Env.hs 19.2 KB
Newer Older
1
-- Vectorise a modules type and class declarations.
2
--
3 4
-- This produces new type constructors and family instances top be included in the module toplevel
-- as well as bindings for worker functions, dfuns, and the like.
5

6
module Vectorise.Type.Env ( 
7
  vectTypeEnv,
8 9
) where
  
10 11
#include "HsVersions.h"

12
import Vectorise.Env
13
import Vectorise.Vect
14 15
import Vectorise.Monad
import Vectorise.Builtins
16
import Vectorise.Type.TyConDecl
17
import Vectorise.Type.Classify
18 19
import Vectorise.Generic.PADict
import Vectorise.Generic.PAMethods
20
import Vectorise.Generic.PData
21
import Vectorise.Generic.Description
22
import Vectorise.Utils
23

rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
24
import CoreSyn
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
25
import CoreUtils
26
import CoreUnfold
27
import DataCon
28 29
import TyCon
import Type
30
import FamInstEnv
31
import Id
32
import MkId
33
import NameEnv
34
import NameSet
35
import OccName
36

37
import Util
38
import Outputable
39
import FastString
40
import MonadUtils
41

42
import Control.Monad
43
import Data.Maybe
44
import Data.List
45

46

47 48 49 50 51 52 53 54 55
-- Note [Pragmas to vectorise tycons]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- VECTORISE pragmas for type constructors cover three different flavours of vectorising data type
-- constructors:
--
-- (1) Data type constructor 'T' that may be used in vectorised code, where 'T' represents itself,
--     but the representation of 'T' is opaque in vectorised code.  
--
56
--     An example is the treatment of 'Int'.  'Int's can be used in vectorised code and remain
57 58 59
--     unchanged by vectorisation.  However, the representation of 'Int' by the 'I#' data
--     constructor wrapping an 'Int#' is not exposed in vectorised code.  Instead, computations
--     involving the representation need to be confined to scalar code.
60
--
61 62 63 64 65 66
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
--
--     Type constructors declared with {-# VECTORISE SCALAR type T #-} are treated in this manner.
--     (The vectoriser never treats a type constructor automatically in this manner.)
--
67 68 69 70 71 72 73 74 75 76 77 78 79 80
-- (2) Data type constructor 'T' that may be used in vectorised code, where 'T' is represented by an
--     explicitly given 'Tv', but the representation of 'T' is opaque in vectorised code.  
--
--     An example is the treatment of '[::]'.  '[::]'s can be used in vectorised code and is
--     vectorised to 'PArray'.  However, the representation of '[::]' is not exposed in vectorised
--     code.  Instead, computations involving the representation need to be confined to scalar code.
--
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
--
--     Type constructors declared with {-# VECTORISE SCALAR type T = T' #-} are treated in this 
--     manner. (The vectoriser never treats a type constructor automatically in this manner.)
--
-- (3) Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
81 82 83 84 85
--     code, where 'T' and the 'Cn' are automatically vectorised in the same manner as data types
--     declared in a vectorised module.  This includes the case where the vectoriser determines that
--     the original representation of 'T' may be used in vectorised code (as it does not embed any
--     parallel arrays.)  This case is for type constructors that are *imported* from a non-
--     vectorised module, but that we want to use with full vectorisation support.
86
--
87 88
--     An example is the treatment of 'Ordering' and '[]'.  The former remains unchanged by
--     vectorisation, whereas the latter is fully vectorised.
89 90 91 92 93

--     'PData' and 'PRepr' instances are automatically generated by the vectoriser.
--
--     Type constructors declared with {-# VECTORISE type T #-} are treated in this manner.
--
94
-- (4) Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
95 96
--     code, where 'T' is represented by an explicitly given 'Tv' whose constructors 'Cvn' represent
--     the original constructors in vectorised code.  As a special case, we can have 'Tv = T'
97
--
98 99
--     An example is the treatment of 'Bool', which is represented by itself in vectorised code
--     (as it cannot embed any parallel arrays).  However, we do not want any automatic generation
100
--     of class and family instances, which is why Case (3) does not apply.
101
--
102 103
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
104
--
105
--     Type constructors declared with {-# VECTORISE type T = T' #-} are treated in this manner.
106
--
107 108
-- In addition, we have also got a single pragma form for type classes: {-# VECTORISE class C #-}.
-- It implies that the class type constructor may be used in vectorised code together with its data
109
-- constructor.  We generally produce a vectorised version of the data type and data constructor.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
-- We do not generate 'PData' and 'PRepr' instances for class type constructors.  This pragma is the
-- default for all type classes declared in this module, but the pragma can also be used explitly on
-- imported classes.

-- Note [Vectorising classes]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- We vectorise classes essentially by just vectorising their desugared Core representation, but we
-- do generate a 'Class' structure along the way (see 'Vectorise.Type.TyConDecl.vectTyConDecl').
--
-- Here is an example illustrating the mapping — assume
--
--   class Num a where
--     (+) :: a -> a -> a
--
-- It desugars to
--
127
--   data Num a = D:Num { (+) :: a -> a -> a }
128 129 130
--
-- which we vectorise to
--
131
--  data V:Num a = D:V:Num { ($v+) :: PArray a :-> PArray a :-> PArray a }
132 133 134
--
-- while adding the following entries to the vectorisation map:
--
135 136
--   tycon  : Num   --> V:Num
--   datacon: D:Num --> D:V:Num
137
--   var    : (+) --> ($v+)
138

139
-- |Vectorise type constructor including class type constructors.
140
--
141
vectTypeEnv :: [TyCon]                  -- Type constructors defined in this module
142
            -> [CoreVect]               -- All 'VECTORISE [SCALAR] type' declarations in this module
143
            -> [CoreVect]               -- All 'VECTORISE class' declarations in this module
144
            -> VM ( [TyCon]             -- old TyCons ++ new TyCons
145 146
                  , [FamInst]           -- New type family instances.
                  , [(Var, CoreExpr)])  -- New top level bindings.
147
vectTypeEnv tycons vectTypeDecls vectClassDecls
148
  = do { traceVt "** vectTypeEnv" $ ppr tycons
149 150 151 152 153 154 155 156 157

         -- Build a map containing all vectorised type constructor.  If they are scalar, they are
         -- mapped to 'False' (vectorised type constructor == original type constructor).
       ; allScalarTyConNames <- globalScalarTyCons  -- covers both current and imported modules
       ; vectTyCons          <- globalVectTyCons
       ; let vectTyConBase    = mapNameEnv (const True) vectTyCons   -- by default fully vectorised
             vectTyConFlavour = foldNameSet (\n env -> extendNameEnv env n False) vectTyConBase
                                            allScalarTyConNames

158
       ; let   -- {-# VECTORISE SCALAR type T -#} (imported and local tycons)
159
             localAbstractTyCons    = [tycon | VectType True tycon Nothing <- vectTypeDecls]
160 161

               -- {-# VECTORISE type T -#} (ONLY the imported tycons)
162 163
             impVectTyCons          = (   [tycon | VectType False tycon Nothing <- vectTypeDecls]
                                       ++ [tycon | VectClass tycon              <- vectClassDecls])
164 165
                                      \\ tycons

166 167 168
               -- {-# VECTORISE [SCALAR] type T = T' -#} (imported and local tycons)
             vectTyConsWithRHS      = [ (tycon, rhs, isAbstract) 
                                      | VectType isAbstract tycon (Just rhs) <- vectTypeDecls]
169 170 171

               -- filter VECTORISE SCALAR tycons and VECTORISE tycons with explicit rhses
             vectSpecialTyConNames  = mkNameSet . map tyConName $
172 173
                                        localAbstractTyCons ++ map fst3 vectTyConsWithRHS
             notVectSpecialTyCon tc = not $ (tyConName tc) `elemNameSet` vectSpecialTyConNames
174

175 176 177 178
           -- Split the list of 'TyCons' into the ones (1) that we must vectorise and those (2)
           -- that we could, but don't need to vectorise.  Type constructors that are not data
           -- type constructors or use non-Haskell98 features are being dropped.  They may not
           -- appear in vectorised code.  (We also drop the local type constructors appearing in a
179
           -- VECTORISE SCALAR pragma or a VECTORISE pragma with an explicit right-hand side, as
180 181 182
           -- these are being handled separately.  NB: Some type constructors may be marked SCALAR
           -- /and/ have an explicit right-hand side.)
           --
183
           -- Furthermore, 'drop_tcs' are those type constructors that we cannot vectorise.
184
       ; let maybeVectoriseTyCons           = filter notVectSpecialTyCon tycons ++ impVectTyCons
185
             (conv_tcs, keep_tcs, drop_tcs) = classifyTyCons vectTyConFlavour maybeVectoriseTyCons
186
             
187
       ; traceVt " VECT SCALAR    : " $ ppr localAbstractTyCons
188
       ; traceVt " VECT [class]   : " $ ppr impVectTyCons
189
       ; traceVt " VECT with rhs  : " $ ppr (map fst3 vectTyConsWithRHS)
190
       ; traceVt " -- after classification (local and VECT [class] tycons) --" empty
191 192
       ; traceVt " reuse          : " $ ppr keep_tcs
       ; traceVt " convert        : " $ ppr conv_tcs
193 194
       
           -- warn the user about unvectorised type constructors
195 196 197 198
       ; let explanation    = ptext (sLit "(They use unsupported language extensions") $$
                              ptext (sLit "or depend on type constructors that are not vectorised)")
             drop_tcs_nosyn = filter (not . isSynTyCon) drop_tcs
       ; unless (null drop_tcs_nosyn) $
199
           emitVt "Warning: cannot vectorise these type constructors:" $ 
200
             pprQuotedList drop_tcs_nosyn $$ explanation
201

202
       ; mapM_ addGlobalScalarTyCon keep_tcs
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217
       ; let mapping =      
                    -- Type constructors that we don't need to vectorise, use the same
                    -- representation in both unvectorised and vectorised code; they are not
                    -- abstract.
                  [(tycon, tycon, False) | tycon <- keep_tcs]
                    -- We do the same for type constructors declared VECTORISE SCALAR /without/
                    -- an explicit right-hand side, but ignore their representation (data
                    -- constructors) as they are abstract.
               ++ [(tycon, tycon, True) | tycon <- localAbstractTyCons]
                    -- Type constructors declared VECTORISE /with/ an explicit vectorised type,
                    -- we map from the original to the given type; whether they are abstract depends
                    -- on whether the vectorisation declaration was SCALAR.
               ++ vectTyConsWithRHS
       ; syn_tcs <- catMaybes <$> mapM defTyConDataCons mapping
218

219 220
           -- Vectorise all the data type declarations that we can and must vectorise (enter the
           -- type and data constructors into the vectorisation map on-the-fly.)
221 222 223 224 225
       ; new_tcs <- vectTyConDecls conv_tcs

           -- We don't need new representation types for dictionary constructors. The constructors
           -- are always fully applied, and we don't need to lift them to arrays as a dictionary
           -- of a particular type always has the same value.
226 227
       ; let orig_tcs = filter (not . isClassTyCon) $ keep_tcs ++ conv_tcs
             vect_tcs = filter (not . isClassTyCon) $ keep_tcs ++ new_tcs
228 229 230

           -- Build 'PRepr' and 'PData' instance type constructors and family instances for all
           -- type constructors with vectorised representations.
231 232 233 234
       ; reprs      <- mapM tyConRepr vect_tcs
       ; repr_tcs   <- zipWith3M buildPReprTyCon  orig_tcs vect_tcs reprs
       ; pdata_tcs  <- zipWith3M buildPDataTyCon  orig_tcs vect_tcs reprs
       ; pdatas_tcs <- zipWith3M buildPDatasTyCon orig_tcs vect_tcs reprs
235

236
       ; let inst_tcs  = repr_tcs ++ pdata_tcs ++ pdatas_tcs
237 238 239
             fam_insts = map mkLocalFamInst inst_tcs
       ; updGEnv $ extendFamEnv fam_insts

240 241 242 243
           -- Generate workers for the vectorised data constructors, dfuns for the 'PA' instances of
           -- the vectorised type constructors, and associate the type constructors with their dfuns
           -- in the global environment.  We get back the dfun bindings (which we will subsequently
           -- inject into the modules toplevel).
244 245
       ; (_, binds) <- fixV $ \ ~(dfuns, _) ->
           do { defTyConPAs (zipLazy vect_tcs dfuns)
246

247
                  -- Query the 'PData' instance type constructors for type constructors that have a
248
                  -- VECTORISE pragma with an explicit right-hand side (this is Item (4) of
249
                  -- "Note [Pragmas to vectorise tycons]" above).
250 251 252
              ; let (withRHS_non_abstract, vwithRHS_non_abstract) 
                      = unzip [(tycon, vtycon) | (tycon, vtycon, False) <- vectTyConsWithRHS]
              ; pdata_withRHS_tcs <- mapM pdataReprTyConExact withRHS_non_abstract
253

254
                  -- Build workers for all vectorised data constructors (except abstract ones)
255
              ; sequence_ $
256 257
                  zipWith3 vectDataConWorkers (orig_tcs  ++ withRHS_non_abstract)
                                              (vect_tcs  ++ vwithRHS_non_abstract)
258 259
                                              (pdata_tcs ++ pdata_withRHS_tcs)

260
                  -- Build a 'PA' dictionary for all type constructors (except abstract ones & those
261 262 263 264 265 266 267
                  -- defined with an explicit right-hand side where the dictionary is user-supplied)
              ; dfuns <- sequence $
                           zipWith4 buildTyConPADict
                                    vect_tcs
                                    repr_tcs
                                    pdata_tcs
                                    pdatas_tcs
268 269 270 271 272

              ; binds <- takeHoisted
              ; return (dfuns, binds)
              }

273 274
           -- Return the vectorised variants of type constructors as well as the generated instance
           -- type constructors, family instances, and dfun bindings.
275
       ; return (new_tcs ++ inst_tcs ++ syn_tcs, fam_insts, binds)
276
       }
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  where
    fst3 (a, _, _) = a

    -- Add a mapping from the original to vectorised type constructor to the vectorisation map.  
    -- Unless the type constructor is abstract, also mappings from the orignal's data constructors
    -- to the vectorised type's data constructors.
    --
    -- We have three cases: (1) original and vectorised type constructor are the same, (2) the
    -- name of the vectorised type constructor is canonical (as prescribed by 'mkVectTyConOcc'), or
    -- (3) the name is not canonical.  In the third case, we additionally introduce a type synonym
    -- with the canonical name that is set equal to the non-canonical name (so that we find the
    -- right type constructor when reading vectorisation information from interface files).
    --
    defTyConDataCons (origTyCon, vectTyCon, isAbstract)
      = do { canonName <- mkLocalisedName mkVectTyConOcc origName
           ; if    origName == vectName                             -- Case (1)
                || vectName == canonName                            -- Case (2)
             then do 
               { defTyCon origTyCon vectTyCon                         -- T  --> vT
               ; defDataCons                                          -- Ci --> vCi
               ; return Nothing
               }
            else do                                                 -- Case (3)
              { let synTyCon = mkSyn canonName (mkTyConTy vectTyCon)  -- type S = vT
              ; defTyCon origTyCon synTyCon                           -- T  --> S
              ; defDataCons                                           -- Ci --> vCi
              ; return $ Just synTyCon
              }
           }
      where
        origName  = tyConName origTyCon
        vectName  = tyConName vectTyCon

        mkSyn canonName ty = mkSynTyCon canonName (typeKind ty) [] (SynonymTyCon ty) NoParentTyCon
        
        defDataCons
          | isAbstract = return ()
          | otherwise  
          = do { MASSERT(length (tyConDataCons origTyCon) == length (tyConDataCons vectTyCon))
               ; zipWithM_ defDataCon (tyConDataCons origTyCon) (tyConDataCons vectTyCon)
               }
318 319


320
-- Helpers --------------------------------------------------------------------
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
321

322 323 324 325 326 327 328 329 330 331 332 333
buildTyConPADict :: TyCon -> TyCon -> TyCon -> TyCon -> VM Var
buildTyConPADict vect_tc prepr_tc pdata_tc pdatas_tc
 = tyConRepr vect_tc >>= buildPADict vect_tc prepr_tc pdata_tc pdatas_tc

-- Produce a custom-made worker for the data constructors of a vectorised data type.  This includes
-- all data constructors that may be used in vetcorised code — i.e., all data constructors of data
-- types other than scalar ones.  Also adds a mapping from the original to vectorised worker into
-- the vectorisation map.
--
-- FIXME: It's not nice that we need create a special worker after the data constructors has
--   already been constructed.  Also, I don't think the worker is properly added to the data
--   constructor.  Seems messy.
334 335
vectDataConWorkers :: TyCon -> TyCon -> TyCon -> VM ()
vectDataConWorkers orig_tc vect_tc arr_tc
336 337 338 339 340 341 342 343 344 345 346
  = do { traceVt "Building vectorised worker for datatype" (ppr orig_tc)
  
       ; bs <- sequence
             . zipWith3 def_worker  (tyConDataCons orig_tc) rep_tys
             $ zipWith4 mk_data_con (tyConDataCons vect_tc)
                                    rep_tys
                                    (inits rep_tys)
                                    (tail $ tails rep_tys)
        ; mapM_ (uncurry hoistBinding) bs
        }
  where
347 348 349 350 351
    tyvars   = tyConTyVars vect_tc
    var_tys  = mkTyVarTys tyvars
    ty_args  = map Type var_tys
    res_ty   = mkTyConApp vect_tc var_tys

352 353 354 355
    cons     = tyConDataCons vect_tc
    arity    = length cons
    [arr_dc] = tyConDataCons arr_tc

356 357 358 359
    rep_tys  = map dataConRepArgTys $ tyConDataCons vect_tc

    mk_data_con con tys pre post
      = liftM2 (,) (vect_data_con con)
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
360
                   (lift_data_con tys pre post (mkDataConTag con))
361

362 363 364 365 366 367 368
    sel_replicate len tag
      | arity > 1 = do
                      rep <- builtin (selReplicate arity)
                      return [rep `mkApps` [len, tag]]

      | otherwise = return []

369
    vect_data_con con = return $ mkConApp con ty_args
370
    lift_data_con tys pre_tys post_tys tag
371 372
      = do
          len  <- builtin liftingContext
Ian Lynagh's avatar
Ian Lynagh committed
373
          args <- mapM (newLocalVar (fsLit "xs"))
374
                  =<< mapM mkPDataType tys
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
375

376
          sel  <- sel_replicate (Var len) tag
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
377

378 379
          pre   <- mapM emptyPD (concat pre_tys)
          post  <- mapM emptyPD (concat post_tys)
380 381 382 383

          return . mkLams (len : args)
                 . wrapFamInstBody arr_tc var_tys
                 . mkConApp arr_dc
384
                 $ ty_args ++ sel ++ pre ++ map Var args ++ post
385 386 387

    def_worker data_con arg_tys mk_body
      = do
388
          arity <- polyArity tyvars
389 390
          body <- closedV
                . inBind orig_worker
391 392
                . polyAbstract tyvars $ \args ->
                  liftM (mkLams (tyvars ++ args) . vectorised)
393
                $ buildClosures tyvars [] [] arg_tys res_ty mk_body
394

395
          raw_worker <- mkVectId orig_worker (exprType body)
396
          let vect_worker = raw_worker `setIdUnfolding`
397
                              mkInlineUnfolding (Just arity) body
398 399 400 401
          defGlobalVar orig_worker vect_worker
          return (vect_worker, body)
      where
        orig_worker = dataConWorkId data_con