StgCmmHeap.hs 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
-----------------------------------------------------------------------------
--
-- Stg to C--: heap management functions
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module StgCmmHeap (
10 11
        getVirtHp, setVirtHp, setRealHp,
        getHpRelOffset, hpRel,
12

13
        entryHeapCheck, altHeapCheck,
14

15 16
        mkVirtHeapOffsets, mkVirtConstrOffsets,
        mkStaticClosureFields, mkStaticClosure,
17

18
        allocDynClosure, allocDynClosureCmm, emitSetDynHdr
19 20 21 22
    ) where

#include "HsVersions.h"

23
import CmmType
24 25 26 27 28 29 30 31 32 33 34
import StgSyn
import CLabel
import StgCmmLayout
import StgCmmUtils
import StgCmmMonad
import StgCmmProf
import StgCmmTicky
import StgCmmGran
import StgCmmClosure
import StgCmmEnv

35
import MkGraph
36 37

import SMRep
38
import Cmm
39 40 41
import CmmUtils
import CostCentre
import Outputable
42
import IdInfo( CafInfo(..), mayHaveCafRefs )
43
import Module
44
import FastString( mkFastString, fsLit )
45 46 47
import Constants

-----------------------------------------------------------
48
--              Initialise dynamic heap objects
49 50 51
-----------------------------------------------------------

allocDynClosure
Simon Marlow's avatar
Simon Marlow committed
52 53
        :: CmmInfoTable
        -> LambdaFormInfo
54 55 56 57 58 59 60 61 62 63
        -> CmmExpr              -- Cost Centre to stick in the object
        -> CmmExpr              -- Cost Centre to blame for this alloc
                                -- (usually the same; sometimes "OVERHEAD")

        -> [(NonVoid StgArg, VirtualHpOffset)]  -- Offsets from start of object
                                                -- ie Info ptr has offset zero.
                                                -- No void args in here
        -> FCode (LocalReg, CmmAGraph)

allocDynClosureCmm
Simon Marlow's avatar
Simon Marlow committed
64
        :: CmmInfoTable -> LambdaFormInfo -> CmmExpr -> CmmExpr
65 66 67 68
        -> [(CmmExpr, VirtualHpOffset)]
        -> FCode (LocalReg, CmmAGraph)

-- allocDynClosure allocates the thing in the heap,
69
-- and modifies the virtual Hp to account for this.
70 71 72
-- The second return value is the graph that sets the value of the
-- returned LocalReg, which should point to the closure after executing
-- the graph.
73 74 75 76 77

-- Note [Return a LocalReg]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- allocDynClosure returns a LocalReg, not a (Hp+8) CmmExpr.
-- Reason:
78 79 80 81 82
--      ...allocate object...
--      obj = Hp + 8
--      y = f(z)
--      ...here obj is still valid,
--         but Hp+8 means something quite different...
83 84


Simon Marlow's avatar
Simon Marlow committed
85
allocDynClosure info_tbl lf_info use_cc _blame_cc args_w_offsets
86 87
  = do  { let (args, offsets) = unzip args_w_offsets
        ; cmm_args <- mapM getArgAmode args     -- No void args
Simon Marlow's avatar
Simon Marlow committed
88 89
        ; allocDynClosureCmm info_tbl lf_info
                             use_cc _blame_cc (zip cmm_args offsets)
90 91
        }

Simon Marlow's avatar
Simon Marlow committed
92
allocDynClosureCmm info_tbl lf_info use_cc _blame_cc amodes_w_offsets
93 94 95
  = do  { virt_hp <- getVirtHp

        -- SAY WHAT WE ARE ABOUT TO DO
Simon Marlow's avatar
Simon Marlow committed
96 97 98
        ; let rep = cit_rep info_tbl
        ; tickyDynAlloc rep lf_info
        ; profDynAlloc rep use_cc
99 100 101 102 103 104 105 106 107 108 109 110 111
                -- ToDo: This is almost certainly wrong
                -- We're ignoring blame_cc. But until we've
                -- fixed the boxing hack in chooseDynCostCentres etc,
                -- we're worried about making things worse by "fixing"
                -- this part to use blame_cc!

        -- FIND THE OFFSET OF THE INFO-PTR WORD
        ; let   info_offset = virt_hp + 1
                -- info_offset is the VirtualHpOffset of the first
                -- word of the new object
                -- Remember, virtHp points to last allocated word,
                -- ie 1 *before* the info-ptr word of new object.

Simon Marlow's avatar
Simon Marlow committed
112
                info_ptr = CmmLit (CmmLabel (cit_lbl info_tbl))
113 114 115

        -- ALLOCATE THE OBJECT
        ; base <- getHpRelOffset info_offset
116
        ; emit (mkComment $ mkFastString "allocDynClosure")
117 118 119 120 121
        ; emitSetDynHdr base info_ptr  use_cc
        ; let (cmm_args, offsets) = unzip amodes_w_offsets
        ; hpStore base cmm_args offsets

        -- BUMP THE VIRTUAL HEAP POINTER
Simon Marlow's avatar
Simon Marlow committed
122
        ; setVirtHp (virt_hp + heapClosureSize rep)
123 124 125 126 127

        -- Assign to a temporary and return
        -- Note [Return a LocalReg]
        ; hp_rel <- getHpRelOffset info_offset
        ; getCodeR $ assignTemp hp_rel }
128 129

emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
130
emitSetDynHdr base info_ptr ccs
131 132 133 134
  = hpStore base header [0..]
  where
    header :: [CmmExpr]
    header = [info_ptr] ++ dynProfHdr ccs
135 136 137
        -- ToDo: Gransim stuff
        -- ToDo: Parallel stuff
        -- No ticky header
138 139 140 141 142 143

hpStore :: CmmExpr -> [CmmExpr] -> [VirtualHpOffset] -> FCode ()
-- Store the item (expr,off) in base[off]
hpStore base vals offs
  = emit (catAGraphs (zipWith mk_store vals offs))
  where
144
    mk_store val off = mkStore (cmmOffsetW base off) val
145 146 147


-----------------------------------------------------------
148
--              Layout of static closures
149 150 151 152 153
-----------------------------------------------------------

-- Make a static closure, adding on any extra padding needed for CAFs,
-- and adding a static link field if necessary.

154
mkStaticClosureFields
Simon Marlow's avatar
Simon Marlow committed
155
        :: CmmInfoTable
156
        -> CostCentreStack
157
        -> CafInfo
158 159
        -> [CmmLit]             -- Payload
        -> [CmmLit]             -- The full closure
Simon Marlow's avatar
Simon Marlow committed
160
mkStaticClosureFields info_tbl ccs caf_refs payload
161 162
  = mkStaticClosure info_lbl ccs payload padding
        static_link_field saved_info_field
163
  where
Simon Marlow's avatar
Simon Marlow committed
164
    info_lbl = cit_lbl info_tbl
165 166 167 168 169 170 171 172 173

    -- CAFs must have consistent layout, regardless of whether they
    -- are actually updatable or not.  The layout of a CAF is:
    --
    --        3 saved_info
    --        2 static_link
    --        1 indirectee
    --        0 info ptr
    --
Simon Marlow's avatar
Simon Marlow committed
174 175 176
    -- the static_link and saved_info fields must always be in the
    -- same place.  So we use isThunkRep rather than closureUpdReqd
    -- here:
177

Simon Marlow's avatar
Simon Marlow committed
178
    is_caf = isThunkRep (cit_rep info_tbl)
179

180 181 182
    padding
        | not is_caf = []
        | otherwise  = ASSERT(null payload) [mkIntCLit 0]
183 184

    static_link_field
Simon Marlow's avatar
Simon Marlow committed
185 186
        | is_caf || staticClosureNeedsLink info_tbl = [static_link_value]
        | otherwise                                 = []
187 188

    saved_info_field
189 190
        | is_caf     = [mkIntCLit 0]
        | otherwise  = []
191

192
        -- For a static constructor which has NoCafRefs, we set the
193 194
        -- static link field to a non-zero value so the garbage
        -- collector will ignore it.
195
    static_link_value
196 197
        | mayHaveCafRefs caf_refs  = mkIntCLit 0
        | otherwise                = mkIntCLit 1  -- No CAF refs
198 199 200 201


mkStaticClosure :: CLabel -> CostCentreStack -> [CmmLit]
  -> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
202
mkStaticClosure info_lbl ccs payload padding static_link_field saved_info_field
203 204
  =  [CmmLabel info_lbl]
  ++ variable_header_words
205
  ++ concatMap padLitToWord payload
206
  ++ padding
207 208 209 210
  ++ static_link_field
  ++ saved_info_field
  where
    variable_header_words
211 212 213 214
        =  staticGranHdr
        ++ staticParHdr
        ++ staticProfHdr ccs
        ++ staticTickyHdr
215

216 217
-- JD: Simon had ellided this padding, but without it the C back end asserts
-- failure. Maybe it's a bad assertion, and this padding is indeed unnecessary?
218 219 220 221 222 223 224 225 226 227 228
padLitToWord :: CmmLit -> [CmmLit]
padLitToWord lit = lit : padding pad_length
  where width = typeWidth (cmmLitType lit)
        pad_length = wORD_SIZE - widthInBytes width :: Int

        padding n | n <= 0 = []
                  | n `rem` 2 /= 0 = CmmInt 0 W8  : padding (n-1)
                  | n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n-2)
                  | n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n-4)
                  | otherwise      = CmmInt 0 W64 : padding (n-8)

229
-----------------------------------------------------------
230
--              Heap overflow checking
231 232 233 234 235 236 237 238 239 240 241 242
-----------------------------------------------------------

{- Note [Heap checks]
   ~~~~~~~~~~~~~~~~~~
Heap checks come in various forms.  We provide the following entry
points to the runtime system, all of which use the native C-- entry
convention.

  * gc() performs garbage collection and returns
    nothing to its caller

  * A series of canned entry points like
243
        r = gc_1p( r )
244 245
    where r is a pointer.  This performs gc, and
    then returns its argument r to its caller.
246

247
  * A series of canned entry points like
248
        gcfun_2p( f, x, y )
249 250 251 252 253 254 255 256 257
    where f is a function closure of arity 2
    This performs garbage collection, keeping alive the
    three argument ptrs, and then tail-calls f(x,y)

These are used in the following circumstances

* entryHeapCheck: Function entry
    (a) With a canned GC entry sequence
        f( f_clo, x:ptr, y:ptr ) {
258 259 260
             Hp = Hp+8
             if Hp > HpLim goto L
             ...
261 262 263
          L: HpAlloc = 8
             jump gcfun_2p( f_clo, x, y ) }
     Note the tail call to the garbage collector;
264
     it should do no register shuffling
265 266 267

    (b) No canned sequence
        f( f_clo, x:ptr, y:ptr, ...etc... ) {
268 269 270
          T: Hp = Hp+8
             if Hp > HpLim goto L
             ...
271
          L: HpAlloc = 8
272 273
             call gc()  -- Needs an info table
             goto T }
274 275

* altHeapCheck: Immediately following an eval
276 277
  Started as
        case f x y of r { (p,q) -> rhs }
278 279 280
  (a) With a canned sequence for the results of f
       (which is the very common case since
       all boxed cases return just one pointer
281 282 283 284 285 286
           ...
           r = f( x, y )
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
287

288 289
        L: r = gc_1p( r )
           goto K }
290

291 292 293 294
        Here, the info table needed by the call
        to gc_1p should be the *same* as the
        one for the call to f; the C-- optimiser
        spots this sharing opportunity)
295 296 297

   (b) No canned sequence for results of f
       Note second info table
298 299 300 301 302 303
           ...
           (r1,r2,r3) = call f( x, y )
        K:
           Hp = Hp+8
           if Hp > HpLim goto L
           ...code for rhs...
304

305 306
        L: call gc()    -- Extra info table here
           goto K
307 308 309

* generalHeapCheck: Anywhere else
  e.g. entry to thunk
310
       case branch *not* following eval,
311 312 313
       or let-no-escape
  Exactly the same as the previous case:

314 315 316 317
        K:      -- K needs an info table
           Hp = Hp+8
           if Hp > HpLim goto L
           ...
318

319 320
        L: call gc()
           goto K
321 322 323 324 325
-}

--------------------------------------------------------------
-- A heap/stack check at a function or thunk entry point.

326 327 328 329 330 331 332
entryHeapCheck :: ClosureInfo
               -> Int            -- Arg Offset
               -> Maybe LocalReg -- Function (closure environment)
               -> Int            -- Arity -- not same as len args b/c of voids
               -> [LocalReg]     -- Non-void args (empty for thunk)
               -> FCode ()
               -> FCode ()
333

334
entryHeapCheck cl_info offset nodeSet arity args code
335
  = do updfr_sz <- getUpdFrameOff
336 337
       heapCheck True (gc_call updfr_sz) code

338
  where
339 340 341 342 343 344 345 346 347
    is_thunk = arity == 0
    is_fastf = case closureFunInfo cl_info of
                    Just (_, ArgGen _) -> False
                    _otherwise         -> True

    args' = map (CmmReg . CmmLocal) args
    setN = case nodeSet of
                   Just n  -> mkAssign nodeReg (CmmReg $ CmmLocal n)
                   Nothing -> mkAssign nodeReg $
Simon Marlow's avatar
Simon Marlow committed
348
                       CmmLit (CmmLabel $ staticClosureLabel cl_info)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

    {- Thunks:          Set R1 = node, jump GCEnter1
       Function (fast): Set R1 = node, jump GCFun
       Function (slow): Set R1 = node, call generic_gc -}
    gc_call upd = setN <*> gc_lbl upd
    gc_lbl upd
        | is_thunk  = mkDirectJump (CmmReg $ CmmGlobal GCEnter1) [] sp
        | is_fastf  = mkDirectJump (CmmReg $ CmmGlobal GCFun) [] sp
        | otherwise = mkForeignJump Slow (CmmReg $ CmmGlobal GCFun) args' upd
        where sp = max offset upd
    {- DT (12/08/10) This is a little fishy, mainly the sp fix up amount.
     - This is since the ncg inserts spills before the stack/heap check.
     - This should be fixed up and then we won't need to fix up the Sp on
     - GC calls, but until then this fishy code works -}

{-
    -- This code is slightly outdated now and we could easily keep the above
    -- GC methods. However, there may be some performance gains to be made by
    -- using more specialised GC entry points. Since the semi generic GCFun
    -- entry needs to check the node and figure out what registers to save...
    -- if we provided and used more specialised GC entry points then these
    -- runtime decisions could be turned into compile time decisions.

372 373
    args'     = case fun of Just f  -> f : args
                            Nothing -> args
374
    arg_exprs = map (CmmReg . CmmLocal) args'
375
    gc_call updfr_sz
376
        | arity == 0 = mkJumpGC (CmmReg (CmmGlobal GCEnter1)) arg_exprs updfr_sz
377 378 379 380 381 382
        | otherwise =
            case gc_lbl args' of
                Just _lbl -> panic "StgCmmHeap.entryHeapCheck: not finished"
                            -- mkJumpGC (CmmLit (CmmLabel (mkRtsCodeLabel lbl)))
                            --         arg_exprs updfr_sz
                Nothing  -> mkCall generic_gc (GC, GC) [] [] updfr_sz
383

384
    gc_lbl :: [LocalReg] -> Maybe FastString
385
    gc_lbl [reg]
386 387 388 389 390 391 392 393 394 395 396
        | isGcPtrType ty  = Just (sLit "stg_gc_unpt_r1") -- "stg_gc_fun_1p"
        | isFloatType ty  = case width of
                              W32 -> Just (sLit "stg_gc_f1")
                              W64 -> Just (sLit "stg_gc_d1")
                              _other -> Nothing
        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
          ty = localRegType reg
          width = typeWidth ty
397 398 399

    gc_lbl regs = gc_lbl_ptrs (map (isGcPtrType . localRegType) regs)

400
    gc_lbl_ptrs :: [Bool] -> Maybe FastString
401
    -- JD: TEMPORARY -- UNTIL THESE FUNCTIONS EXIST...
402 403 404
    --gc_lbl_ptrs [True,True]      = Just (sLit "stg_gc_fun_2p")
    --gc_lbl_ptrs [True,True,True] = Just (sLit "stg_gc_fun_3p")
    gc_lbl_ptrs _ = Nothing
405 406 407 408 409
-}


--------------------------------------------------------------
-- A heap/stack check at in a case alternative
410

411 412
altHeapCheck :: [LocalReg] -> FCode a -> FCode a
altHeapCheck regs code
413 414
  = do updfr_sz <- getUpdFrameOff
       heapCheck False (gc_call updfr_sz) code
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  where
    reg_exprs = map (CmmReg . CmmLocal) regs

    gc_call sp =
        case rts_label regs of
             Just gc -> mkCall (CmmLit gc) (GC, GC) regs reg_exprs sp
             Nothing -> mkCall generic_gc (GC, GC) [] [] sp

    rts_label [reg]
        | isGcPtrType ty = Just (mkGcLabel "stg_gc_unpt_r1")
        | isFloatType ty = case width of
                                W32       -> Just (mkGcLabel "stg_gc_f1")
                                W64       -> Just (mkGcLabel "stg_gc_d1")
                                _         -> Nothing

        | width == wordWidth = Just (mkGcLabel "stg_gc_unbx_r1")
        | width == W64       = Just (mkGcLabel "stg_gc_l1")
        | otherwise          = Nothing
        where
            ty = localRegType reg
            width = typeWidth ty
437 438 439 440

    rts_label _ = Nothing


441 442 443 444 445 446 447
-- | The generic GC procedure; no params, no results
generic_gc :: CmmExpr
generic_gc = CmmLit $ mkGcLabel "stg_gc_noregs"

-- | Create a CLabel for calling a garbage collector entry point
mkGcLabel :: String -> CmmLit
mkGcLabel = (CmmLabel . (mkCmmCodeLabel rtsPackageId) . fsLit)
448 449

-------------------------------
450 451
heapCheck :: Bool -> CmmAGraph -> FCode a -> FCode a
heapCheck checkStack do_gc code
452
  = getHeapUsage $ \ hpHw ->
453 454 455 456 457 458 459
    -- Emit heap checks, but be sure to do it lazily so
    -- that the conditionals on hpHw don't cause a black hole
    do  { emit $ do_checks checkStack hpHw do_gc
        ; tickyAllocHeap hpHw
        ; doGranAllocate hpHw
        ; setRealHp hpHw
        ; code }
460

461
do_checks :: Bool       -- Should we check the stack?
462 463
          -> WordOff    -- Heap headroom
          -> CmmAGraph  -- What to do on failure
464 465 466 467
          -> CmmAGraph
do_checks checkStack alloc do_gc
  = withFreshLabel "gc" $ \ loop_id ->
    withFreshLabel "gc" $ \ gc_id   ->
468
      mkLabel loop_id
469 470
      <*> (let hpCheck = if alloc == 0 then mkNop
                         else mkAssign hpReg bump_hp <*>
471 472 473 474
                              mkCmmIfThen hp_oflo (alloc_n <*> mkBranch gc_id)
           in if checkStack
                 then mkCmmIfThenElse sp_oflo (mkBranch gc_id) hpCheck
                 else hpCheck)
475
      <*> mkComment (mkFastString "outOfLine should follow:")
476
      <*> outOfLine (mkLabel gc_id
477 478 479
                     <*> mkComment (mkFastString "outOfLine here")
                     <*> do_gc
                     <*> mkBranch loop_id)
480 481 482 483 484 485
                -- Test for stack pointer exhaustion, then
                -- bump heap pointer, and test for heap exhaustion
                -- Note that we don't move the heap pointer unless the
                -- stack check succeeds.  Otherwise we might end up
                -- with slop at the end of the current block, which can
                -- confuse the LDV profiler.
486
  where
487
    alloc_lit = CmmLit (mkIntCLit (alloc*wORD_SIZE)) -- Bytes
488 489
    bump_hp   = cmmOffsetExprB (CmmReg hpReg) alloc_lit

490 491 492
    -- Sp overflow if (Sp - CmmHighStack < SpLim)
    sp_oflo = CmmMachOp mo_wordULt
                  [CmmMachOp (MO_Sub (typeWidth (cmmRegType spReg)))
493 494
                             [CmmReg spReg, CmmLit CmmHighStackMark],
                   CmmReg spLimReg]
495

496 497 498 499 500 501 502
    -- Hp overflow if (Hp > HpLim)
    -- (Hp has been incremented by now)
    -- HpLim points to the LAST WORD of valid allocation space.
    hp_oflo = CmmMachOp mo_wordUGt
                  [CmmReg hpReg, CmmReg (CmmGlobal HpLim)]

    alloc_n = mkAssign (CmmGlobal HpAlloc) alloc_lit
503 504 505 506 507 508 509 510 511 512

{-

{- Unboxed tuple alternatives and let-no-escapes (the two most annoying
constructs to generate code for!)  For unboxed tuple returns, there
are an arbitrary number of possibly unboxed return values, some of
which will be in registers, and the others will be on the stack.  We
always organise the stack-resident fields into pointers &
non-pointers, and pass the number of each to the heap check code. -}

513 514 515 516 517 518 519
unbxTupleHeapCheck
        :: [(Id, GlobalReg)]    -- Live registers
        -> WordOff      -- no. of stack slots containing ptrs
        -> WordOff      -- no. of stack slots containing nonptrs
        -> CmmAGraph    -- code to insert in the failure path
        -> FCode ()
        -> FCode ()
520 521

unbxTupleHeapCheck regs ptrs nptrs fail_code code
522
  -- We can't manage more than 255 pointers/non-pointers
523 524
  -- in a generic heap check.
  | ptrs > 255 || nptrs > 255 = panic "altHeapCheck"
525
  | otherwise
526
  = initHeapUsage $ \ hpHw -> do
527 528 529 530 531
        { codeOnly $ do { do_checks 0 {- no stack check -} hpHw
                                    full_fail_code rts_label
                        ; tickyAllocHeap hpHw }
        ; setRealHp hpHw
        ; code }
532 533
  where
    full_fail_code  = fail_code `plusStmts` oneStmt assign_liveness
534 535 536 537
    assign_liveness = CmmAssign (CmmGlobal (VanillaReg 9))      -- Ho ho ho!
                                (CmmLit (mkWordCLit liveness))
    liveness        = mkRegLiveness regs ptrs nptrs
    rts_label       = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_ut")))
538 539


540
{- Old Gransim com -- I have no idea whether it still makes sense (SLPJ Sep07)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
For GrAnSim the code for doing a heap check and doing a context switch
has been separated. Especially, the HEAP_CHK macro only performs a
heap check. THREAD_CONTEXT_SWITCH should be used for doing a context
switch. GRAN_FETCH_AND_RESCHEDULE must be put at the beginning of
every slow entry code in order to simulate the fetching of
closures. If fetching is necessary (i.e. current closure is not local)
then an automatic context switch is done. -}


When failing a check, we save a return address on the stack and
jump to a pre-compiled code fragment that saves the live registers
and returns to the scheduler.

The return address in most cases will be the beginning of the basic
block in which the check resides, since we need to perform the check
again on re-entry because someone else might have stolen the resource
in the meantime.

%************************************************************************
560
%*                                                                      *
561
     Generic Heap/Stack Checks - used in the RTS
562
%*                                                                      *
563 564 565 566 567 568 569 570
%************************************************************************

\begin{code}
hpChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> FCode ()
hpChkGen bytes liveness reentry
  = do_checks' bytes True assigns stg_gc_gen
  where
    assigns = mkStmts [
571 572 573
                CmmAssign (CmmGlobal (VanillaReg 9))  liveness,
                CmmAssign (CmmGlobal (VanillaReg 10)) reentry
                ]
574 575 576 577 578 579 580 581 582 583 584 585

-- a heap check where R1 points to the closure to enter on return, and
-- we want to assign to Sp[0] on failure (used in AutoApply.cmm:BUILD_PAP).
hpChkNodePointsAssignSp0 :: CmmExpr -> CmmExpr -> FCode ()
hpChkNodePointsAssignSp0 bytes sp0
  = do_checks' bytes True assign stg_gc_enter1
  where assign = oneStmt (CmmStore (CmmReg spReg) sp0)

stg_gc_gen    = CmmLit (CmmLabel (mkRtsCodeLabel (sLit "stg_gc_gen")))
\end{code}

-}