Select.c 6.66 KB
Newer Older
1
/* -----------------------------------------------------------------------------
2
 * $Id: Select.c,v 1.14 2000/08/25 13:12:07 simonmar Exp $
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * (c) The GHC Team 1995-1999
 *
 * Support for concurrent non-blocking I/O and thread waiting.
 *
 * ---------------------------------------------------------------------------*/

/* we're outside the realms of POSIX here... */
#define NON_POSIX_SOURCE

#include "Rts.h"
#include "Schedule.h"
#include "RtsUtils.h"
#include "RtsFlags.h"
#include "Itimer.h"
18
#include "Signals.h"
19 20 21 22 23 24 25 26 27

# if defined(HAVE_SYS_TYPES_H)
#  include <sys/types.h>
# endif

# ifdef HAVE_SYS_TIME_H
#  include <sys/time.h>
# endif

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/* last timestamp */
nat timestamp = 0;

/* keep track of the number of ticks since we last called
 * gettimeofday(), to avoid having to call it every time we need
 * a timestamp.
 */
nat ticks_since_timestamp = 0;

/* There's a clever trick here to avoid problems when the time wraps
 * around.  Since our maximum delay is smaller than 31 bits of ticks
 * (it's actually 31 bits of microseconds), we can safely check
 * whether a timer has expired even if our timer will wrap around
 * before the target is reached, using the following formula:
 *
 *        (int)((uint)current_time - (uint)target_time) < 0
 *
 * if this is true, then our time has expired.
 * (idea due to Andy Gill).
 */
rtsBool
wakeUpSleepingThreads(nat ticks)
{
    StgTSO *tso;
    rtsBool flag = rtsFalse;

    while (sleeping_queue != END_TSO_QUEUE &&
	   (int)(ticks - sleeping_queue->block_info.target) > 0) {
	tso = sleeping_queue;
	sleeping_queue = tso->link;
	tso->why_blocked = NotBlocked;
	tso->link = END_TSO_QUEUE;
	IF_DEBUG(scheduler,belch("Waking up sleeping thread %d\n", tso->id));
	PUSH_ON_RUN_QUEUE(tso);
	flag = rtsTrue;
    }
    return flag;
}
66 67 68 69 70

/* Argument 'wait' says whether to wait for I/O to become available,
 * or whether to just check and return immediately.  If there are
 * other threads ready to run, we normally do the non-waiting variety,
 * otherwise we wait (see Schedule.c).
71 72
 *
 * SMP note: must be called with sched_mutex locked.
73 74 75 76
 */
void
awaitEvent(rtsBool wait)
{
sof's avatar
sof committed
77 78 79 80 81 82 83 84 85
#ifdef mingw32_TARGET_OS
/*
 * Win32 doesn't support select(). ToDo: use MsgWaitForMultipleObjects()
 * to achieve (similar) effect.
 *
 */
    return;
#else

86 87 88
    StgTSO *tso, *prev, *next;
    rtsBool ready;
    fd_set rfd,wfd;
89
    int numFound;
90
    int maxfd = -1;
91
    rtsBool select_succeeded = rtsTrue;
92
    struct timeval tv;
93 94 95 96
    lnat min, ticks;

    tv.tv_sec  = 0;
    tv.tv_usec = 0;
97

98 99 100 101 102 103 104
    IF_DEBUG(scheduler,
	     belch("scheduler: checking for threads blocked on I/O");
	     if (wait) {
		 belch(" (waiting)");
	     }
	     belch("\n");
	     );
105

106 107 108 109
    /* loop until we've woken up some threads.  This loop is needed
     * because the select timing isn't accurate, we sometimes sleep
     * for a while but not long enough to wake up a thread in
     * a threadDelay.
110
     */
111
    do {
112

113 114 115 116 117
      ticks = timestamp = getourtimeofday();
      ticks_since_timestamp = 0;
      if (wakeUpSleepingThreads(ticks)) { 
	  return;
      }
118

119 120 121 122 123 124 125 126
      if (!wait) {
	  min = 0;
      } else if (sleeping_queue != END_TSO_QUEUE) {
	  min = (sleeping_queue->block_info.target - ticks) 
	      * TICK_MILLISECS * 1000;
      } else {
	  min = 0x7ffffff;
      }
127

128
      /* 
129
       * Collect all of the fd's that we're interested in
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
       */
      FD_ZERO(&rfd);
      FD_ZERO(&wfd);

      for(tso = blocked_queue_hd; tso != END_TSO_QUEUE; tso = next) {
	next = tso->link;

	switch (tso->why_blocked) {
	case BlockedOnRead:
	  { 
	    int fd = tso->block_info.fd;
	    maxfd = (fd > maxfd) ? fd : maxfd;
	    FD_SET(fd, &rfd);
	    continue;
	  }

	case BlockedOnWrite:
	  { 
	    int fd = tso->block_info.fd;
	    maxfd = (fd > maxfd) ? fd : maxfd;
	    FD_SET(fd, &wfd);
	    continue;
	  }

	default:
	  barf("AwaitEvent");
156 157
	}
      }
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      /* Release the scheduler lock while we do the poll.
       * this means that someone might muck with the blocked_queue
       * while we do this, but it shouldn't matter:
       *
       *   - another task might poll for I/O and remove one
       *     or more threads from the blocked_queue.
       *   - more I/O threads may be added to blocked_queue.
       *   - more delayed threads may be added to blocked_queue. We'll
       *     just subtract delta from their delays after the poll.
       *
       * I believe none of these cases lead to trouble --SDM.
       */
      RELEASE_LOCK(&sched_mutex);

      /* Check for any interesting events */
174 175
      
      tv.tv_sec  = min / 1000000;
176
      tv.tv_usec = min % 1000000;
177

178
      while ((numFound = select(maxfd+1, &rfd, &wfd, NULL, &tv)) < 0) {
179

180 181 182 183 184 185
	  if (errno != EINTR) {
	      /* fflush(stdout); */
	      perror("select");
	      barf("select failed");
	  }
	  ACQUIRE_LOCK(&sched_mutex);
186
	
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	  /* We got a signal; could be one of ours.  If so, we need
	   * to start up the signal handler straight away, otherwise
	   * we could block for a long time before the signal is
	   * serviced.
	   */
	  if (signals_pending()) {
	      RELEASE_LOCK(&sched_mutex); /* ToDo: kill */
	      start_signal_handlers();
	      ACQUIRE_LOCK(&sched_mutex);
	      return; /* still hold the lock */
	  }
	  
	  /* we were interrupted, return to the scheduler immediately.
	   */
	  if (interrupted) {
	      return; /* still hold the lock */
	  }
	  
	  /* check for threads that need waking up 
	   */
	  wakeUpSleepingThreads(getourtimeofday());
	  
	  /* If new runnable threads have arrived, stop waiting for
	   * I/O and run them.
	   */
	  if (run_queue_hd != END_TSO_QUEUE) {
	      return; /* still hold the lock */
	  }
	  
	  RELEASE_LOCK(&sched_mutex);
      }
218

219
      ACQUIRE_LOCK(&sched_mutex);
220

221 222 223
      /* Step through the waiting queue, unblocking every thread that now has
       * a file descriptor in a ready state.
       */
224

225
      prev = NULL;
226 227 228 229 230 231 232 233 234 235 236 237 238
      if (select_succeeded) {
	  for(tso = blocked_queue_hd; tso != END_TSO_QUEUE; tso = next) {
	      next = tso->link;
	      switch (tso->why_blocked) {
	      case BlockedOnRead:
		  ready = FD_ISSET(tso->block_info.fd, &rfd);
		  break;
	      case BlockedOnWrite:
		  ready = FD_ISSET(tso->block_info.fd, &wfd);
		  break;
	      default:
		  barf("awaitEvent");
	      }
239
      
240 241 242 243 244 245 246 247 248 249 250 251 252
	      if (ready) {
		  IF_DEBUG(scheduler,belch("Waking up blocked thread %d\n", tso->id));
		  tso->why_blocked = NotBlocked;
		  tso->link = END_TSO_QUEUE;
		  PUSH_ON_RUN_QUEUE(tso);
	      } else {
		  if (prev == NULL)
		      blocked_queue_hd = tso;
		  else
		      prev->link = tso;
		  prev = tso;
	      }
	  }
253

254 255 256 257 258 259
	  if (prev == NULL)
	      blocked_queue_hd = blocked_queue_tl = END_TSO_QUEUE;
	  else {
	      prev->link = END_TSO_QUEUE;
	      blocked_queue_tl = prev;
	  }
260
      }
261

262
    } while (wait && !interrupted && run_queue_hd == END_TSO_QUEUE);
sof's avatar
sof committed
263
#endif
264
}