } while(block);

    str->last = last;
}

static void
fixup_late(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *nursery;
    bdescr *bd;
    StgWord totalW;

    nursery = block;
    totalW = 0;
    do {
        block->self = block;

        bd = Bdescr((P_)block);
        totalW += bd->blocks * BLOCK_SIZE_W;

        if (block->owner != NULL) {
            if (bd->free != bd->start)
                nursery = block;
            block->owner = str;
        }

        block = block->next;
    } while(block);

    str->nursery = nursery;
1109 1110 1111 1112
    bd = Bdescr((P_)nursery);
    str->hp = bd->free;
    str->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;

gcampax's avatar
gcampax committed
1113 1114 1115 1116 1117 1118 1119
    str->totalW = totalW;
}

static StgClosure *
maybe_fixup_internal_pointers (StgCompactNFDataBlock *block,
                               StgClosure            *root)
{
Ben Gamari's avatar
Ben Gamari committed
1120
    bool ok;
gcampax's avatar
gcampax committed
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    StgClosure **proot;

    // Check for fast path
    if (!any_needs_fixup(block))
        return root;

    debugBelch("Compact imported at the wrong address, will fix up"
               " internal pointers\n");

    // I am PROOT!
    proot = &root;

    ok = fixup_loop(block, proot);
    if (!ok)
        *proot = NULL;

    return *proot;
}

StgPtr
compactFixupPointers(StgCompactNFData *str,
                     StgClosure       *root)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord total_blocks;

    block = compactGetFirstBlock(str);

    fixup_early(str, block);

    root = maybe_fixup_internal_pointers(block, root);

    // Do the late fixup even if we did not fixup all
    // internal pointers, we need that for GC and Sanity
    fixup_late(str, block);

    // Now we're ready to let the GC, Sanity, the profiler
    // etc. know about this object
    bd = Bdescr((P_)block);

    total_blocks = str->totalW / BLOCK_SIZE_W;

    ACQUIRE_SM_LOCK;
    ASSERT (bd->gen == g0);
    ASSERT (g0->n_compact_blocks_in_import >= total_blocks);
    g0->n_compact_blocks_in_import -= total_blocks;
    g0->n_compact_blocks += total_blocks;
    dbl_link_remove(bd, &g0->compact_blocks_in_import);
    dbl_link_onto(bd, &g0->compact_objects);
    RELEASE_SM_LOCK;

#if DEBUG
    if (root)
        verify_consistency_loop(str);
#endif

    return (StgPtr)root;
}