glasgow_exts.sgml 159 KB
Newer Older
1
2
3
<para>
<indexterm><primary>language, GHC</primary></indexterm>
<indexterm><primary>extensions, GHC</primary></indexterm>
rrt's avatar
rrt committed
4
As with all known Haskell systems, GHC implements some extensions to
5
6
7
the language.  To use them, you'll need to give a <option>-fglasgow-exts</option>
<indexterm><primary>-fglasgow-exts option</primary></indexterm> option.
</para>
rrt's avatar
rrt committed
8

9
<para>
rrt's avatar
rrt committed
10
11
12
Virtually all of the Glasgow extensions serve to give you access to
the underlying facilities with which we implement Haskell.  Thus, you
can get at the Raw Iron, if you are willing to write some non-standard
rrt's avatar
rrt committed
13
code at a more primitive level.  You need not be &ldquo;stuck&rdquo; on
rrt's avatar
rrt committed
14
performance because of the implementation costs of Haskell's
rrt's avatar
rrt committed
15
&ldquo;high-level&rdquo; features&mdash;you can always code &ldquo;under&rdquo; them.  In an extreme case, you can write all your time-critical code in C, and then just glue it together with Haskell!
16
</para>
rrt's avatar
rrt committed
17

18
<para>
rrt's avatar
rrt committed
19
Before you get too carried away working at the lowest level (e.g.,
20
sloshing <literal>MutableByteArray&num;</literal>s around your
21
program), you may wish to check if there are libraries that provide a
22
23
24
&ldquo;Haskellised veneer&rdquo; over the features you want.  The
separate libraries documentation describes all the libraries that come
with GHC.
25
</para>
rrt's avatar
rrt committed
26

27
<!-- LANGUAGE OPTIONS -->
28
29
  <sect1 id="options-language">
    <title>Language options</title>
30

31
32
33
34
35
36
    <indexterm><primary>language</primary><secondary>option</secondary>
    </indexterm>
    <indexterm><primary>options</primary><secondary>language</secondary>
    </indexterm>
    <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
    </indexterm>
37

38
39
    <para> These flags control what variation of the language are
    permitted.  Leaving out all of them gives you standard Haskell
40
    98.</para>
41

42
    <variablelist>
43

44
45
46
47
48
49
50
51
52
53
      <varlistentry>
	<term><option>-fglasgow-exts</option>:</term>
	<indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
	<listitem>
	  <para>This simultaneously enables all of the extensions to
          Haskell 98 described in <xref
          linkend="ghc-language-features">, except where otherwise
          noted. </para>
	</listitem>
      </varlistentry>
54

chak's avatar
chak committed
55
56
57
58
59
60
61
62
63
64
65
66
67
      <varlistentry>
	<term><option>-ffi</option> and <option>-fffi</option>:</term>
	<indexterm><primary><option>-ffi</option></primary></indexterm>
	<indexterm><primary><option>-fffi</option></primary></indexterm>
	<listitem>
	  <para>This option enables the language extension defined in the
	  Haskell 98 Foreign Function Interface Addendum plus deprecated
	  syntax of previous versions of the FFI for backwards
	  compatibility.</para> 
	</listitem>
      </varlistentry>

      <varlistentry>
68
69
70
71
	<term><option>-fno-monomorphism-restriction</option>:</term>
	<indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
	<listitem>
	  <para> Switch off the Haskell 98 monomorphism restriction.
72
          Independent of the <option>-fglasgow-exts</option>
73
74
75
          flag. </para>
	</listitem>
      </varlistentry>
76

77
78
79
      <varlistentry>
	<term><option>-fallow-overlapping-instances</option></term>
	<term><option>-fallow-undecidable-instances</option></term>
80
	<term><option>-fallow-incoherent-instances</option></term>
81
82
83
84
85
	<term><option>-fcontext-stack</option></term>
	<indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
	<indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
	<indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
	<listitem>
86
	  <para> See <xref LinkEnd="instance-decls">.  Only relevant
87
88
89
          if you also use <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>
90

91
92
93
94
      <varlistentry>
	<term><option>-finline-phase</option></term>
	<indexterm><primary><option>-finline-phase</option></primary></indexterm>
	<listitem>
95
96
	  <para>See <xref LinkEnd="rewrite-rules">.  Only relevant if
          you also use <option>-fglasgow-exts</option>.</para>
97
98
	</listitem>
      </varlistentry>
99

ross's avatar
ross committed
100
101
102
103
104
105
106
107
108
      <varlistentry>
	<term><option>-farrows</option></term>
	<indexterm><primary><option>-farrows</option></primary></indexterm>
	<listitem>
	  <para>See <xref LinkEnd="arrow-notation">.  Independent of
          <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

109
110
111
112
      <varlistentry>
	<term><option>-fgenerics</option></term>
	<indexterm><primary><option>-fgenerics</option></primary></indexterm>
	<listitem>
113
114
	  <para>See <xref LinkEnd="generic-classes">.  Independent of
          <option>-fglasgow-exts</option>.</para>
115
116
117
	</listitem>
      </varlistentry>

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      <varlistentry>
	<term><option>-fno-implicit-prelude</option></term>
	<listitem>
	  <para><indexterm><primary>-fno-implicit-prelude
          option</primary></indexterm> GHC normally imports
          <filename>Prelude.hi</filename> files for you.  If you'd
          rather it didn't, then give it a
          <option>-fno-implicit-prelude</option> option.  The idea is
          that you can then import a Prelude of your own.  (But don't
          call it <literal>Prelude</literal>; the Haskell module
          namespace is flat, and you must not conflict with any
          Prelude module.)</para>

	  <para>Even though you have not imported the Prelude, most of
          the built-in syntax still refers to the built-in Haskell
          Prelude types and values, as specified by the Haskell
          Report.  For example, the type <literal>[Int]</literal>
          still means <literal>Prelude.[] Int</literal>; tuples
          continue to refer to the standard Prelude tuples; the
          translation for list comprehensions continues to use
          <literal>Prelude.map</literal> etc.</para>

	  <para>However, <option>-fno-implicit-prelude</option> does
	  change the handling of certain built-in syntax: see <xref
	  LinkEnd="rebindable-syntax">.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fth</option></term>
	<listitem>
	  <para>Enables Template Haskell (see <xref
	  linkend="template-haskell">).  Currently also implied by
	  <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fimplicit-params</option></term>
	<listitem>
	  <para>Enables implicit parameters (see <xref
	  linkend="implicit-parameters">).  Currently also implied by 
	  <option>-fglasgow-exts</option>.</para>
	</listitem>
      </varlistentry>
163
164

    </variablelist>
165
  </sect1>
166

167
<!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
168
<!--    included from primitives.sgml  -->
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
<!-- &primitives; -->
<sect1 id="primitives">
  <title>Unboxed types and primitive operations</title>

<para>GHC is built on a raft of primitive data types and operations.
While you really can use this stuff to write fast code,
  we generally find it a lot less painful, and more satisfying in the
  long run, to use higher-level language features and libraries.  With
  any luck, the code you write will be optimised to the efficient
  unboxed version in any case.  And if it isn't, we'd like to know
  about it.</para>

<para>We do not currently have good, up-to-date documentation about the
primitives, perhaps because they are mainly intended for internal use.
There used to be a long section about them here in the User Guide, but it
became out of date, and wrong information is worse than none.</para>

<para>The Real Truth about what primitive types there are, and what operations
work over those types, is held in the file
<filename>fptools/ghc/compiler/prelude/primops.txt</filename>.
This file is used directly to generate GHC's primitive-operation definitions, so
it is always correct!  It is also intended for processing into text.</para>

<para> Indeed,
the result of such processing is part of the description of the 
 <ulink
      url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
	 Core language</ulink>.
So that document is a good place to look for a type-set version.
We would be very happy if someone wanted to volunteer to produce an SGML
back end to the program that processes <filename>primops.txt</filename> so that
we could include the results here in the User Guide.</para>

<para>What follows here is a brief summary of some main points.</para>
  
<sect2 id="glasgow-unboxed">
<title>Unboxed types
</title>

<para>
<indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
</para>

<para>Most types in GHC are <firstterm>boxed</firstterm>, which means
that values of that type are represented by a pointer to a heap
object.  The representation of a Haskell <literal>Int</literal>, for
example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
type, however, is represented by the value itself, no pointers or heap
allocation are involved.
</para>

<para>
Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
would use in C: <literal>Int&num;</literal> (long int),
<literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
(void *), etc.  The <emphasis>primitive operations</emphasis>
(PrimOps) on these types are what you might expect; e.g.,
<literal>(+&num;)</literal> is addition on
<literal>Int&num;</literal>s, and is the machine-addition that we all
know and love&mdash;usually one instruction.
</para>

<para>
Primitive (unboxed) types cannot be defined in Haskell, and are
therefore built into the language and compiler.  Primitive types are
always unlifted; that is, a value of a primitive type cannot be
bottom.  We use the convention that primitive types, values, and
operations have a <literal>&num;</literal> suffix.
</para>

<para>
Primitive values are often represented by a simple bit-pattern, such
as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
<literal>Double&num;</literal>.  But this is not necessarily the case:
a primitive value might be represented by a pointer to a
heap-allocated object.  Examples include
<literal>Array&num;</literal>, the type of primitive arrays.  A
primitive array is heap-allocated because it is too big a value to fit
in a register, and would be too expensive to copy around; in a sense,
it is accidental that it is represented by a pointer.  If a pointer
represents a primitive value, then it really does point to that value:
no unevaluated thunks, no indirections&hellip;nothing can be at the
other end of the pointer than the primitive value.
</para>

<para>
There are some restrictions on the use of primitive types, the main
one being that you can't pass a primitive value to a polymorphic
function or store one in a polymorphic data type.  This rules out
things like <literal>[Int&num;]</literal> (i.e. lists of primitive
integers).  The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an
unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks.  Or a
<function>seq</function> operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results.  Even
worse, the unboxed value might be larger than a pointer
(<literal>Double&num;</literal> for instance).
</para>

<para>
Nevertheless, A numerically-intensive program using unboxed types can
go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
counterpart&mdash;we saw a threefold speedup on one example.
</para>

</sect2>

<sect2 id="unboxed-tuples">
<title>Unboxed Tuples
</title>

<para>
Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
they're available by default with <option>-fglasgow-exts</option>.  An
unboxed tuple looks like this:
</para>

<para>

<programlisting>
(# e_1, ..., e_n #)
</programlisting>

</para>

<para>
where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
type (primitive or non-primitive).  The type of an unboxed tuple looks
the same.
</para>

<para>
Unboxed tuples are used for functions that need to return multiple
values, but they avoid the heap allocation normally associated with
using fully-fledged tuples.  When an unboxed tuple is returned, the
components are put directly into registers or on the stack; the
unboxed tuple itself does not have a composite representation.  Many
of the primitive operations listed in this section return unboxed
tuples.
</para>

<para>
There are some pretty stringent restrictions on the use of unboxed tuples:
</para>

<para>

<itemizedlist>
<listitem>

<para>
 Unboxed tuple types are subject to the same restrictions as
other unboxed types; i.e. they may not be stored in polymorphic data
structures or passed to polymorphic functions.

</para>
</listitem>
<listitem>

<para>
 Unboxed tuples may only be constructed as the direct result of
a function, and may only be deconstructed with a <literal>case</literal> expression.
eg. the following are valid:


<programlisting>
f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -&#62; a + b }
</programlisting>


but the following are invalid:


<programlisting>
f x y = g (# x, y #)
g (# x, y #) = x + y
</programlisting>


</para>
</listitem>
<listitem>

<para>
 No variable can have an unboxed tuple type.  This is illegal:


<programlisting>
f :: (# Int, Int #) -&#62; (# Int, Int #)
f x = x
</programlisting>


because <literal>x</literal> has an unboxed tuple type.

</para>
</listitem>

</itemizedlist>

</para>

<para>
Note: we may relax some of these restrictions in the future.
</para>

<para>
The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
</para>

</sect2>
</sect1>

rrt's avatar
rrt committed
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
<!-- ====================== SYNTACTIC EXTENSIONS =======================  -->

<sect1 id="syntax-extns">
<title>Syntactic extensions</title>
 
    <!-- ====================== HIERARCHICAL MODULES =======================  -->

    <sect2 id="hierarchical-modules">
      <title>Hierarchical Modules</title>

      <para>GHC supports a small extension to the syntax of module
      names: a module name is allowed to contain a dot
      <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
      &ldquo;hierarchical module namespace&rdquo; extension, because
      it extends the normally flat Haskell module namespace into a
      more flexible hierarchy of modules.</para>

      <para>This extension has very little impact on the language
      itself; modules names are <emphasis>always</emphasis> fully
      qualified, so you can just think of the fully qualified module
      name as <quote>the module name</quote>.  In particular, this
      means that the full module name must be given after the
      <literal>module</literal> keyword at the beginning of the
      module; for example, the module <literal>A.B.C</literal> must
      begin</para>

<programlisting>module A.B.C</programlisting>


      <para>It is a common strategy to use the <literal>as</literal>
      keyword to save some typing when using qualified names with
      hierarchical modules.  For example:</para>

<programlisting>
import qualified Control.Monad.ST.Strict as ST
</programlisting>

423
424
425
      <para>For details on how GHC searches for source and interface
      files in the presence of hierarchical modules, see <xref
      linkend="search-path">.</para>
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

      <para>GHC comes with a large collection of libraries arranged
      hierarchically; see the accompanying library documentation.
      There is an ongoing project to create and maintain a stable set
      of <quote>core</quote> libraries used by several Haskell
      compilers, and the libraries that GHC comes with represent the
      current status of that project.  For more details, see <ulink
      url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
      Libraries</ulink>.</para>

    </sect2>

    <!-- ====================== PATTERN GUARDS =======================  -->

<sect2 id="pattern-guards">
<title>Pattern guards</title>

<para>
<indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ULink URL="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ULink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
</para>

<para>
Suppose we have an abstract data type of finite maps, with a
lookup operation:

<programlisting>
lookup :: FiniteMap -> Int -> Maybe Int
</programlisting>

The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
where <VarName>v</VarName> is the value that the key maps to.  Now consider the following definition:
</para>

<programlisting>
clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise  = var1 + var2
where
  m1 = lookup env var1
  m2 = lookup env var2
  ok1 = maybeToBool m1
  ok2 = maybeToBool m2
  val1 = expectJust m1
  val2 = expectJust m2
</programlisting>

<para>
The auxiliary functions are 
</para>

<programlisting>
maybeToBool :: Maybe a -&gt; Bool
maybeToBool (Just x) = True
maybeToBool Nothing  = False

expectJust :: Maybe a -&gt; a
expectJust (Just x) = x
expectJust Nothing  = error "Unexpected Nothing"
</programlisting>

<para>
What is <function>clunky</function> doing? The guard <literal>ok1 &&
ok2</literal> checks that both lookups succeed, using
<function>maybeToBool</function> to convert the <function>Maybe</function>
types to booleans. The (lazily evaluated) <function>expectJust</function>
calls extract the values from the results of the lookups, and binds the
returned values to <VarName>val1</VarName> and <VarName>val2</VarName>
respectively.  If either lookup fails, then clunky takes the
<literal>otherwise</literal> case and returns the sum of its arguments.
</para>

<para>
This is certainly legal Haskell, but it is a tremendously verbose and
un-obvious way to achieve the desired effect.  Arguably, a more direct way
to write clunky would be to use case expressions:
</para>

<programlisting>
clunky env var1 var1 = case lookup env var1 of
  Nothing -&gt; fail
  Just val1 -&gt; case lookup env var2 of
    Nothing -&gt; fail
    Just val2 -&gt; val1 + val2
where
  fail = val1 + val2
</programlisting>

<para>
This is a bit shorter, but hardly better.  Of course, we can rewrite any set
of pattern-matching, guarded equations as case expressions; that is
precisely what the compiler does when compiling equations! The reason that
Haskell provides guarded equations is because they allow us to write down
the cases we want to consider, one at a time, independently of each other. 
This structure is hidden in the case version.  Two of the right-hand sides
are really the same (<function>fail</function>), and the whole expression
tends to become more and more indented. 
</para>

<para>
Here is how I would write clunky:
</para>

<programlisting>
clunky env var1 var1
  | Just val1 &lt;- lookup env var1
  , Just val2 &lt;- lookup env var2
  = val1 + val2
...other equations for clunky...
</programlisting>

<para>
The semantics should be clear enough.  The qualifers are matched in order. 
For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
right hand side is evaluated and matched against the pattern on the left. 
If the match fails then the whole guard fails and the next equation is
tried.  If it succeeds, then the appropriate binding takes place, and the
next qualifier is matched, in the augmented environment.  Unlike list
comprehensions, however, the type of the expression to the right of the
<literal>&lt;-</literal> is the same as the type of the pattern to its
left.  The bindings introduced by pattern guards scope over all the
remaining guard qualifiers, and over the right hand side of the equation.
</para>

<para>
Just as with list comprehensions, boolean expressions can be freely mixed
with among the pattern guards.  For example:
</para>

<programlisting>
f x | [y] <- x
    , y > 3
    , Just z <- h y
    = ...
</programlisting>

<para>
Haskell's current guards therefore emerge as a special case, in which the
qualifier list has just one element, a boolean expression.
</para>
</sect2>

    <!-- ===================== Recursive do-notation ===================  -->

<sect2 id="mdo-notation">
<title>The recursive do-notation
</title>

<para> The recursive do-notation (also known as mdo-notation) is implemented as described in
"A recursive do for Haskell",
Levent Erkok, John Launchbury",
Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
</para>
<para>
The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
that is, the variables bound in a do-expression are visible only in the textually following 
code block. Compare this to a let-expression, where bound variables are visible in the entire binding
group. It turns out that several applications can benefit from recursive bindings in
the do-notation, and this extension provides the necessary syntactic support.
</para>
<para>
Here is a simple (yet contrived) example:
</para>
<programlisting>
589
590
import Control.Monad.Fix

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
justOnes = mdo xs <- Just (1:xs)
               return xs
</programlisting>
<para>
As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
</para>

<para>
The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
</para>
<programlisting>
class Monad m => MonadFix m where
   mfix :: (a -> m a) -> m a
</programlisting>
<para>
The function <literal>mfix</literal>
dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
then that monad must be declared an instance of the <literal>MonadFix</literal> class.
For details, see the above mentioned reference.
</para>
<para>
612
613
614
The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
for Haskell's internal state monad (strict and lazy, respectively).
615
616
617
618
619
620
621
622
623
624
</para>
<para>
There are three important points in using the recursive-do notation:
<itemizedlist>
<listitem><para>
The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
than <literal>do</literal>).
</para></listitem>

<listitem><para>
625
626
627
628
You should <literal>import Control.Monad.Fix</literal>.
(Note: Strictly speaking, this import is required only when you need to refer to the name
<literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
are encouraged to always import this module when using the mdo-notation.)
629
630
631
632
633
634
635
636
637
</para></listitem>

<listitem><para>
As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
</para></listitem>
</itemizedlist>
</para>

<para>
638
639
The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
contains up to date information on recursive monadic bindings.
640
641
642
</para>

<para>
643
644
645
646
Historical note: The old implementation of the mdo-notation (and most
of the existing documents) used the name
<literal>MonadRec</literal> for the class and the corresponding library.
This name is not supported by GHC.
647
648
</para>

649
650
651
</sect2>


652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
   <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->

  <sect2 id="parallel-list-comprehensions">
    <title>Parallel List Comprehensions</title>
    <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
    </indexterm>
    <indexterm><primary>parallel list comprehensions</primary>
    </indexterm>

    <para>Parallel list comprehensions are a natural extension to list
    comprehensions.  List comprehensions can be thought of as a nice
    syntax for writing maps and filters.  Parallel comprehensions
    extend this to include the zipWith family.</para>

    <para>A parallel list comprehension has multiple independent
    branches of qualifier lists, each separated by a `|' symbol.  For
    example, the following zips together two lists:</para>

<programlisting>
   [ (x, y) | x <- xs | y <- ys ] 
</programlisting>

    <para>The behavior of parallel list comprehensions follows that of
    zip, in that the resulting list will have the same length as the
    shortest branch.</para>

    <para>We can define parallel list comprehensions by translation to
    regular comprehensions.  Here's the basic idea:</para>

    <para>Given a parallel comprehension of the form: </para>

<programlisting>
   [ e | p1 <- e11, p2 <- e12, ... 
       | q1 <- e21, q2 <- e22, ... 
       ... 
   ] 
</programlisting>

    <para>This will be translated to: </para>

<programlisting>
   [ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...] 
                                         [(q1,q2) | q1 <- e21, q2 <- e22, ...] 
                                         ... 
   ] 
</programlisting>

    <para>where `zipN' is the appropriate zip for the given number of
    branches.</para>

  </sect2>

<sect2 id="rebindable-syntax">
<title>Rebindable syntax</title>


      <para>GHC allows most kinds of built-in syntax to be rebound by
      the user, to facilitate replacing the <literal>Prelude</literal>
      with a home-grown version, for example.</para>

            <para>You may want to define your own numeric class
            hierarchy.  It completely defeats that purpose if the
            literal "1" means "<literal>Prelude.fromInteger
            1</literal>", which is what the Haskell Report specifies.
            So the <option>-fno-implicit-prelude</option> flag causes
            the following pieces of built-in syntax to refer to
            <emphasis>whatever is in scope</emphasis>, not the Prelude
            versions:</para>

	    <itemizedlist>
	      <listitem>
		<para>Integer and fractional literals mean
                "<literal>fromInteger 1</literal>" and
                "<literal>fromRational 3.2</literal>", not the
                Prelude-qualified versions; both in expressions and in
                patterns. </para>
		<para>However, the standard Prelude <literal>Eq</literal> class
		is still used for the equality test necessary for literal patterns.</para>
	      </listitem>

	      <listitem>
		<para>Negation (e.g. "<literal>- (f x)</literal>")
		means "<literal>negate (f x)</literal>" (not
		<literal>Prelude.negate</literal>).</para>
	      </listitem>

	      <listitem>
		<para>In an n+k pattern, the standard Prelude
                <literal>Ord</literal> class is still used for comparison,
                but the necessary subtraction uses whatever
                "<literal>(-)</literal>" is in scope (not
                "<literal>Prelude.(-)</literal>").</para>
	      </listitem>

	      <listitem>
	  <para>"Do" notation is translated using whatever
	      functions <literal>(>>=)</literal>,
	      <literal>(>>)</literal>, <literal>fail</literal>, and
	      <literal>return</literal>, are in scope (not the Prelude
	      versions).  List comprehensions, and parallel array
	      comprehensions, are unaffected.  </para></listitem>
	    </itemizedlist>

	     <para>Be warned: this is an experimental facility, with fewer checks than
	     usual.  In particular, it is essential that the functions GHC finds in scope
	     must have the appropriate types, namely:
	     <screen>
	        fromInteger  :: forall a. (...) => Integer  -> a
		fromRational :: forall a. (...) => Rational -> a
		negate       :: forall a. (...) => a -> a
		(-)          :: forall a. (...) => a -> a -> a
		(>>=)	     :: forall m a. (...) => m a -> (a -> m b) -> m b
		(>>)	     :: forall m a. (...) => m a -> m b -> m b
		return	     :: forall m a. (...) => a      -> m a
		fail	     :: forall m a. (...) => String -> m a
	     </screen>
	     (The (...) part can be any context including the empty context; that part 
	     is up to you.)
	     If the functions don't have the right type, very peculiar things may 
	     happen.  Use <literal>-dcore-lint</literal> to
	     typecheck the desugared program.  If Core Lint is happy you should be all right.</para>

</sect2>
</sect1>

rrt's avatar
rrt committed
777

778
779
780
<!-- TYPE SYSTEM EXTENSIONS -->
<sect1 id="type-extensions">
<title>Type system extensions</title>
rrt's avatar
rrt committed
781

782
783
784
785
786

<sect2>
<title>Data types and type synonyms</title>

<sect3 id="nullary-types">
787
788
<title>Data types with no constructors</title>

789
<para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
790
a data type with no constructors.  For example:</para>
791

792
793
794
795
<programlisting>
  data S      -- S :: *
  data T a    -- T :: * -> *
</programlisting>
796

797
<para>Syntactically, the declaration lacks the "= constrs" part.  The 
798
799
800
type can be parameterised over types of any kind, but if the kind is
not <literal>*</literal> then an explicit kind annotation must be used
(see <xref linkend="sec-kinding">).</para>
801
802
803

<para>Such data types have only one value, namely bottom.
Nevertheless, they can be useful when defining "phantom types".</para>
804
</sect3>
805

806
<sect3 id="infix-tycons">
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
<title>Infix type constructors</title>

<para>
GHC allows type constructors to be operators, and to be written infix, very much 
like expressions.  More specifically:
<itemizedlist>
<listitem><para>
  A type constructor can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
  The lexical syntax is the same as that for data constructors.
  </para></listitem>
<listitem><para>
  Types can be written infix.  For example <literal>Int :*: Bool</literal>.  
  </para></listitem>
<listitem><para>
  Back-quotes work
  as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
  <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
  </para></listitem>
<listitem><para>
  Fixities may be declared for type constructors just as for data constructors.  However,
  one cannot distinguish between the two in a fixity declaration; a fixity declaration
  sets the fixity for a data constructor and the corresponding type constructor.  For example:
<screen>
  infixl 7 T, :*:
</screen>
  sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
  and similarly for <literal>:*:</literal>.
  <literal>Int `a` Bool</literal>.
  </para></listitem>
<listitem><para>
  Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
  </para></listitem>
<listitem><para>
  Data type and type-synonym declarations can be written infix.  E.g.
<screen>
  data a :*: b = Foo a b
  type a :+: b = Either a b
</screen>
  </para></listitem>
<listitem><para>
  The only thing that differs between operators in types and operators in expressions is that
  ordinary non-constructor operators, such as <literal>+</literal> and <literal>*</literal>
  are not allowed in types. Reason: the uniform thing to do would be to make them type
  variables, but that's not very useful.  A less uniform but more useful thing would be to
  allow them to be type <emphasis>constructors</emphasis>.  But that gives trouble in export
  lists.  So for now we just exclude them.
  </para></listitem>

</itemizedlist>
</para>
857
</sect3>
858

859
860
<sect3 id="type-synonyms">
<title>Liberalised type synonyms</title>
861
862

<para>
863
864
865
Type synonmys are like macros at the type level, and
GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
That means that GHC can be very much more liberal about type synonyms than Haskell 98:
866
<itemizedlist>
867
868
869
870
<listitem> <para>You can write a <literal>forall</literal> (including overloading)
in a type synonym, thus:
<programlisting>
  type Discard a = forall b. Show b => a -> b -> (a, String)
871

872
873
  f :: Discard a
  f x y = (x, show y)
874

875
876
877
  g :: Discard Int -> (Int,Bool)    -- A rank-2 type
  g f = f Int True
</programlisting>
878
</para>
879
</listitem>
880

881
882
883
884
<listitem><para>
You can write an unboxed tuple in a type synonym:
<programlisting>
  type Pr = (# Int, Int #)
885

886
887
888
889
890
891
892
  h :: Int -> Pr
  h x = (# x, x #)
</programlisting>
</para></listitem>

<listitem><para>
You can apply a type synonym to a forall type:
893
<programlisting>
894
895
896
  type Foo a = a -> a -> Bool
 
  f :: Foo (forall b. b->b)
897
</programlisting>
898
899
900
901
902
After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
<programlisting>
  f :: (forall b. b->b) -> (forall b. b->b) -> Bool
</programlisting>
</para></listitem>
903

904
905
906
907
908
909
910
911
912
913
914
915
916
<listitem><para>
You can apply a type synonym to a partially applied type synonym:
<programlisting>
  type Generic i o = forall x. i x -> o x
  type Id x = x
  
  foo :: Generic Id []
</programlisting>
After epxanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
<programlisting>
  foo :: forall x. x -> [x]
</programlisting>
</para></listitem>
917

918
919
</itemizedlist>
</para>
rrt's avatar
rrt committed
920

921
<para>
922
923
GHC currently does kind checking before expanding synonyms (though even that
could be changed.)
924
925
</para>
<para>
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
After expanding type synonyms, GHC does validity checking on types, looking for
the following mal-formedness which isn't detected simply by kind checking:
<itemizedlist>
<listitem><para>
Type constructor applied to a type involving for-alls.
</para></listitem>
<listitem><para>
Unboxed tuple on left of an arrow.
</para></listitem>
<listitem><para>
Partially-applied type synonym.
</para></listitem>
</itemizedlist>
So, for example,
this will be rejected:
941
<programlisting>
942
  type Pr = (# Int, Int #)
rrt's avatar
rrt committed
943

944
945
946
947
  h :: Pr -> Int
  h x = ...
</programlisting>
because GHC does not allow  unboxed tuples on the left of a function arrow.
948
</para>
949
</sect3>
rrt's avatar
rrt committed
950
951


952
953
954
<sect3 id="existential-quantification">
<title>Existentially quantified data constructors
</title>
rrt's avatar
rrt committed
955

956
<para>
957
958
959
960
961
962
The idea of using existential quantification in data type declarations
was suggested by Laufer (I believe, thought doubtless someone will
correct me), and implemented in Hope+. It's been in Lennart
Augustsson's <Command>hbc</Command> Haskell compiler for several years, and
proved very useful.  Here's the idea.  Consider the declaration:
</para>
rrt's avatar
rrt committed
963

964
<para>
rrt's avatar
rrt committed
965

966
<programlisting>
967
968
  data Foo = forall a. MkFoo a (a -> Bool)
           | Nil
969
</programlisting>
rrt's avatar
rrt committed
970

971
</para>
rrt's avatar
rrt committed
972

973
<para>
974
975
The data type <literal>Foo</literal> has two constructors with types:
</para>
rrt's avatar
rrt committed
976

977
<para>
rrt's avatar
rrt committed
978

979
<programlisting>
980
981
  MkFoo :: forall a. a -> (a -> Bool) -> Foo
  Nil   :: Foo
982
</programlisting>
rrt's avatar
rrt committed
983

984
</para>
rrt's avatar
rrt committed
985

986
987
988
989
990
<para>
Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
does not appear in the data type itself, which is plain <literal>Foo</literal>.
For example, the following expression is fine:
</para>
rrt's avatar
rrt committed
991

992
<para>
rrt's avatar
rrt committed
993

994
<programlisting>
995
  [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
996
</programlisting>
rrt's avatar
rrt committed
997

998
</para>
rrt's avatar
rrt committed
999

1000
<para>