DsBinds.hs 47.4 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42 43
import TysPrim ( mkProxyPrimTy )
import TyCon      ( isTupleTyCon, tyConDataCons_maybe
Iavor S. Diatchki's avatar
Iavor S. Diatchki committed
44
                  , tyConName, isPromotedTyCon, isPromotedDataCon, tyConKind )
45
import TcEvidence
46
import TcType
47
import Type
Iavor S. Diatchki's avatar
Iavor S. Diatchki committed
48
import Kind (returnsConstraintKind)
batterseapower's avatar
batterseapower committed
49
import Coercion hiding (substCo)
50 51
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, tupleCon, mkListTy
                  , mkBoxedTupleTy, stringTy )
Simon Marlow's avatar
Simon Marlow committed
52
import Id
53
import MkId(proxyHashId)
54
import Class
55
import DataCon  ( dataConTyCon, dataConWorkId )
56
import Name
57
import MkId     ( seqId )
58
import IdInfo   ( IdDetails(..) )
59
import Var
60
import VarSet
Simon Marlow's avatar
Simon Marlow committed
61
import Rules
62
import VarEnv
63
import Outputable
64
import Module
Simon Marlow's avatar
Simon Marlow committed
65 66
import SrcLoc
import Maybes
67
import OrdList
Simon Marlow's avatar
Simon Marlow committed
68 69
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
70
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
71
import FastString
72
import ErrUtils( MsgDoc )
73
import ListSetOps( getNth )
74
import Util
75
import Control.Monad( when )
76
import MonadUtils
77
import Control.Monad(liftM)
78
import Fingerprint(Fingerprint(..), fingerprintString)
79

Austin Seipp's avatar
Austin Seipp committed
80 81 82
{-
************************************************************************
*                                                                      *
83
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
84 85 86
*                                                                      *
************************************************************************
-}
87

88 89
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
90

91
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
92
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
93
                      ; return (fromOL binds') }
94 95

------------------------
96
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
97

98 99
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
100

101 102
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
103

104
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
105

106
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
107 108
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
109

110 111
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
112
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
113
                   | otherwise         = var
114

115
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
116

117 118 119
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
120
 = do   { dflags <- getDynFlags
121
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
122
        ; let body' = mkOptTickBox tick body
123
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
124
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
125
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
126 127 128

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
129
  = do  { body_expr <- dsGuarded grhss ty
130 131
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
132 133
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
134
    ; return (toOL sel_binds) }
sof's avatar
sof committed
135

136 137 138 139
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
140 141 142
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
143 144
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
145
  = do  { dflags <- getDynFlags
146 147 148
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
149
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
150 151
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
152 153
                            Let core_bind $
                            Var local
154

155 156 157 158 159 160 161
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
162

163 164 165
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
166
         -- See Note [Desugaring AbsBinds]
167 168 169
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
170
                              | (lcl_id, rhs) <- fromOL bind_prs ]
171
                -- Monomorphic recursion possible, hence Rec
172

173 174 175
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
176
        ; ds_binds <- dsTcEvBinds_s ev_binds
177 178 179 180
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
181

182
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
183

184
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
185
                           , abe_mono = local, abe_prags = spec_prags })
186 187
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
188
                                 mkLams tyvars $ mkLams dicts $
189 190
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
191
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
192 193
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
194 195 196
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
197 198
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
199

200
        ; export_binds_s <- mapM mk_bind exports
201

202 203
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
204 205 206 207 208 209 210 211 212 213 214
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
215

cactus's avatar
cactus committed
216 217
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

218
------------------------
219 220
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
221
  | is_default_method                 -- Default methods are *always* inlined
222 223
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

224
  | DFunId is_newtype <- idDetails gbl_id
225 226
  = (mk_dfun_w_stuff is_newtype, rhs)

227 228
  | otherwise
  = case inlinePragmaSpec inline_prag of
229 230 231
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
232
          Inline          -> inline_pair
233

234 235
  where
    inline_prag   = idInlinePragma gbl_id
236
    inlinable_unf = mkInlinableUnfolding dflags rhs
237 238
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
239 240
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
241
       , let real_arity = dict_arity + arity
242
        -- NB: The arity in the InlineRule takes account of the dictionaries
243 244 245 246 247 248
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
249

250 251 252
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
253
       | is_newtype
254 255 256 257 258 259 260 261 262 263 264 265
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

266 267 268 269

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
270

Austin Seipp's avatar
Austin Seipp committed
271
{-
272 273 274 275 276 277 278 279 280 281
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

282 283 284 285 286
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
287 288
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
289
But we don't want that, because if M.f isn't exported,
290 291
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
292 293 294
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
295 296 297
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
298 299 300 301
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
302
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
303
Although I'm a bit worried about whether full laziness might
304
float the f_lcl binding out and then inline M.f at its call site
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

320
The top-level AbsBinds for $cround has no tyvars or dicts (because the
321 322 323 324 325 326 327
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

328 329 330 331 332
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
333 334 335

and desugar it to

336 337 338
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
339 340

where B is the *non-recursive* binding
341 342 343
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
344 345

Notice (a) g has a different number of type variables to f, so we must
346 347
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
348

349 350 351 352
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
353

354 355 356 357
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
358 359

Why got to this trouble?  It's a common case, and it removes the
360
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
361 362 363 364
compilation, especially in a case where there are a *lot* of
bindings.


365 366 367 368 369 370 371 372
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
373
happen as a result of method sharing), there's a danger that we never
374 375 376 377
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
378
has the arity with which it is declared in the source code.  In this
379
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
380
should mean that (foo d) is a PAP and we don't share it.
381 382 383

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
384 385 386 387 388 389 390 391 392 393 394 395 396 397
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
398
-}
399

400
------------------------
401
dsSpecs :: CoreExpr     -- Its rhs
402
        -> TcSpecPrags
403 404
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
405
-- See Note [Handling SPECIALISE pragmas] in TcBinds
406 407 408 409 410 411
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

412 413 414
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
415 416 417
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
418
  | isJust (isClassOpId_maybe poly_id)
419 420
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
421 422
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
423 424
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
425

426 427
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
428 429 430
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
431
                            -- See Note [Activation pragmas for SPECIALISE]
432

433
  | otherwise
434
  = putSrcSpanDs loc $
435 436
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
437 438
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
439 440 441
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
442 443 444 445
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
446
           Left msg -> do { warnDs msg; return Nothing } ;
447
           Right (rule_bndrs, _fn, args) -> do
448

449
       { dflags <- getDynFlags
Simon Peyton Jones's avatar
Simon Peyton Jones committed
450 451 452 453
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
454 455 456
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
457
             rule =  mkRule False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
458
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
459 460 461
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
462

463
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
464

Ian Lynagh's avatar
Ian Lynagh committed
465 466
       ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags)
              (warnDs (specOnInline poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
467 468 469 470 471

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
472 473 474 475
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
476
             = rhs          -- Local Id; this is its rhs
477 478
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
479 480 481
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
482
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
483
                            -- The type checker has checked that it *has* an unfolding
484

485 486 487 488 489
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
490
                                 -- in OccurAnal
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


specOnInline :: Name -> MsgDoc
509
specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
510
                 <+> quotes (ppr f)
511

Austin Seipp's avatar
Austin Seipp committed
512
{-
513 514 515 516 517 518 519 520
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

521
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
543
SPEC [n] f :: ty            [n]   INLINE [k]
544 545 546 547 548 549 550 551 552 553
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
554 555
************************************************************************
*                                                                      *
556
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
557 558 559
*                                                                      *
************************************************************************
-}
560

561
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
562 563
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
564
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
565
--
566
-- Returns Nothing if the LHS isn't of the expected shape
567 568 569 570 571 572
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

573 574
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
575 576 577
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
578 579
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
580
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
581
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
582

583
  | otherwise
584
  = Left bad_shape_msg
585
 where
586 587 588 589
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

590 591
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
592

593
   orig_bndr_set = mkVarSet orig_bndrs
594

595
        -- Add extra dict binders: Note [Free dictionaries]
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose (Case scrut bndr ty [(DEFAULT, _, body)]) args
      | isDeadBinder bndr   -- Note [Matching seqId]
      , let args' = [Type (idType bndr), Type ty, scrut, body]
      = Just (seqId, args' ++ args)

   decompose _ _ = Nothing
613 614

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
615 616
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
617
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
618
                             , ptext (sLit "is not bound in RULE lhs")])
619 620 621
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
622
   pp_bndr bndr
623 624 625
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
626 627

   drop_dicts :: CoreExpr -> CoreExpr
628
   drop_dicts e
629 630 631
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
632
       (bnds, body) = split_lets (occurAnalyseExpr e)
633
           -- The occurAnalyseExpr drops dead bindings which is
634 635
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
654

Austin Seipp's avatar
Austin Seipp committed
655
{-
656
Note [Decomposing the left-hand side of a RULE]
657
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
658
There are several things going on here.
659 660
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
661
* extra_dict_bndrs: see Note [Free dictionaries]
662 663 664

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
665
drop_dicts drops dictionary bindings on the LHS where possible.
666 667
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
668
   Reasoning here is that there is only one d:Eq [Int], and so we can
669 670 671 672
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
673
         one of the orig_bndrs, which we assume occur on RHS.
674 675 676 677 678 679
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
680
         to match, but there is no other way to get d:Eq a
681

682
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
683 684 685 686 687 688
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
689
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
690 691 692 693 694 695
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
696
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
697 698
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

699 700 701
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

702 703 704 705 706 707 708 709 710 711
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
712
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
713 714 715 716 717 718
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


719 720 721 722
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

723
   (a) Inline any remaining dictionary bindings (which hopefully
724 725 726
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
727
       Note that we substitute the function too; we might
728 729
       have this as a LHS:  let f71 = M.f Int in f71

730
   (c) Do eta reduction.  To see why, consider the fold/build rule,
731 732 733 734
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
735
         augment g (build h)
736
       we do not want to get
737
         augment (\a. g a) (build h)
738 739
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
740

741
Note [Matching seqId]
742 743
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
744
and this code turns it back into an application of seq!
745 746
See Note [Rules for seq] in MkId for the details.

747 748 749
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
750
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
751
        ... SPECIALISE f :: Eq a => a -> a ...
752 753
It's true that this *is* a more specialised type, but the rule
we get is something like this:
754 755
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
756 757
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
758 759 760 761
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

762 763
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
764 765
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
766 767 768
over it too.  *Any* dict with that type will do.

So for example when you have
769 770
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
771
        ... SPECIALISE f :: Int -> Int ...
772 773

Then we get the SpecPrag
774
        SpecPrag (f Int dInt)
775 776

And from that we want the rule
777 778 779

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
780 781 782 783 784 785 786

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

787

Austin Seipp's avatar
Austin Seipp committed
788 789
************************************************************************
*                                                                      *
790
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
791 792
*                                                                      *
************************************************************************
793

Austin Seipp's avatar
Austin Seipp committed
794
-}
795

796
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
797
dsHsWrapper WpHole            e = return e
798 799 800
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
801 802 803 804 805 806
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
807
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
Joachim Breitner's avatar
Joachim Breitner committed
808
                                  dsTcCoercion co (mkCast e)
809 810
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
811
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
812 813

--------------------------------------
814 815 816 817 818
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

819
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
820
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
821 822
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

823
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
824
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
825
  where
826 827 828
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
829

830
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
831 832 833 834 835

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
836
    edges = foldrBag ((:) . mk_node) [] bs
837 838

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
839 840
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
841 842 843


---------------------------------------
844
dsEvTerm :: EvTerm -> DsM CoreExpr