Env.hs 12.1 KB
Newer Older
Ian Lynagh's avatar
Ian Lynagh committed
1
{-# OPTIONS_GHC -XNoMonoLocalBinds #-}
2

3 4 5 6 7 8
-- Vectorise a modules type environment, the structure containing all type things defined in a
-- module.
--
-- This extends the type environment with vectorised variants of data types and produces value
-- bindings for worker functions and the like.

9
module Vectorise.Type.Env ( 
10
  vectTypeEnv,
11 12
) where
  
13 14
#include "HsVersions.h"

15
import Vectorise.Env
16
import Vectorise.Vect
17 18
import Vectorise.Monad
import Vectorise.Builtins
19
import Vectorise.Type.TyConDecl
20
import Vectorise.Type.Classify
21
import Vectorise.Type.PADict
22 23 24
import Vectorise.Type.PData
import Vectorise.Type.PRepr
import Vectorise.Type.Repr
25
import Vectorise.Utils
26

rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
27
import CoreSyn
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
28
import CoreUtils
29
import CoreUnfold
30
import DataCon
31 32
import TyCon
import Type
33
import FamInstEnv
34
import Id
35
import MkId
36
import NameEnv
37
import NameSet
38

39
import Util
40
import Outputable
41
import FastString
42 43
import MonadUtils
import Control.Monad
44 45
import Data.List

46

47 48 49 50 51 52 53 54 55
-- Note [Pragmas to vectorise tycons]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- VECTORISE pragmas for type constructors cover three different flavours of vectorising data type
-- constructors:
--
-- (1) Data type constructor 'T' that may be used in vectorised code, where 'T' represents itself,
--     but the representation of 'T' is opaque in vectorised code.  
--
56
--     An example is the treatment of 'Int'.  'Int's can be used in vectorised code and remain
57 58 59
--     unchanged by vectorisation.  However, the representation of 'Int' by the 'I#' data
--     constructor wrapping an 'Int#' is not exposed in vectorised code.  Instead, computations
--     involving the representation need to be confined to scalar code.
60
--
61 62 63 64 65 66
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
--
--     Type constructors declared with {-# VECTORISE SCALAR type T #-} are treated in this manner.
--     (The vectoriser never treats a type constructor automatically in this manner.)
--
67 68 69 70 71 72
-- (2) Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
--     code, where 'T' and the 'Cn' are automatically vectorised in the same manner as data types
--     declared in a vectorised module.  This includes the case where the vectoriser determines that
--     the original representation of 'T' may be used in vectorised code (as it does not embed any
--     parallel arrays.)  This case is for type constructors that are *imported* from a non-
--     vectorised module, but that we want to use with full vectorisation support.
73
--
74 75
--     An example is the treatment of 'Ordering' and '[]'.  The former remains unchanged by
--     vectorisation, whereas the latter is fully vectorised.
76 77 78 79 80

--     'PData' and 'PRepr' instances are automatically generated by the vectoriser.
--
--     Type constructors declared with {-# VECTORISE type T #-} are treated in this manner.
--
81 82 83
-- (3) Data type constructor 'T' that together with its constructors 'Cn' may be used in vectorised
--     code, where 'T' is represented by an explicitly given 'Tv' whose constructors 'Cvn' represent
--     the original constructors in vectorised code.  As a special case, we can have 'Tv = T'
84
--
85 86 87
--     An example is the treatment of 'Bool', which is represented by itself in vectorised code
--     (as it cannot embed any parallel arrays).  However, we do not want any automatic generation
--     of class and family instances, which is why Case (2) does not apply.
88
--
89 90
--     'PData' and 'PRepr' instances need to be explicitly supplied for 'T' (they are not generated
--     by the vectoriser).
91
--
92
--     Type constructors declared with {-# VECTORISE type T = T' #-} are treated in this manner.
93 94 95

-- |Vectorise a type environment.
--
96
vectTypeEnv :: [TyCon]                  -- TyCons defined in this module
97
            -> [CoreVect]               -- All 'VECTORISE [SCALAR] type' declarations in this module
98
            -> VM ( [TyCon]             -- old TyCons ++ new TyCons
99 100
                  , [FamInst]           -- New type family instances.
                  , [(Var, CoreExpr)])  -- New top level bindings.
101 102
vectTypeEnv tycons vectTypeDecls
  = do { traceVt "** vectTypeEnv" $ ppr tycons
103 104 105 106 107 108 109 110 111

         -- Build a map containing all vectorised type constructor.  If they are scalar, they are
         -- mapped to 'False' (vectorised type constructor == original type constructor).
       ; allScalarTyConNames <- globalScalarTyCons  -- covers both current and imported modules
       ; vectTyCons          <- globalVectTyCons
       ; let vectTyConBase    = mapNameEnv (const True) vectTyCons   -- by default fully vectorised
             vectTyConFlavour = foldNameSet (\n env -> extendNameEnv env n False) vectTyConBase
                                            allScalarTyConNames

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
       ; let   -- {-# VECTORISE SCALAR type T -#} (imported and local tycons)
             localScalarTyCons      = [tycon | VectType True  tycon Nothing <- vectTypeDecls]

               -- {-# VECTORISE type T -#} (ONLY the imported tycons)
             impVectTyCons          = [tycon | VectType False tycon Nothing <- vectTypeDecls]
                                      \\ tycons

               -- {-# VECTORISE type T = ty -#} (imported and local tycons)
             vectTyConsWithRHS      = [ (tycon, rhs) 
                                      | VectType False tycon (Just rhs) <- vectTypeDecls]

               -- filter VECTORISE SCALAR tycons and VECTORISE tycons with explicit rhses
             vectSpecialTyConNames  = mkNameSet . map tyConName $
                                        localScalarTyCons ++ map fst vectTyConsWithRHS
             notLocalScalarTyCon tc = not $ (tyConName tc) `elemNameSet` vectSpecialTyConNames

128 129 130 131
           -- Split the list of 'TyCons' into the ones (1) that we must vectorise and those (2)
           -- that we could, but don't need to vectorise.  Type constructors that are not data
           -- type constructors or use non-Haskell98 features are being dropped.  They may not
           -- appear in vectorised code.  (We also drop the local type constructors appearing in a
132 133 134
           -- VECTORISE SCALAR pragma or a VECTORISE pragma with an explicit right-hand side, as
           -- these are being handled separately.)
       ; let maybeVectoriseTyCons   = filter notLocalScalarTyCon tycons ++ impVectTyCons
135 136 137
             (conv_tcs, keep_tcs)   = classifyTyCons vectTyConFlavour maybeVectoriseTyCons
             orig_tcs               = keep_tcs ++ conv_tcs
             
138 139
       ; traceVt " VECT SCALAR    : " $ ppr localScalarTyCons
       ; traceVt " VECT with rhs  : " $ ppr (map fst vectTyConsWithRHS)
140 141 142
       ; traceVt " reuse          : " $ ppr keep_tcs
       ; traceVt " convert        : " $ ppr conv_tcs

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
       ; let defTyConDataCons origTyCon vectTyCon
               = do { defTyCon origTyCon vectTyCon
                    ; MASSERT(length (tyConDataCons origTyCon) == length (tyConDataCons vectTyCon))
                    ; zipWithM_ defDataCon (tyConDataCons origTyCon) (tyConDataCons vectTyCon)
                    }

           -- For the type constructors that we don't need to vectorise, we use the original
           -- representation in both unvectorised and vectorised code.
       ; zipWithM_ defTyConDataCons keep_tcs keep_tcs

           -- We do the same for type constructors declared VECTORISE SCALAR, while ignoring their
           -- representation (data constructors) — see "Note [Pragmas to vectorise tycons]".
       ; zipWithM_ defTyCon localScalarTyCons localScalarTyCons

           -- For type constructors declared VECTORISE with an explicit vectorised type, we use the
           -- explicitly given type in vectorised code and map data constructors one for one — see
           -- "Note [Pragmas to vectorise tycons]".
       ; mapM_ (uncurry defTyConDataCons) vectTyConsWithRHS
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

           -- Vectorise all the data type declarations that we can and must vectorise.
       ; new_tcs <- vectTyConDecls conv_tcs

           -- We don't need new representation types for dictionary constructors. The constructors
           -- are always fully applied, and we don't need to lift them to arrays as a dictionary
           -- of a particular type always has the same value.
       ; let vect_tcs = filter (not . isClassTyCon) 
                      $ keep_tcs ++ new_tcs

           -- Build 'PRepr' and 'PData' instance type constructors and family instances for all
           -- type constructors with vectorised representations.
       ; reprs     <- mapM tyConRepr vect_tcs
       ; repr_tcs  <- zipWith3M buildPReprTyCon orig_tcs vect_tcs reprs
       ; pdata_tcs <- zipWith3M buildPDataTyCon orig_tcs vect_tcs reprs
       ; let inst_tcs  = repr_tcs ++ pdata_tcs
             fam_insts = map mkLocalFamInst inst_tcs
       ; updGEnv $ extendFamEnv fam_insts

           -- Generate dfuns for the 'PA' instances of the vectorised type constructors and
           -- associate the type constructors with their dfuns in the global environment.  We get
           -- back the dfun bindings (which we will subsequently inject into the modules toplevel).
       ; (_, binds) <- fixV $ \ ~(dfuns, _) ->
           do { defTyConPAs (zipLazy vect_tcs dfuns)
              ; dfuns <- sequence 
                      $  zipWith4 buildTyConBindings
                                  orig_tcs
                                  vect_tcs
                                  repr_tcs
                                  pdata_tcs

              ; binds <- takeHoisted
              ; return (dfuns, binds)
              }

196 197 198
           -- We return: (1) the vectorised type constructors, (2)
           -- their 'PRepr' & 'PData' instance constructors two.
       ; let new_tycons = tycons ++ new_tcs ++ inst_tcs
199

200
       ; return (new_tycons, fam_insts, binds)
201 202 203 204 205 206 207 208 209 210 211
       }


-- Helpers -------------------

buildTyConBindings :: TyCon -> TyCon -> TyCon -> TyCon -> VM Var
buildTyConBindings orig_tc vect_tc prepr_tc pdata_tc
 = do { vectDataConWorkers orig_tc vect_tc pdata_tc
      ; repr <- tyConRepr vect_tc
      ; buildPADict vect_tc prepr_tc pdata_tc repr
      }
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
212

213 214
vectDataConWorkers :: TyCon -> TyCon -> TyCon -> VM ()
vectDataConWorkers orig_tc vect_tc arr_tc
215
 = do bs <- sequence
216 217 218
          . zipWith3 def_worker  (tyConDataCons orig_tc) rep_tys
          $ zipWith4 mk_data_con (tyConDataCons vect_tc)
                                 rep_tys
219 220
                                 (inits rep_tys)
                                 (tail $ tails rep_tys)
221
      mapM_ (uncurry hoistBinding) bs
222
 where
223 224 225 226 227
    tyvars   = tyConTyVars vect_tc
    var_tys  = mkTyVarTys tyvars
    ty_args  = map Type var_tys
    res_ty   = mkTyConApp vect_tc var_tys

228 229 230 231
    cons     = tyConDataCons vect_tc
    arity    = length cons
    [arr_dc] = tyConDataCons arr_tc

232 233 234 235 236
    rep_tys  = map dataConRepArgTys $ tyConDataCons vect_tc


    mk_data_con con tys pre post
      = liftM2 (,) (vect_data_con con)
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
237
                   (lift_data_con tys pre post (mkDataConTag con))
238

239 240 241 242 243 244 245
    sel_replicate len tag
      | arity > 1 = do
                      rep <- builtin (selReplicate arity)
                      return [rep `mkApps` [len, tag]]

      | otherwise = return []

246
    vect_data_con con = return $ mkConApp con ty_args
247
    lift_data_con tys pre_tys post_tys tag
248 249
      = do
          len  <- builtin liftingContext
Ian Lynagh's avatar
Ian Lynagh committed
250
          args <- mapM (newLocalVar (fsLit "xs"))
251
                  =<< mapM mkPDataType tys
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
252

253
          sel  <- sel_replicate (Var len) tag
rl@cse.unsw.edu.au's avatar
rl@cse.unsw.edu.au committed
254

255 256
          pre   <- mapM emptyPD (concat pre_tys)
          post  <- mapM emptyPD (concat post_tys)
257 258 259 260

          return . mkLams (len : args)
                 . wrapFamInstBody arr_tc var_tys
                 . mkConApp arr_dc
261
                 $ ty_args ++ sel ++ pre ++ map Var args ++ post
262 263 264

    def_worker data_con arg_tys mk_body
      = do
265
          arity <- polyArity tyvars
266 267
          body <- closedV
                . inBind orig_worker
268 269
                . polyAbstract tyvars $ \args ->
                  liftM (mkLams (tyvars ++ args) . vectorised)
270 271
                $ buildClosures tyvars [] arg_tys res_ty mk_body

272
          raw_worker <- mkVectId orig_worker (exprType body)
273
          let vect_worker = raw_worker `setIdUnfolding`
274
                              mkInlineUnfolding (Just arity) body
275 276 277 278
          defGlobalVar orig_worker vect_worker
          return (vect_worker, body)
      where
        orig_worker = dataConWorkId data_con