DsBinds.hs 48.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TysPrim ( mkProxyPrimTy )
43
import TyCon
44
import TcEvidence
45
import TcType
46
import Type
47
import Kind( isKind )
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, mkListTy
50 51
                  , mkBoxedTupleTy, charTy
                  , typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
52
import Id
53
import MkId(proxyHashId)
54
import Class
55
import DataCon  ( dataConTyCon )
56
import Name
57
import IdInfo   ( IdDetails(..) )
58
import Var
59
import VarSet
Simon Marlow's avatar
Simon Marlow committed
60
import Rules
61
import VarEnv
62
import Outputable
63
import Module
Simon Marlow's avatar
Simon Marlow committed
64 65
import SrcLoc
import Maybes
66
import OrdList
Simon Marlow's avatar
Simon Marlow committed
67 68
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
69
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
70
import FastString
71
import Util
72
import MonadUtils
73
import Control.Monad(liftM,when)
74

75
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
76
*                                                                      *
77
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
78
*                                                                      *
79
**********************************************************************-}
80

81 82
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
83

84
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
85
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
86
                      ; return (fromOL binds') }
87 88

------------------------
89
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
90

91 92
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
93

94 95
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
96

97
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
98

99
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
100 101
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
102

103 104
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
105
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
106
                   | otherwise         = var
107

108
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
109

110 111 112
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
113
 = do   { dflags <- getDynFlags
114
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
115
        ; let body' = mkOptTickBox tick body
116
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
117
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
118
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
119 120 121

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
122
  = do  { body_expr <- dsGuarded grhss ty
123 124
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
125 126
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
127
    ; return (toOL sel_binds) }
sof's avatar
sof committed
128

129 130 131 132
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
133 134 135
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
136 137
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
138
  = do  { dflags <- getDynFlags
139 140 141
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
142
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
143 144
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
145 146
                            Let core_bind $
                            Var local
147

148 149 150 151 152 153 154
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
155

156 157 158
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
159
         -- See Note [Desugaring AbsBinds]
160 161 162
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
163
                              | (lcl_id, rhs) <- fromOL bind_prs ]
164
                -- Monomorphic recursion possible, hence Rec
165

166 167 168
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
169
        ; ds_binds <- dsTcEvBinds_s ev_binds
170 171 172 173
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
174

175
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
176

177
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
178
                           , abe_mono = local, abe_prags = spec_prags })
179 180
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
181
                                 mkLams tyvars $ mkLams dicts $
182 183
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
184
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
185 186
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
187 188 189
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
190 191
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
192

193
        ; export_binds_s <- mapM mk_bind exports
194

195 196
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
197 198 199 200 201 202 203 204 205 206 207
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
208

cactus's avatar
cactus committed
209 210
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

211
------------------------
212 213
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
214
  | is_default_method                 -- Default methods are *always* inlined
215 216
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

217
  | DFunId is_newtype <- idDetails gbl_id
218 219
  = (mk_dfun_w_stuff is_newtype, rhs)

220 221
  | otherwise
  = case inlinePragmaSpec inline_prag of
222 223 224
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
225
          Inline          -> inline_pair
226

227 228
  where
    inline_prag   = idInlinePragma gbl_id
229
    inlinable_unf = mkInlinableUnfolding dflags rhs
230 231
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
232 233
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
234
       , let real_arity = dict_arity + arity
235
        -- NB: The arity in the InlineRule takes account of the dictionaries
236 237 238 239 240 241
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
242

243 244 245
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
246
       | is_newtype
247 248 249 250 251 252 253 254 255 256 257 258
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

259 260 261 262

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
263

Austin Seipp's avatar
Austin Seipp committed
264
{-
265 266 267 268 269 270 271 272 273 274
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

275 276 277 278 279
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
280 281
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
282
But we don't want that, because if M.f isn't exported,
283 284
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
285 286 287
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
288 289 290
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
291 292 293 294
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
295
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
296
Although I'm a bit worried about whether full laziness might
297
float the f_lcl binding out and then inline M.f at its call site
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

313
The top-level AbsBinds for $cround has no tyvars or dicts (because the
314 315 316 317 318 319 320
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

321 322 323 324 325
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
326 327 328

and desugar it to

329 330 331
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
332 333

where B is the *non-recursive* binding
334 335 336
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
337 338

Notice (a) g has a different number of type variables to f, so we must
339 340
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
341

342 343 344 345
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
346

347 348 349 350
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
351 352

Why got to this trouble?  It's a common case, and it removes the
353
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
354 355 356 357
compilation, especially in a case where there are a *lot* of
bindings.


358 359 360 361 362 363 364 365
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
366
happen as a result of method sharing), there's a danger that we never
367 368 369 370
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
371
has the arity with which it is declared in the source code.  In this
372
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
373
should mean that (foo d) is a PAP and we don't share it.
374 375 376

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
377 378 379 380 381 382 383 384 385 386 387 388 389 390
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
391
-}
392

393
------------------------
394
dsSpecs :: CoreExpr     -- Its rhs
395
        -> TcSpecPrags
396 397
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
398
-- See Note [Handling SPECIALISE pragmas] in TcBinds
399 400 401 402 403 404
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

405 406 407
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
408 409 410
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
411
  | isJust (isClassOpId_maybe poly_id)
412 413
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
414 415
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
416 417
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
418

419 420
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
421 422 423
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
424
                            -- See Note [Activation pragmas for SPECIALISE]
425

426
  | otherwise
427
  = putSrcSpanDs loc $
428 429
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
430 431
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
432 433 434
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
435 436 437 438
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
439
           Left msg -> do { warnDs msg; return Nothing } ;
440
           Right (rule_bndrs, _fn, args) -> do
441

442
       { dflags <- getDynFlags
443
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
444 445 446 447
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
448 449 450
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
451
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
452
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
453 454 455
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
456

457
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
458

459 460 461 462
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
463 464 465 466 467

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
468 469 470 471
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
472
             = rhs          -- Local Id; this is its rhs
473 474
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
475 476 477
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
478
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
479
                            -- The type checker has checked that it *has* an unfolding
480

481 482 483 484 485
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
486
                                 -- in OccurAnal
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


504 505 506 507 508 509 510 511 512 513 514
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
        warnDs (ruleOrphWarn rule)
    return rule

ruleOrphWarn :: CoreRule -> SDoc
ruleOrphWarn rule = ptext (sLit "Orphan rule:") <+> ppr rule
515

516 517 518 519 520 521 522 523 524 525 526 527 528
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

529 530 531 532 533 534 535 536
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

537
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
559
SPEC [n] f :: ty            [n]   INLINE [k]
560 561 562 563 564 565 566 567 568 569
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
570 571
************************************************************************
*                                                                      *
572
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
573 574 575
*                                                                      *
************************************************************************
-}
576

577
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
578 579
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
580
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
581
--
582
-- Returns Nothing if the LHS isn't of the expected shape
583 584 585 586 587 588
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

589 590
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
591 592 593
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
594 595
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
596
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
597
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
598

599
  | otherwise
600
  = Left bad_shape_msg
601
 where
602 603 604 605
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

606 607
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
608

609
   orig_bndr_set = mkVarSet orig_bndrs
610

611
        -- Add extra dict binders: Note [Free dictionaries]
612 613 614 615 616 617 618 619 620 621 622 623
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
624 625

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
626 627
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
628
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
629
                             , ptext (sLit "is not bound in RULE lhs")])
630 631 632
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
633
   pp_bndr bndr
634 635 636
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
637 638

   drop_dicts :: CoreExpr -> CoreExpr
639
   drop_dicts e
640 641 642
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
643
       (bnds, body) = split_lets (occurAnalyseExpr e)
644
           -- The occurAnalyseExpr drops dead bindings which is
645 646
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
665

Austin Seipp's avatar
Austin Seipp committed
666
{-
667
Note [Decomposing the left-hand side of a RULE]
668
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
669
There are several things going on here.
670 671
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
672
* extra_dict_bndrs: see Note [Free dictionaries]
673 674 675

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
676
drop_dicts drops dictionary bindings on the LHS where possible.
677 678
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
679
   Reasoning here is that there is only one d:Eq [Int], and so we can
680 681 682 683
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
684
         one of the orig_bndrs, which we assume occur on RHS.
685 686 687 688 689 690
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
691
         to match, but there is no other way to get d:Eq a
692

693
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
694 695 696 697 698 699
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
700
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
701 702 703 704 705 706
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
707
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
708 709
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

710 711 712
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

713 714 715 716 717 718 719 720 721 722
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
723
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
724 725 726 727 728 729
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


730 731 732 733
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

734
   (a) Inline any remaining dictionary bindings (which hopefully
735 736 737
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
738
       Note that we substitute the function too; we might
739 740
       have this as a LHS:  let f71 = M.f Int in f71

741
   (c) Do eta reduction.  To see why, consider the fold/build rule,
742 743 744 745
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
746
         augment g (build h)
747
       we do not want to get
748
         augment (\a. g a) (build h)
749 750
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
751

752
Note [Matching seqId]
753 754
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
755
and this code turns it back into an application of seq!
756 757
See Note [Rules for seq] in MkId for the details.

758 759 760
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
761
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
762
        ... SPECIALISE f :: Eq a => a -> a ...
763 764
It's true that this *is* a more specialised type, but the rule
we get is something like this:
765 766
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
767 768
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
769 770 771 772
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

773 774
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
775 776
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
777 778 779
over it too.  *Any* dict with that type will do.

So for example when you have
780 781
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
782
        ... SPECIALISE f :: Int -> Int ...
783 784

Then we get the SpecPrag
785
        SpecPrag (f Int dInt)
786 787

And from that we want the rule
788 789 790

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
791 792 793 794 795 796 797

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

798

Austin Seipp's avatar
Austin Seipp committed
799 800
************************************************************************
*                                                                      *
801
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
802 803
*                                                                      *
************************************************************************
804

Austin Seipp's avatar
Austin Seipp committed
805
-}
806

807
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
808
dsHsWrapper WpHole            e = return e
809 810 811
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
812 813 814 815
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
816
                                      ; e2 <- dsHsWrapper c2 (mkCoreAppDs (text "dsHsWrapper") e e1)
817
                                      ; return (Lam x e2) }
818
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
819
                                  dsTcCoercion co (mkCastDs e)
820 821
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
822
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
823 824

--------------------------------------
825 826 827 828 829
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

830
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
831
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
832 833
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

834
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
835
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
836
  where
837 838 839
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
840

841
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
842 843 844 845 846

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
847
    edges = foldrBag ((:) . mk_node) [] bs
848 849

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
850 851
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
852 853


854 855 856 857 858 859
{-**********************************************************************
*                                                                      *
           Desugaring EvTerms
*                                                                      *
**********************************************************************-}

860
dsEvTerm :: EvTerm -> DsM CoreExpr
861 862 863 864 865
dsEvTerm (EvId v)           = return (Var v)
dsEvTerm (EvCallStack cs)   = dsEvCallStack cs
dsEvTerm (EvTypeable ty ev) = dsEvTypeable ty ev
dsEvTerm (EvLit (EvNum n))  = mkIntegerExpr n
dsEvTerm (EvLit (EvStr s))  = mkStringExprFS s
866

867
dsEvTerm (EvCast tm co)
868
  = do { tm' <- dsEvTerm tm
869
       ; dsTcCoercion co $ mkCastDs tm' }
870 871 872 873 874
         -- 'v' is always a lifted evidence variable so it is
         -- unnecessary to call varToCoreExpr v here.

dsEvTerm (EvDFunApp df tys tms)
  = return (Var df `mkTyApps` tys `mkApps` (map Var tms))
875

876
dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
877
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
878

879
dsEvTerm (EvSuperClass d n)
880 881
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
882
             sc_sel_id  = classSCSelId cls n    -- Zero-indexed