TcInteract.lhs 96.8 KB
Newer Older
1 2
\begin{code}
module TcInteract ( 
3 4 5
     solveInteract, solveInteractGiven, solveInteractWanted,
     AtomicInert, tyVarsOfInert, 
     InertSet, emptyInert, updInertSet, extractUnsolved, solveOne,
6 7 8 9
  ) where  

#include "HsVersions.h"

10

11 12 13 14
import BasicTypes 
import TcCanonical
import VarSet
import Type
dimitris's avatar
dimitris committed
15
import Unify
16 17 18 19 20

import Id 
import Var

import TcType
21
import HsBinds
22

23
import Inst( tyVarsOfEvVar )
24 25
import Class
import TyCon
26 27 28 29 30 31 32
import Name

import FunDeps

import Coercion
import Outputable

33
import TcRnTypes
34
import TcErrors
35
import TcSMonad
36
import Maybes( orElse )
37
import Bag
38

39
import Control.Monad( when )
40 41
import Unique
import UniqFM
42 43 44 45
import FastString ( sLit ) 
import DynFlags
\end{code}

46
Note [InertSet invariants]
47 48 49 50 51 52 53 54
~~~~~~~~~~~~~~~~~~~~~~~~~~~
An InertSet is a bag of canonical constraints, with the following invariants:

  1 No two constraints react with each other. 
    
    A tricky case is when there exists a given (solved) dictionary 
    constraint and a wanted identical constraint in the inert set, but do 
    not react because reaction would create loopy dictionary evidence for 
batterseapower's avatar
batterseapower committed
55
    the wanted. See note [Recursive instances and superclases]
56 57 58 59 60

  2 Given equalities form an idempotent substitution [none of the
    given LHS's occur in any of the given RHS's or reactant parts]

  3 Wanted equalities also form an idempotent substitution
61

62 63 64 65 66 67
  4 The entire set of equalities is acyclic.

  5 Wanted dictionaries are inert with the top-level axiom set 

  6 Equalities of the form tv1 ~ tv2 always have a touchable variable
    on the left (if possible).
68 69

  7 No wanted constraints tv1 ~ tv2 with tv1 touchable. Such constraints
70 71
    will be marked as solved right before being pushed into the inert set. 
    See note [Touchables and givens].
72

dimitris's avatar
dimitris committed
73 74 75 76 77
  8 No Given constraint mentions a touchable unification variable, but 
    Given/Solved may do so. 

  9 Given constraints will also have their superclasses in the inert set, 
    but Given/Solved will not. 
78 79 80 81 82 83 84 85 86 87 88 89 90 91
 
Note that 6 and 7 are /not/ enforced by canonicalization but rather by 
insertion in the inert list, ie by TcInteract. 

During the process of solving, the inert set will contain some
previously given constraints, some wanted constraints, and some given
constraints which have arisen from solving wanted constraints. For
now we do not distinguish between given and solved constraints.

Note that we must switch wanted inert items to given when going under an
implication constraint (when in top-level inference mode).

\begin{code}

92
data CCanMap a = CCanMap { cts_given   :: UniqFM CanonicalCts
93
                                          -- Invariant: all Given
94
                         , cts_derived :: UniqFM CanonicalCts 
95
                                          -- Invariant: all Derived
96
                         , cts_wanted  :: UniqFM CanonicalCts } 
97
                                          -- Invariant: all Wanted
98

99 100 101 102
cCanMapToBag :: CCanMap a -> CanonicalCts 
cCanMapToBag cmap = foldUFM unionBags rest_wder (cts_given cmap)
  where rest_wder = foldUFM unionBags rest_der  (cts_wanted cmap) 
        rest_der  = foldUFM unionBags emptyCCan (cts_derived cmap)
103 104

emptyCCanMap :: CCanMap a 
105
emptyCCanMap = CCanMap { cts_given = emptyUFM, cts_derived = emptyUFM, cts_wanted = emptyUFM } 
106

107
updCCanMap:: Uniquable a => (a,CanonicalCt) -> CCanMap a -> CCanMap a 
108 109
updCCanMap (a,ct) cmap 
  = case cc_flavor ct of 
110 111 112 113
      Wanted {}  -> cmap { cts_wanted  = insert_into (cts_wanted cmap)  } 
      Given {}   -> cmap { cts_given   = insert_into (cts_given cmap)   }
      Derived {} -> cmap { cts_derived = insert_into (cts_derived cmap) }
  where 
114
    insert_into m = addToUFM_C unionBags m a (singleCCan ct)
115 116

getRelevantCts :: Uniquable a => a -> CCanMap a -> (CanonicalCts, CCanMap a) 
117 118
-- Gets the relevant constraints and returns the rest of the CCanMap
getRelevantCts a cmap 
119 120 121 122 123 124
    = let relevant = lookup (cts_wanted cmap) `unionBags`
                     lookup (cts_given cmap)  `unionBags`
                     lookup (cts_derived cmap) 
          residual_map = cmap { cts_wanted  = delFromUFM (cts_wanted cmap) a
                              , cts_given   = delFromUFM (cts_given cmap) a
                              , cts_derived = delFromUFM (cts_derived cmap) a }
125
      in (relevant, residual_map) 
126 127
  where
    lookup map = lookupUFM map a `orElse` emptyCCan
128

129
extractUnsolvedCMap :: CCanMap a -> (CanonicalCts, CCanMap a)
130 131 132
-- Gets the wanted or derived constraints and returns a residual
-- CCanMap with only givens.
extractUnsolvedCMap cmap =
133 134
  let wntd = foldUFM unionBags emptyCCan (cts_wanted cmap)
      derd = foldUFM unionBags emptyCCan (cts_derived cmap)
135
  in (wntd `unionBags` derd, 
136
      cmap { cts_wanted = emptyUFM, cts_derived = emptyUFM })
137

138

139
-- See Note [InertSet invariants]
140
data InertSet 
141
  = IS { inert_eqs          :: CanonicalCts               -- Equalities only (CTyEqCan)
142
       , inert_dicts        :: CCanMap Class              -- Dictionaries only
batterseapower's avatar
batterseapower committed
143 144
       , inert_ips          :: CCanMap (IPName Name)      -- Implicit parameters
       , inert_irreds       :: CanonicalCts               -- Irreducible predicates
145 146
       , inert_frozen       :: CanonicalCts
       , inert_funeqs       :: CCanMap TyCon              -- Type family equalities only
147 148
               -- This representation allows us to quickly get to the relevant 
               -- inert constraints when interacting a work item with the inert set.
149
       }
150

151 152 153 154
tyVarsOfInert :: InertSet -> TcTyVarSet 
tyVarsOfInert (IS { inert_eqs    = eqs
                  , inert_dicts  = dictmap
                  , inert_ips    = ipmap
batterseapower's avatar
batterseapower committed
155
                  , inert_irreds = irreds
156 157 158
                  , inert_frozen = frozen
                  , inert_funeqs = funeqmap }) = tyVarsOfCanonicals cts
  where
batterseapower's avatar
batterseapower committed
159
    cts = eqs `andCCan` frozen `andCCan` irreds `andCCan` cCanMapToBag dictmap
160
              `andCCan` cCanMapToBag ipmap `andCCan` cCanMapToBag funeqmap
161

162
instance Outputable InertSet where
163
  ppr is = vcat [ vcat (map ppr (Bag.bagToList $ inert_eqs is))
batterseapower's avatar
batterseapower committed
164
                , vcat (map ppr (Bag.bagToList $ inert_irreds is)) 
165
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_dicts is)))
166 167
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_ips is))) 
                , vcat (map ppr (Bag.bagToList $ cCanMapToBag (inert_funeqs is)))
168 169
                , text "Frozen errors =" <+> -- Clearly print frozen errors
                    vcat (map ppr (Bag.bagToList $ inert_frozen is))
170 171
                ]
                       
172
emptyInert :: InertSet
173
emptyInert = IS { inert_eqs    = Bag.emptyBag
174
                , inert_frozen = Bag.emptyBag
batterseapower's avatar
batterseapower committed
175
                , inert_irreds = Bag.emptyBag
176 177
                , inert_dicts  = emptyCCanMap
                , inert_ips    = emptyCCanMap
178
                , inert_funeqs = emptyCCanMap }
179 180

updInertSet :: InertSet -> AtomicInert -> InertSet 
181 182
updInertSet is item 
  | isCTyEqCan item                     -- Other equality 
batterseapower's avatar
batterseapower committed
183
  = let eqs' = inert_eqs is `Bag.snocBag` item
184 185 186 187 188
    in is { inert_eqs = eqs' } 
  | Just cls <- isCDictCan_Maybe item   -- Dictionary 
  = is { inert_dicts = updCCanMap (cls,item) (inert_dicts is) } 
  | Just x  <- isCIPCan_Maybe item      -- IP 
  = is { inert_ips   = updCCanMap (x,item) (inert_ips is) }  
batterseapower's avatar
batterseapower committed
189 190
  | isCIrredEvCan item                     -- Presently-irreducible evidence
  = is { inert_irreds = inert_irreds is `Bag.snocBag` item }
191 192
  | Just tc <- isCFunEqCan_Maybe item   -- Function equality 
  = is { inert_funeqs = updCCanMap (tc,item) (inert_funeqs is) }
193
  | otherwise 
194
  = is { inert_frozen = inert_frozen is `Bag.snocBag` item }
195

196
extractUnsolved :: InertSet -> (InertSet, CanonicalCts)
197
-- Postcondition: the returned canonical cts are either Derived, or Wanted.
batterseapower's avatar
batterseapower committed
198
extractUnsolved is@(IS {inert_eqs = eqs, inert_irreds = irreds}) 
199 200 201
  = let is_solved  = is { inert_eqs    = solved_eqs
                        , inert_dicts  = solved_dicts
                        , inert_ips    = solved_ips
batterseapower's avatar
batterseapower committed
202
                        , inert_irreds = solved_irreds
203 204
                        , inert_frozen = emptyCCan
                        , inert_funeqs = solved_funeqs }
205
    in (is_solved, unsolved)
206

dimitris's avatar
dimitris committed
207
  where (unsolved_eqs, solved_eqs)       = Bag.partitionBag (not.isGivenOrSolvedCt) eqs
batterseapower's avatar
batterseapower committed
208
        (unsolved_irreds, solved_irreds) = Bag.partitionBag (not.isGivenOrSolvedCt) irreds
209 210 211
        (unsolved_ips, solved_ips)       = extractUnsolvedCMap (inert_ips is) 
        (unsolved_dicts, solved_dicts)   = extractUnsolvedCMap (inert_dicts is) 
        (unsolved_funeqs, solved_funeqs) = extractUnsolvedCMap (inert_funeqs is) 
212

batterseapower's avatar
batterseapower committed
213
        unsolved = unsolved_eqs `unionBags` inert_frozen is `unionBags` unsolved_irreds `unionBags`
214
                   unsolved_ips `unionBags` unsolved_dicts `unionBags` unsolved_funeqs
215 216 217 218 219 220 221 222 223 224 225 226 227 228
\end{code}

%*********************************************************************
%*                                                                   * 
*                      Main Interaction Solver                       *
*                                                                    *
**********************************************************************

Note [Basic plan] 
~~~~~~~~~~~~~~~~~
1. Canonicalise (unary)
2. Pairwise interaction (binary)
    * Take one from work list 
    * Try all pair-wise interactions with each constraint in inert
229 230 231 232
   
   As an optimisation, we prioritize the equalities both in the 
   worklist and in the inerts. 

233 234
3. Try to solve spontaneously for equalities involving touchables 
4. Top-level interaction (binary wrt top-level)
batterseapower's avatar
batterseapower committed
235
   Superclass decomposition belongs in (1), see note [Adding superclasses]
236 237 238 239 240

\begin{code}
type AtomicInert = CanonicalCt     -- constraint pulled from InertSet
type WorkItem    = CanonicalCt     -- constraint pulled from WorkList

241
------------------------
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
data StopOrContinue 
  = Stop			-- Work item is consumed
  | ContinueWith WorkItem	-- Not consumed

instance Outputable StopOrContinue where
  ppr Stop             = ptext (sLit "Stop")
  ppr (ContinueWith w) = ptext (sLit "ContinueWith") <+> ppr w

-- Results after interacting a WorkItem as far as possible with an InertSet
data StageResult
  = SR { sr_inerts     :: InertSet
           -- The new InertSet to use (REPLACES the old InertSet)
       , sr_new_work   :: WorkList
           -- Any new work items generated (should be ADDED to the old WorkList)
           -- Invariant: 
           --    sr_stop = Just workitem => workitem is *not* in sr_inerts and
           --                               workitem is inert wrt to sr_inerts
       , sr_stop       :: StopOrContinue
       }

instance Outputable StageResult where
  ppr (SR { sr_inerts = inerts, sr_new_work = work, sr_stop = stop })
    = ptext (sLit "SR") <+> 
      braces (sep [ ptext (sLit "inerts =") <+> ppr inerts <> comma
             	  , ptext (sLit "new work =") <+> ppr work <> comma
             	  , ptext (sLit "stop =") <+> ppr stop])

269 270 271
type SubGoalDepth = Int	  -- Starts at zero; used to limit infinite
     		    	  -- recursion of sub-goals
type SimplifierStage = SubGoalDepth -> WorkItem -> InertSet -> TcS StageResult 
272 273

-- Combine a sequence of simplifier 'stages' to create a pipeline 
274 275 276
runSolverPipeline :: SubGoalDepth
                  -> [(String, SimplifierStage)]
		  -> InertSet -> WorkItem 
277 278
                  -> TcS (InertSet, WorkList)
-- Precondition: non-empty list of stages 
279
runSolverPipeline depth pipeline inerts workItem
280 281 282 283 284
  = do { traceTcS "Start solver pipeline" $ 
            vcat [ ptext (sLit "work item =") <+> ppr workItem
                 , ptext (sLit "inerts    =") <+> ppr inerts]

       ; let itr_in = SR { sr_inerts = inerts
285 286
                         , sr_new_work = emptyWorkList
                         , sr_stop = ContinueWith workItem }
287 288 289 290
       ; itr_out <- run_pipeline pipeline itr_in
       ; let new_inert 
              = case sr_stop itr_out of 
       	          Stop              -> sr_inerts itr_out
291
                  ContinueWith item -> sr_inerts itr_out `updInertSet` item
292 293 294 295 296 297 298 299 300 301 302
       ; return (new_inert, sr_new_work itr_out) }
  where 
    run_pipeline :: [(String, SimplifierStage)]
                 -> StageResult -> TcS StageResult
    run_pipeline [] itr                         = return itr
    run_pipeline _  itr@(SR { sr_stop = Stop }) = return itr

    run_pipeline ((name,stage):stages) 
                 (SR { sr_new_work = accum_work
                     , sr_inerts   = inerts
                     , sr_stop     = ContinueWith work_item })
303
      = do { itr <- stage depth work_item inerts 
304
           ; traceTcS ("Stage result (" ++ name ++ ")") (ppr itr)
305
           ; let itr' = itr { sr_new_work = accum_work `unionWorkList` sr_new_work itr }
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
           ; run_pipeline stages itr' }
\end{code}

Example 1:
  Inert:   {c ~ d, F a ~ t, b ~ Int, a ~ ty} (all given)
  Reagent: a ~ [b] (given)

React with (c~d)     ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~ t) ==> IR (ContinueWith (a~[b]))  False   [F [b] ~ t]
React with (b ~ Int) ==> IR (ContinueWith (a~[Int]) True    []

Example 2:
  Inert:  {c ~w d, F a ~g t, b ~w Int, a ~w ty}
  Reagent: a ~w [b]

React with (c ~w d)   ==> IR (ContinueWith (a~[b]))  True    []
React with (F a ~g t) ==> IR (ContinueWith (a~[b]))  True    []    (can't rewrite given with wanted!)
etc.

Example 3:
  Inert:  {a ~ Int, F Int ~ b} (given)
  Reagent: F a ~ b (wanted)

React with (a ~ Int)   ==> IR (ContinueWith (F Int ~ b)) True []
React with (F Int ~ b) ==> IR Stop True []    -- after substituting we re-canonicalize and get nothing

\begin{code}
-- Main interaction solver: we fully solve the worklist 'in one go', 
-- returning an extended inert set.
--
-- See Note [Touchables and givens].
337 338 339 340 341 342
solveInteractGiven :: InertSet -> GivenLoc -> [EvVar] -> TcS InertSet
solveInteractGiven inert gloc evs
  = do { (_, inert_ret) <- solveInteract inert $ listToBag $
                           map mk_given evs
       ; return inert_ret }
  where
dimitris's avatar
dimitris committed
343
    flav = Given gloc GivenOrig
344 345 346 347 348 349 350 351 352 353 354 355
    mk_given ev = mkEvVarX ev flav

solveInteractWanted :: InertSet -> [WantedEvVar] -> TcS InertSet
solveInteractWanted inert wvs
  = do { (_,inert_ret) <- solveInteract inert $ listToBag $
                          map wantedToFlavored wvs
       ; return inert_ret }

solveInteract :: InertSet -> Bag FlavoredEvVar -> TcS (Bool, InertSet)
-- Post: (True,  inert_set) means we managed to discharge all constraints
--                          without actually doing any interactions!
--       (False, inert_set) means some interactions occurred
356 357
solveInteract inert ws 
  = do { dyn_flags <- getDynFlags
358 359 360 361 362 363 364
       ; sctx <- getTcSContext

       ; traceTcS "solveInteract, before clever canonicalization:" $
         vcat [ text "ws = " <+>  ppr (mapBag (\(EvVarX ev ct)
                                                   -> (ct,evVarPred ev)) ws)
              , text "inert = " <+> ppr inert ]

365 366 367 368
       ; can_ws <- mkCanonicalFEVs ws

       ; (flag, inert_ret)
           <- foldrWorkListM (tryPreSolveAndInteract sctx dyn_flags) (True,inert) can_ws
369 370 371 372 373 374 375 376 377

       ; traceTcS "solveInteract, after clever canonicalization (and interaction):" $
         vcat [ text "No interaction happened = " <+> ppr flag
              , text "inert_ret = " <+> ppr inert_ret ]

       ; return (flag, inert_ret) }

tryPreSolveAndInteract :: SimplContext
                       -> DynFlags
378
                       -> CanonicalCt
379
                       -> (Bool, InertSet)
380 381
                       -> TcS (Bool, InertSet)
-- Returns: True if it was able to discharge this constraint AND all previous ones
382
tryPreSolveAndInteract sctx dyn_flags ct (all_previous_discharged, inert)
batterseapower's avatar
batterseapower committed
383
  = do { let inert_cts = get_inert_cts (predTypePredTree (evVarPred ev_var))
384

385 386 387 388 389
       ; this_one_discharged <- 
           if isCFrozenErr ct then 
               return False
           else
               dischargeFromCCans inert_cts ev_var fl
390 391 392

       ; if this_one_discharged
         then return (all_previous_discharged, inert)
393

394
         else do
395
       { inert_ret <- solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) ct inert
396 397 398
       ; return (False, inert_ret) } }

  where
399 400 401
    ev_var = cc_id ct
    fl = cc_flavor ct 

batterseapower's avatar
batterseapower committed
402
    get_inert_cts (ClassPred clas _)
403 404
      | simplEqsOnly sctx = emptyCCan
      | otherwise         = fst (getRelevantCts clas (inert_dicts inert))
batterseapower's avatar
batterseapower committed
405
    get_inert_cts (IPPred {})
406 407 408 409 410
      = emptyCCan -- We must not do the same thing for IParams, because (contrary
                  -- to dictionaries), work items /must/ override inert items.
                 -- See Note [Overriding implicit parameters] in TcInteract.
    get_inert_cts (EqPred {})
      = inert_eqs inert `unionBags` cCanMapToBag (inert_funeqs inert)
batterseapower's avatar
batterseapower committed
411 412 413 414
    get_inert_cts (TuplePred ts)
      = andCCans $ map get_inert_cts ts
    get_inert_cts (IrredPred {})
      = inert_irreds inert
415

416
dischargeFromCCans :: CanonicalCts -> EvVar -> CtFlavor -> TcS Bool
417 418 419 420
-- See if this (pre-canonicalised) work-item is identical to a 
-- one already in the inert set. Reasons:
--    a) Avoid creating superclass constraints for millions of incoming (Num a) constraints
--    b) Termination for improve_eqs in TcSimplify.simpl_loop
421
dischargeFromCCans cans ev fl
422 423 424 425 426 427
  = Bag.foldrBag discharge_ct (return False) cans
  where 
    the_pred = evVarPred ev

    discharge_ct :: CanonicalCt -> TcS Bool -> TcS Bool
    discharge_ct ct _rest
428
      | evVarPred (cc_id ct) `eqPred` the_pred
429
      , cc_flavor ct `canSolve` fl
batterseapower's avatar
batterseapower committed
430
      = do { when (isWanted fl) $ setEvBind ev (EvId (cc_id ct))
431 432 433 434 435
           	 -- Deriveds need no evidence
    	         -- For Givens, we already have evidence, and we don't need it twice 
           ; return True }

    discharge_ct _ct rest = rest
436 437 438 439
\end{code}

Note [Avoiding the superclass explosion] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
440 441 442 443 444 445 446 447 448 449 450 451
This note now is not as significant as it used to be because we no
longer add the superclasses of Wanted as Derived, except only if they
have equality superclasses or superclasses with functional
dependencies. The fear was that hundreds of identical wanteds would
give rise each to the same superclass or equality Derived's which
would lead to a blo-up in the number of interactions.

Instead, what we do with tryPreSolveAndCanon, is when we encounter a
new constraint, we very quickly see if it can be immediately
discharged by a class constraint in our inert set or the previous
canonicals. If so, we add nothing to the returned canonical
constraints.
452 453

\begin{code}
454 455
solveOne :: WorkItem -> InertSet -> TcS InertSet 
solveOne workItem inerts 
456
  = do { dyn_flags <- getDynFlags
457
       ; solveOneWithDepth (ctxtStkDepth dyn_flags,0,[]) workItem inerts
458 459 460 461
       }

-----------------
solveInteractWithDepth :: (Int, Int, [WorkItem])
462 463
                       -> WorkList -> InertSet -> TcS InertSet
solveInteractWithDepth ctxt@(max_depth,n,stack) ws inert
464 465 466 467 468 469 470 471
  | isEmptyWorkList ws
  = return inert

  | n > max_depth 
  = solverDepthErrorTcS n stack

  | otherwise 
  = do { traceTcS "solveInteractWithDepth" $ 
472
              vcat [ text "Current depth =" <+> ppr n
473 474
                   , text "Max depth =" <+> ppr max_depth
                   , text "ws =" <+> ppr ws ]
475

476 477 478

       ; foldrWorkListM (solveOneWithDepth ctxt) inert ws }
              -- use foldr to preserve the order
479 480 481 482 483

------------------
-- Fully interact the given work item with an inert set, and return a
-- new inert set which has assimilated the new information.
solveOneWithDepth :: (Int, Int, [WorkItem])
484 485
                  -> WorkItem -> InertSet -> TcS InertSet
solveOneWithDepth (max_depth, depth, stack) work inert
486 487
  = do { traceFireTcS depth (text "Solving {" <+> ppr work)
       ; (new_inert, new_work) <- runSolverPipeline depth thePipeline inert work
488 489 490
         
	 -- Recursively solve the new work generated 
         -- from workItem, with a greater depth
491
       ; res_inert <- solveInteractWithDepth (max_depth, depth+1, work:stack) new_work new_inert 
492

493 494
       ; traceFireTcS depth (text "Done }" <+> ppr work) 

495 496 497
       ; return res_inert }

thePipeline :: [(String,SimplifierStage)]
498 499 500 501
thePipeline = [ ("interact with inert eqs", interactWithInertEqsStage)
              , ("interact with inerts",    interactWithInertsStage)
              , ("spontaneous solve",       spontaneousSolveStage)
              , ("top-level reactions",     topReactionsStage) ]
502 503 504 505 506 507 508 509
\end{code}

*********************************************************************************
*                                                                               * 
                       The spontaneous-solve Stage
*                                                                               *
*********************************************************************************

510 511 512 513 514 515
Note [Efficient Orientation] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two cases where we have to be careful about 
orienting equalities to get better efficiency. 

516
Case 1: In Rewriting Equalities (function rewriteEqLHS) 
517

518 519 520 521 522 523 524 525 526 527
    When rewriting two equalities with the same LHS:
          (a)  (tv ~ xi1) 
          (b)  (tv ~ xi2) 
    We have a choice of producing work (xi1 ~ xi2) (up-to the
    canonicalization invariants) However, to prevent the inert items
    from getting kicked out of the inerts first, we prefer to
    canonicalize (xi1 ~ xi2) if (b) comes from the inert set, or (xi2
    ~ xi1) if (a) comes from the inert set.
    
    This choice is implemented using the WhichComesFromInert flag. 
528

529 530 531 532 533
Case 2: Functional Dependencies 
    Again, we should prefer, if possible, the inert variables on the RHS

Case 3: IP improvement work
    We must always rewrite so that the inert type is on the right. 
534

535 536
\begin{code}
spontaneousSolveStage :: SimplifierStage 
537
spontaneousSolveStage depth workItem inerts 
538 539
  = do { mSolve <- trySpontaneousSolve workItem

540
       ; case mSolve of 
541
           SPCantSolve -> -- No spontaneous solution for him, keep going
542 543
               return $ SR { sr_new_work   = emptyWorkList
                           , sr_inerts     = inerts
544 545
                           , sr_stop       = ContinueWith workItem }

546
           SPSolved workItem'
dimitris's avatar
dimitris committed
547
               | not (isGivenOrSolvedCt workItem) 
548 549 550 551 552
	       	 -- Original was wanted or derived but we have now made him 
                 -- given so we have to interact him with the inerts due to
                 -- its status change. This in turn may produce more work.
		 -- We do this *right now* (rather than just putting workItem'
		 -- back into the work-list) because we've solved 
553 554 555
               -> do { bumpStepCountTcS
	       	     ; traceFireTcS depth (ptext (sLit "Spontaneous (w/d)") <+> ppr workItem)
                     ; (new_inert, new_work) <- runSolverPipeline depth
556 557 558
                             [ ("recursive interact with inert eqs", interactWithInertEqsStage)
                             , ("recursive interact with inerts", interactWithInertsStage)
                             ] inerts workItem'
559 560 561
                     ; return $ SR { sr_new_work = new_work 
                                   , sr_inerts   = new_inert -- will include workItem' 
                                   , sr_stop     = Stop }
562
                     }
563 564 565
               | otherwise 
                   -> -- Original was given; he must then be inert all right, and
                      -- workList' are all givens from flattening
566 567 568 569 570
                      do { bumpStepCountTcS
	       	         ; traceFireTcS depth (ptext (sLit "Spontaneous (g)") <+> ppr workItem)
                         ; return $ SR { sr_new_work = emptyWorkList
                                       , sr_inerts   = inerts `updInertSet` workItem' 
                                       , sr_stop     = Stop } }
571 572 573 574
           SPError -> -- Return with no new work
               return $ SR { sr_new_work = emptyWorkList
                           , sr_inerts   = inerts
                           , sr_stop     = Stop }
575
       }
576

577 578 579 580 581 582
data SPSolveResult = SPCantSolve | SPSolved WorkItem | SPError
-- SPCantSolve means that we can't do the unification because e.g. the variable is untouchable
-- SPSolved workItem' gives us a new *given* to go on 
-- SPError means that it's completely impossible to solve this equality, eg due to a kind error


583
-- @trySpontaneousSolve wi@ solves equalities where one side is a
584
-- touchable unification variable.
585
--     	    See Note [Touchables and givens] 
586
trySpontaneousSolve :: WorkItem -> TcS SPSolveResult
batterseapower's avatar
batterseapower committed
587
trySpontaneousSolve workItem@(CTyEqCan { cc_id = eqv, cc_flavor = gw, cc_tyvar = tv1, cc_rhs = xi })
dimitris's avatar
dimitris committed
588
  | isGivenOrSolved gw
589
  = return SPCantSolve
590 591 592 593
  | Just tv2 <- tcGetTyVar_maybe xi
  = do { tch1 <- isTouchableMetaTyVar tv1
       ; tch2 <- isTouchableMetaTyVar tv2
       ; case (tch1, tch2) of
batterseapower's avatar
batterseapower committed
594 595 596
           (True,  True)  -> trySpontaneousEqTwoWay eqv gw tv1 tv2
           (True,  False) -> trySpontaneousEqOneWay eqv gw tv1 xi
           (False, True)  -> trySpontaneousEqOneWay eqv gw tv2 (mkTyVarTy tv1)
597
	   _ -> return SPCantSolve }
598 599
  | otherwise
  = do { tch1 <- isTouchableMetaTyVar tv1
batterseapower's avatar
batterseapower committed
600
       ; if tch1 then trySpontaneousEqOneWay eqv gw tv1 xi
601 602
                 else do { traceTcS "Untouchable LHS, can't spontaneously solve workitem:" 
                                    (ppr workItem) 
603
                         ; return SPCantSolve }
604
       }
605 606 607 608

  -- No need for 
  --      trySpontaneousSolve (CFunEqCan ...) = ...
  -- See Note [No touchables as FunEq RHS] in TcSMonad
609
trySpontaneousSolve _ = return SPCantSolve
610 611

----------------
batterseapower's avatar
batterseapower committed
612
trySpontaneousEqOneWay :: EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
613
-- tv is a MetaTyVar, not untouchable
batterseapower's avatar
batterseapower committed
614
trySpontaneousEqOneWay eqv gw tv xi	
615
  | not (isSigTyVar tv) || isTyVarTy xi 
616 617
  = do { let kxi = typeKind xi -- NB: 'xi' is fully rewritten according to the inerts 
                               -- so we have its more specific kind in our hands
618
       ; if kxi `isSubKind` tyVarKind tv then
batterseapower's avatar
batterseapower committed
619
             solveWithIdentity eqv gw tv xi
620 621 622
         else return SPCantSolve
{-
         else if tyVarKind tv `isSubKind` kxi then
623 624 625 626 627 628
             return SPCantSolve -- kinds are compatible but we can't solveWithIdentity this way
                                -- This case covers the  a_touchable :: * ~ b_untouchable :: ?? 
                                -- which has to be deferred or floated out for someone else to solve 
                                -- it in a scope where 'b' is no longer untouchable.
         else do { addErrorTcS KindError gw (mkTyVarTy tv) xi -- See Note [Kind errors]
                 ; return SPError }
629
-}
630
       }
631
  | otherwise -- Still can't solve, sig tyvar and non-variable rhs
632
  = return SPCantSolve
633 634

----------------
batterseapower's avatar
batterseapower committed
635
trySpontaneousEqTwoWay :: EqVar -> CtFlavor -> TcTyVar -> TcTyVar -> TcS SPSolveResult
636
-- Both tyvars are *touchable* MetaTyvars so there is only a chance for kind error here
batterseapower's avatar
batterseapower committed
637
trySpontaneousEqTwoWay eqv gw tv1 tv2
638
  | k1 `isSubKind` k2
batterseapower's avatar
batterseapower committed
639
  , nicer_to_update_tv2 = solveWithIdentity eqv gw tv2 (mkTyVarTy tv1)
640
  | k2 `isSubKind` k1 
batterseapower's avatar
batterseapower committed
641
  = solveWithIdentity eqv gw tv1 (mkTyVarTy tv2)
642
  | otherwise -- None is a subkind of the other, but they are both touchable! 
643 644 645
  = return SPCantSolve
    -- do { addErrorTcS KindError gw (mkTyVarTy tv1) (mkTyVarTy tv2)
    --   ; return SPError }
646 647 648 649 650 651
  where
    k1 = tyVarKind tv1
    k2 = tyVarKind tv2
    nicer_to_update_tv2 = isSigTyVar tv1 || isSystemName (Var.varName tv2)
\end{code}

652 653 654 655 656 657
Note [Kind errors] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the wanted problem: 
      alpha ~ (# Int, Int #) 
where alpha :: ?? and (# Int, Int #) :: (#). We can't spontaneously solve this constraint, 
but we should rather reject the program that give rise to it. If 'trySpontaneousEqTwoWay' 
658
simply returns @CantSolve@ then that wanted constraint is going to propagate all the way and 
659
get quantified over in inference mode. That's bad because we do know at this point that the 
660
constraint is insoluble. Instead, we call 'recKindErrorTcS' here, which will fail later on.
661 662

The same applies in canonicalization code in case of kind errors in the givens. 
663

664
However, when we canonicalize givens we only check for compatibility (@compatKind@). 
665
If there were a kind error in the givens, this means some form of inconsistency or dead code.
666

667 668 669 670 671
You may think that when we spontaneously solve wanteds we may have to look through the 
bindings to determine the right kind of the RHS type. E.g one may be worried that xi is 
@alpha@ where alpha :: ? and a previous spontaneous solving has set (alpha := f) with (f :: *).
But we orient our constraints so that spontaneously solved ones can rewrite all other constraint
so this situation can't happen. 
672

673 674
Note [Spontaneous solving and kind compatibility] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
675 676 677
Note that our canonical constraints insist that *all* equalities (tv ~
xi) or (F xis ~ rhs) require the LHS and the RHS to have *compatible*
the same kinds.  ("compatible" means one is a subKind of the other.)
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692
  - It can't be *equal* kinds, because
     b) wanted constraints don't necessarily have identical kinds
               eg   alpha::? ~ Int
     b) a solved wanted constraint becomes a given

  - SPJ thinks that *given* constraints (tv ~ tau) always have that
    tau has a sub-kind of tv; and when solving wanted constraints
    in trySpontaneousEqTwoWay we re-orient to achieve this.

  - Note that the kind invariant is maintained by rewriting.
    Eg wanted1 rewrites wanted2; if both were compatible kinds before,
       wanted2 will be afterwards.  Similarly givens.

Caveat:
693 694 695 696 697 698 699 700 701
  - Givens from higher-rank, such as: 
          type family T b :: * -> * -> * 
          type instance T Bool = (->) 

          f :: forall a. ((T a ~ (->)) => ...) -> a -> ... 
          flop = f (...) True 
     Whereas we would be able to apply the type instance, we would not be able to 
     use the given (T Bool ~ (->)) in the body of 'flop' 

702 703 704 705 706 707 708

Note [Avoid double unifications] 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The spontaneous solver has to return a given which mentions the unified unification
variable *on the left* of the equality. Here is what happens if not: 
  Original wanted:  (a ~ alpha),  (alpha ~ Int) 
We spontaneously solve the first wanted, without changing the order! 
709
      given : a ~ alpha      [having unified alpha := a] 
710 711 712
Now the second wanted comes along, but he cannot rewrite the given, so we simply continue.
At the end we spontaneously solve that guy, *reunifying*  [alpha := Int] 

713
We avoid this problem by orienting the resulting given so that the unification
714 715
variable is on the left.  [Note that alternatively we could attempt to
enforce this at canonicalization]
716

717 718 719
See also Note [No touchables as FunEq RHS] in TcSMonad; avoiding
double unifications is the main reason we disallow touchable
unification variables as RHS of type family equations: F xis ~ alpha.
720 721 722

\begin{code}
----------------
723

batterseapower's avatar
batterseapower committed
724
solveWithIdentity :: EqVar -> CtFlavor -> TcTyVar -> Xi -> TcS SPSolveResult
725 726
-- Solve with the identity coercion 
-- Precondition: kind(xi) is a sub-kind of kind(tv)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
727 728 729
-- Precondition: CtFlavor is Wanted or Derived
-- See [New Wanted Superclass Work] to see why solveWithIdentity 
--     must work for Derived as well as Wanted
730
-- Returns: workItem where 
731
--        workItem = the new Given constraint
batterseapower's avatar
batterseapower committed
732
solveWithIdentity eqv wd tv xi 
733 734
  = do { traceTcS "Sneaky unification:" $ 
                       vcat [text "Coercion variable:  " <+> ppr wd, 
735 736 737
                             text "Coercion:           " <+> pprEq (mkTyVarTy tv) xi,
                             text "Left  Kind is     : " <+> ppr (typeKind (mkTyVarTy tv)),
                             text "Right Kind is     : " <+> ppr (typeKind xi)
738
                  ]
739

740
       ; setWantedTyBind tv xi
741
       ; let refl_xi = mkReflCo xi
batterseapower's avatar
batterseapower committed
742
       ; eqv_given <- newGivenEqVar (mkTyVarTy tv) xi refl_xi
743

batterseapower's avatar
batterseapower committed
744
       ; when (isWanted wd) (setEqBind eqv refl_xi)
745
           -- We don't want to do this for Derived, that's why we use 'when (isWanted wd)'
batterseapower's avatar
batterseapower committed
746
       ; return $ SPSolved (CTyEqCan { cc_id = eqv_given
dimitris's avatar
dimitris committed
747
                                     , cc_flavor = mkSolvedFlavor wd UnkSkol
748
                                     , cc_tyvar  = tv, cc_rhs = xi }) }
749 750 751 752 753 754 755 756 757
\end{code}


*********************************************************************************
*                                                                               * 
                       The interact-with-inert Stage
*                                                                               *
*********************************************************************************

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
Note [The Solver Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We always add Givens first.  So you might think that the solver has
the invariant

   If the work-item is Given, 
   then the inert item must Given

But this isn't quite true.  Suppose we have, 
    c1: [W] beta ~ [alpha], c2 : [W] blah, c3 :[W] alpha ~ Int
After processing the first two, we get
     c1: [G] beta ~ [alpha], c2 : [W] blah
Now, c3 does not interact with the the given c1, so when we spontaneously
solve c3, we must re-react it with the inert set.  So we can attempt a 
reaction between inert c2 [W] and work-item c3 [G].

It *is* true that [Solver Invariant]
   If the work-item is Given, 
   AND there is a reaction
   then the inert item must Given
or, equivalently,
   If the work-item is Given, 
   and the inert item is Wanted/Derived
   then there is no reaction

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
\begin{code}
-- Interaction result of  WorkItem <~> AtomicInert
data InteractResult
   = IR { ir_stop         :: StopOrContinue
            -- Stop
            --   => Reagent (work item) consumed.
            -- ContinueWith new_reagent
            --   => Reagent transformed but keep gathering interactions. 
            --      The transformed item remains inert with respect 
            --      to any previously encountered inerts.

        , ir_inert_action :: InertAction
            -- Whether the inert item should remain in the InertSet.

        , ir_new_work     :: WorkList
            -- new work items to add to the WorkList
799 800

        , ir_fire :: Maybe String    -- Tells whether a rule fired, and if so what
801 802 803
        }

-- What to do with the inert reactant.
804
data InertAction = KeepInert | DropInert 
805

806 807 808 809
mkIRContinue :: String -> WorkItem -> InertAction -> WorkList -> TcS InteractResult
mkIRContinue rule wi keep newWork 
  = return $ IR { ir_stop = ContinueWith wi, ir_inert_action = keep
                , ir_new_work = newWork, ir_fire = Just rule }
810

811 812
mkIRStopK :: String -> WorkList -> TcS InteractResult
mkIRStopK rule newWork
813 814
  = return $ IR { ir_stop = Stop, ir_inert_action = KeepInert
                , ir_new_work = newWork, ir_fire = Just rule }
815

816 817 818 819 820
mkIRStopD :: String -> WorkList -> TcS InteractResult
mkIRStopD rule newWork
  = return $ IR { ir_stop = Stop, ir_inert_action = DropInert
                , ir_new_work = newWork, ir_fire = Just rule }

821
noInteraction :: Monad m => WorkItem -> m InteractResult
822 823 824
noInteraction wi
  = return $ IR { ir_stop = ContinueWith wi, ir_inert_action = KeepInert
                , ir_new_work = emptyWorkList, ir_fire = Nothing }
825

dimitris@microsoft.com's avatar
dimitris@microsoft.com committed
826
data WhichComesFromInert = LeftComesFromInert | RightComesFromInert 
827
     -- See Note [Efficient Orientation] 
828

829

830
---------------------------------------------------
831 832 833
-- Interact a single WorkItem with the equalities of an inert set as
-- far as possible, i.e. until we get a Stop result from an individual
-- reaction (i.e. when the WorkItem is consumed), or until we've
834 835 836
-- interact the WorkItem with the entire equalities of the InertSet

interactWithInertEqsStage :: SimplifierStage 
837
interactWithInertEqsStage depth workItem inert
838
  = Bag.foldrBagM (interactNext depth) initITR (inert_eqs inert)
839
                        -- use foldr to preserve the order          
840 841 842 843
  where
    initITR = SR { sr_inerts   = inert { inert_eqs = emptyCCan }
                 , sr_new_work = emptyWorkList
                 , sr_stop     = ContinueWith workItem }
844

845 846 847 848
---------------------------------------------------
-- Interact a single WorkItem with *non-equality* constraints in the inert set. 
-- Precondition: equality interactions must have already happened, hence we have 
-- to pick up some information from the incoming inert, before folding over the 
849 850
-- "Other" constraints it contains!

851
interactWithInertsStage :: SimplifierStage
852
interactWithInertsStage depth workItem inert
853 854 855 856
  = let (relevant, inert_residual) = getISRelevant workItem inert 
        initITR = SR { sr_inerts   = inert_residual
                     , sr_new_work = emptyWorkList
                     , sr_stop     = ContinueWith workItem } 
857 858
    in Bag.foldrBagM (interactNext depth) initITR relevant 
                        -- use foldr to preserve the order
859
  where 
860
    getISRelevant :: CanonicalCt -> InertSet -> (CanonicalCts, InertSet) 
861 862 863 864 865 866
    getISRelevant (CFrozenErr {}) is = (emptyCCan, is)
                  -- Nothing s relevant; we have alread interacted
                  -- it with the equalities in the inert set

    getISRelevant (CDictCan { cc_class = cls } ) is
      = let (relevant, residual_map) = getRelevantCts cls (inert_dicts is)
867 868 869 870 871 872 873
        in (relevant, is { inert_dicts = residual_map }) 
    getISRelevant (CFunEqCan { cc_fun = tc } ) is 
      = let (relevant, residual_map) = getRelevantCts tc (inert_funeqs is) 
        in (relevant, is { inert_funeqs = residual_map })
    getISRelevant (CIPCan { cc_ip_nm = nm }) is 
      = let (relevant, residual_map) = getRelevantCts nm (inert_ips is)
        in (relevant, is { inert_ips = residual_map }) 
874 875
    getISRelevant (CIrredEvCan {}) is
      = (inert_irreds is, is { inert_irreds = emptyCCan })
876 877 878 879 880
    -- An equality, finally, may kick everything except equalities out 
    -- because we have already interacted the equalities in interactWithInertEqsStage
    getISRelevant _eq_ct is  -- Equality, everything is relevant for this one 
                             -- TODO: if we were caching variables, we'd know that only 
                             --       some are relevant. Experiment with this for now. 
batterseapower's avatar
batterseapower committed
881 882 883 884
      = let cts = cCanMapToBag (inert_ips is) `unionBags`
                    cCanMapToBag (inert_dicts is) `unionBags`
                    cCanMapToBag (inert_funeqs is) `unionBags`
                    inert_irreds is
885 886
        in (cts, is { inert_dicts  = emptyCCanMap
                    , inert_ips    = emptyCCanMap
batterseapower's avatar
batterseapower committed
887 888
                    , inert_funeqs = emptyCCanMap
                    , inert_irreds = emptyBag })
889

890 891
interactNext :: SubGoalDepth -> AtomicInert -> StageResult -> TcS StageResult 
interactNext depth inert it
892 893 894 895 896 897 898 899 900 901 902
  | ContinueWith work_item <- sr_stop it
  = do { let inerts = sr_inerts it 

       ; IR { ir_new_work = new_work, ir_inert_action = inert_action
            , ir_fire = fire_info, ir_stop = stop } 
            <- interactWithInert inert work_item

       ; let mk_msg rule 
      	       = text rule <+> keep_doc
      	         <+> vcat [ ptext (sLit "Inert =") <+> ppr inert
      	                  , ptext (sLit "Work =")  <+> ppr work_item
903
      	                  , ppUnless (isEmptyWorkList new_work) $
904 905 906 907 908 909 910 911 912 913 914 915 916
                            ptext (sLit "New =") <+> ppr new_work ]
             keep_doc = case inert_action of
                 	  KeepInert -> ptext (sLit "[keep]")
                 	  DropInert -> ptext (sLit "[drop]")
       ; case fire_info of
           Just rule -> do { bumpStepCountTcS
                           ; traceFireTcS depth (mk_msg rule) }
           Nothing  -> return ()

       -- New inerts depend on whether we KeepInert or not 
       ; let inerts_new = case inert_action of
                            KeepInert -> inerts `updInertSet` inert
                            DropInert -> inerts
917 918

       ; return $ SR { sr_inerts   = inerts_new
919
                     , sr_new_work = sr_new_work it `unionWorkList` new_work
920
                     , sr_stop     = stop } }
921 922
  | otherwise 
  = return $ it { sr_inerts = (sr_inerts it) `updInertSet` inert }
923 924

-- Do a single interaction of two constraints.
925
interactWithInert :: AtomicInert -> WorkItem -> TcS InteractResult
926 927 928
interactWithInert inert workItem 
  = do { ctxt <- getTcSContext
       ; let is_allowed  = allowedInteraction (simplEqsOnly ctxt) inert workItem 
929

930 931
       ; if is_allowed then 
              doInteractWithInert inert workItem 
932
          else 
933 934
              noInteraction workItem 
       }
935 936 937

allowedInteraction :: Bool -> AtomicInert -> WorkItem -> Bool 
-- Allowed interactions 
batterseapower's avatar
batterseapower committed
938 939 940
allowedInteraction eqs_only (CDictCan {})    (CDictCan {})    = not eqs_only
allowedInteraction eqs_only (CIPCan {})      (CIPCan {})      = not eqs_only
allowedInteraction eqs_only (CIrredEvCan {}) (CIrredEvCan {}) = not eqs_only
941 942 943
allowedInteraction _ _ _ = True 

--------------------------------------------
944
doInteractWithInert :: CanonicalCt -> CanonicalCt -> TcS InteractResult
945 946
-- Identical class constraints.

947
doInteractWithInert
948 949
  inertItem@(CDictCan { cc_id = d1, cc_flavor = fl1, cc_class = cls1, cc_tyargs = tys1 }) 
   workItem@(CDictCan { cc_id = d2, cc_flavor = fl2, cc_class = cls2, cc_tyargs = tys2 })
950

951
  | cls1 == cls2  
batterseapower's avatar
batterseapower committed
952 953
  = do { let pty1 = mkClassPred cls1 tys1
             pty2 = mkClassPred cls2 tys2
954
             inert_pred_loc     = (pty1, pprFlavorArising fl1)
955
             work_item_pred_loc = (pty2, pprFlavorArising fl2)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

       ; any_fundeps 
           <- if isGivenOrSolved fl1 && isGivenOrSolved fl2 then return Nothing
              -- NB: We don't create fds for given (and even solved), have not seen a useful
              -- situation for these and even if we did we'd have to be very careful to only
              -- create Derived's and not Wanteds. 

              else let fd_eqns = improveFromAnother inert_pred_loc work_item_pred_loc
                       wloc    = get_workitem_wloc fl2 
                   in rewriteWithFunDeps fd_eqns tys2 wloc
                      -- See Note [Efficient Orientation], [When improvement happens]

       ; case any_fundeps of
           -- No Functional Dependencies 
           Nothing             
               | eqTypes tys1 tys2 -> solveOneFromTheOther "Cls/Cls" (EvId d1,fl1) workItem
               | otherwise         -> noInteraction workItem

           -- Actual Functional Dependencies
           Just (rewritten_tys2,cos2,fd_work) 
               | not (eqTypes tys1 rewritten_tys2) 
               -- Standard thing: create derived fds and keep on going. Importantly we don't
               -- throw workitem back in the worklist because this can cause loops. See #5236.
               -> do { fd_cans <- mkCanonicalFDAsDerived fd_work
                     ; mkIRContinue "Cls/Cls fundep (not solved)" workItem KeepInert fd_cans }

               -- This WHOLE otherwise branch is an optimization where the fd made the things match
               | otherwise  
               , let dict_co = mkTyConAppCo (classTyCon cls1) cos2
               -> case fl2 of
                    Given {} 
                        -> pprPanic "Unexpected given!" (ppr inertItem $$ ppr workItem)
                           -- The only way to have created a fundep is if the inert was
                           -- wanted or derived, in which case the workitem can't be given!
                    Derived {}
                        -- The types were made to exactly match so we don't need 
                        -- the workitem any longer.
                        -> do { fd_cans <- mkCanonicalFDAsDerived fd_work
                               -- No rewriting really, so let's create deriveds fds
                              ; mkIRStopK "Cls/Cls fundep (solved)" fd_cans }
		    Wanted  {} 
		        | isDerived fl1 
batterseapower's avatar
batterseapower committed
998
                            -> do { setEvBind d2 (EvCast d1 dict_co)
999
			          ; let inert_w = inertItem { cc_flavor = fl2 }
1000 1001 1002
			   -- A bit naughty: we take the inert Derived, 
			   -- turn it into a Wanted, use it to solve the work-item
			   -- and put it back into the work-list
1003 1004 1005 1006 1007 1008 1009 1010 1011
			   -- Maybe rather than starting again, we could keep going 
                           -- with the rewritten workitem, having dropped the inert, but its
                           -- safe to restart.
                          
                           -- Also: we have rewriting so lets create wanted fds
                                  ; fd_cans <- mkCanonicalFDAsWanted fd_work
                                  ; mkIRStopD "Cls/Cls fundep (solved)" $ 
                                    workListFromNonEq inert_w `unionWorkList` fd_cans }
		        | otherwise
batterseapower's avatar
batterseapower committed
1012
                        -> do { setEvBind d2 (EvCast d1 dict_co)
1013 1014 1015 1016 1017 1018 1019 1020
                          -- Rewriting is happening, so we have to create wanted fds
                              ; fd_cans <- mkCanonicalFDAsWanted fd_work
                              ; mkIRStopK "Cls/Cls fundep (solved)" fd_cans }
       }
  where get_workitem_wloc (Wanted wl)  = wl 
        get_workitem_wloc (Derived wl) = wl 
        get_workitem_wloc (Given {})   = panic "Unexpected given!"

1021 1022 1023

-- Class constraint and given equality: use the equality to rewrite
-- the class constraint. 
batterseapower's avatar
batterseapower committed
1024
doInteractWithInert (CTyEqCan { cc_id = eqv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1025 1026 1027
                    (CDictCan { cc_id = dv, cc_flavor = wfl, cc_class = cl, cc_tyargs = xis }) 
  | ifl `canRewrite` wfl 
  , tv `elemVarSet` tyVarsOfTypes xis
batterseapower's avatar
batterseapower committed
1028
  = do { rewritten_dict <- rewriteDict (eqv,tv,xi) (dv,wfl,cl,xis)
1029 1030
            -- Continue with rewritten Dictionary because we can only be in the 
            -- interactWithEqsStage, so the dictionary is inert. 
1031
       ; mkIRContinue "Eq/Cls" rewritten_dict KeepInert emptyWorkList }
1032
    
1033
doInteractWithInert (CDictCan { cc_id = dv, cc_flavor = ifl, cc_class = cl, cc_tyargs = xis }) 
batterseapower's avatar
batterseapower committed
1034
           workItem@(CTyEqCan { cc_id = eqv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
1035 1036
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfTypes xis
batterseapower's avatar
batterseapower committed
1037
  = do { rewritten_dict <- rewriteDict (eqv,tv,xi) (dv,ifl,cl,xis)
1038
       ; mkIRContinue "Cls/Eq" workItem DropInert (workListFromNonEq rewritten_dict) }
1039

1040 1041
-- Irreducible evidence and given equality: use the equality to rewrite
-- the irreducible evidence.
batterseapower's avatar
batterseapower committed
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
doInteractWithInert (CTyEqCan { cc_id = eqv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
                    (CIrredEvCan { cc_id = id, cc_flavor = wfl, cc_ty = ty })
  | ifl `canRewrite` wfl
  , tv `elemVarSet` tyVarsOfType ty 
  = do { rewritten_irred <- rewriteIrred (eqv,tv,xi) (id,wfl,ty) 
       ; mkIRStopK "Eq/Irred" rewritten_irred } 

doInteractWithInert (CIrredEvCan { cc_id = id, cc_flavor = ifl, cc_ty = ty }) 
           workItem@(CTyEqCan { cc_id = eqv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfType ty
  = do { rewritten_irred <- rewriteIrred (eqv,tv,xi) (id,ifl,ty) 
       ; mkIRContinue "Irred/Eq" workItem DropInert rewritten_irred }

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
-- Two pieces of irreducible evidence: if their types are *exactly identical* we can
-- rewrite them. We can never improve using this: if we want ty1 :: Constraint and have
-- ty2 :: Constraint it clearly does not mean that (ty1 ~ ty2)
doInteractWithInert (CIrredEvCan { cc_id = id1, cc_flavor = ifl, cc_ty = ty1 })
           workItem@(CIrredEvCan { cc_ty = ty2 })
  | ty1 `eqType` ty2
  = solveOneFromTheOther "Irred/Irred" (EvId id1,ifl) workItem

-- Implicit param and given equality: use the equality to rewrite
-- the implicit param.
batterseapower's avatar
batterseapower committed
1066
doInteractWithInert (CTyEqCan { cc_id = eqv, cc_flavor = ifl, cc_tyvar = tv, cc_rhs = xi }) 
1067 1068 1069
                    (CIPCan { cc_id = ipid, cc_flavor = wfl, cc_ip_nm = nm, cc_ip_ty = ty }) 
  | ifl `canRewrite` wfl
  , tv `elemVarSet` tyVarsOfType ty 
batterseapower's avatar
batterseapower committed
1070
  = do { rewritten_ip <- rewriteIP (eqv,tv,xi) (ipid,wfl,nm,ty) 
1071
       ; mkIRContinue "Eq/IP" rewritten_ip KeepInert emptyWorkList } 
1072

1073
doInteractWithInert (CIPCan { cc_id = ipid, cc_flavor = ifl, cc_ip_nm = nm, cc_ip_ty = ty }) 
batterseapower's avatar
batterseapower committed
1074
           workItem@(CTyEqCan { cc_id = eqv, cc_flavor = wfl, cc_tyvar = tv, cc_rhs = xi })
1075 1076
  | wfl `canRewrite` ifl
  , tv `elemVarSet` tyVarsOfType ty
batterseapower's avatar
batterseapower committed
1077
  = do { rewritten_ip <- rewriteIP (eqv,tv,xi) (ipid,ifl,nm,ty) 
1078
       ; mkIRContinue "IP/Eq" workItem DropInert (workListFromNonEq rewritten_ip) }
1079 1080 1081 1082 1083 1084

-- Two implicit parameter constraints.  If the names are the same,
-- but their types are not, we generate a wanted type equality 
-- that equates the type (this is "improvement").  
-- However, we don't actually need the coercion evidence,
-- so we just generate a fresh coercion variable that isn't used anywhere.
1085
doInteractWithInert (CIPCan { cc_id = id1, cc_flavor = ifl, cc_ip_nm = nm1, cc_ip_ty = ty1 }) 
1086
           workItem@(CIPCan { cc_flavor = wfl, cc_ip_nm = nm2, cc_ip_ty = ty2 })
dimitris's avatar
dimitris committed
1087
  | nm1 == nm2 && isGivenOrSolved wfl && isGivenOrSolved ifl
1088 1089 1090
  = 	-- See Note [Overriding implicit parameters]
        -- Dump the inert item, override totally with the new one
	-- Do not require type equality
1091 1092 1093
	-- For example, given let ?x::Int = 3 in let ?x::Bool = True in ...
	--              we must *override* the outer one with the inner one
    mkIRContinue "IP/IP override" workItem DropInert emptyWorkList
1094

1095
  | nm1 == nm2 && ty1 `eqType` ty2 
1096
  = solveOneFromTheOther "IP/IP" (EvId id1,ifl) workItem 
1097