Coercion.lhs 48.5 KB
Newer Older
1
%
2
3
% (c) The University of Glasgow 2006
%
4
5

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
6
7
8
9
10
11
12
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

13
14
-- | Module for (a) type kinds and (b) type coercions, 
-- as used in System FC. See 'CoreSyn.Expr' for
batterseapower's avatar
batterseapower committed
15
16
-- more on System FC and how coercions fit into it.
--
17
module Coercion (
Simon Peyton Jones's avatar
Simon Peyton Jones committed
18
19
20
        -- * CoAxioms
        mkCoAxBranch, mkBranchedCoAxiom, mkSingleCoAxiom,

batterseapower's avatar
batterseapower committed
21
        -- * Main data type
22
        Coercion(..), Var, CoVar,
23
        LeftOrRight(..), pickLR,
24

dreixel's avatar
dreixel committed
25
        -- ** Functions over coercions
26
        coVarKind,
27
        coercionType, coercionKind, coercionKinds, isReflCo,
28
        isReflCo_maybe,
batterseapower's avatar
batterseapower committed
29
        mkCoercionType,
30

31
	-- ** Constructing coercions
32
        mkReflCo, mkCoVarCo, 
33
        mkAxInstCo, mkUnbranchedAxInstCo, mkAxInstLHS, mkAxInstRHS,
34
        mkUnbranchedAxInstRHS,
35
        mkPiCo, mkPiCos, mkCoCast,
36
        mkSymCo, mkTransCo, mkNthCo, mkLRCo,
37
38
	mkInstCo, mkAppCo, mkTyConAppCo, mkFunCo,
        mkForAllCo, mkUnsafeCo,
39
        mkNewTypeCo, 
TomSchrijvers's avatar
TomSchrijvers committed
40

41
        -- ** Decomposition
42
        splitNewTypeRepCo_maybe, instNewTyCon_maybe, decomposeCo,
43
44
45
46
47
48
49
        getCoVar_maybe,

        splitTyConAppCo_maybe,
        splitAppCo_maybe,
        splitForAllCo_maybe,

	-- ** Coercion variables
50
	mkCoVar, isCoVar, isCoVarType, coVarName, setCoVarName, setCoVarUnique,
51
52
53
54
55
56
57
58
59
60

        -- ** Free variables
        tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo, coercionSize,
	
        -- ** Substitution
        CvSubstEnv, emptyCvSubstEnv, 
 	CvSubst(..), emptyCvSubst, Coercion.lookupTyVar, lookupCoVar,
	isEmptyCvSubst, zapCvSubstEnv, getCvInScope,
        substCo, substCos, substCoVar, substCoVars,
        substCoWithTy, substCoWithTys, 
61
62
	cvTvSubst, tvCvSubst, mkCvSubst, zipOpenCvSubst,
        substTy, extendTvSubst, extendCvSubstAndInScope,
63
64
65
	substTyVarBndr, substCoVarBndr,

	-- ** Lifting
66
	liftCoMatch, liftCoSubstTyVar, liftCoSubstWith, 
67
        
batterseapower's avatar
batterseapower committed
68
        -- ** Comparison
69
        coreEqCoercion, coreEqCoercion2,
70

71
72
73
74
        -- ** Forcing evaluation of coercions
        seqCo,
        
        -- * Pretty-printing
Simon Peyton Jones's avatar
Simon Peyton Jones committed
75
76
77
78
79
        pprCo, pprParendCo, 
        pprCoAxiom, pprCoAxBranch, pprCoAxBranchHdr, 

        -- * Tidying
        tidyCo, tidyCos,
TomSchrijvers's avatar
TomSchrijvers committed
80

81
        -- * Other
batterseapower's avatar
batterseapower committed
82
        applyCo
83
84
85
86
       ) where 

#include "HsVersions.h"

87
import Unify	( MatchEnv(..), matchList )
88
import TypeRep
89
90
import qualified Type
import Type hiding( substTy, substTyVarBndr, extendTvSubst )
91
import TyCon
92
import CoAxiom
93
import Var
94
import VarEnv
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
95
import VarSet
96
import Maybes   ( orElse )
Simon Peyton Jones's avatar
Simon Peyton Jones committed
97
import Name	( Name, NamedThing(..), nameUnique, nameModule, getSrcSpan )
98
import OccName 	( parenSymOcc )
99
100
import Util
import BasicTypes
101
import Outputable
102
103
import Unique
import Pair
Simon Peyton Jones's avatar
Simon Peyton Jones committed
104
import SrcLoc
105
import PrelNames	( funTyConKey, eqPrimTyConKey )
106
107
108
import Control.Applicative
import Data.Traversable (traverse, sequenceA)
import Control.Arrow (second)
109
import FastString
110
111

import qualified Data.Data as Data hiding ( TyCon )
112
113
\end{code}

Simon Peyton Jones's avatar
Simon Peyton Jones committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

%************************************************************************
%*                                                                      *
           Constructing axioms
    These functions are here because tidyType etc 
    are not available in CoAxiom
%*                                                                      *
%************************************************************************

Note [Tidy axioms when we build them]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We print out axioms and don't want to print stuff like
    F k k a b = ...
Instead we must tidy those kind variables.  See Trac #7524.


\begin{code}
mkCoAxBranch :: [TyVar] -- original, possibly stale, tyvars
             -> [Type]  -- LHS patterns
             -> Type    -- RHS
             -> SrcSpan
             -> CoAxBranch
mkCoAxBranch tvs lhs rhs loc
  = CoAxBranch { cab_tvs = tvs1
               , cab_lhs = tidyTypes env lhs
               , cab_rhs = tidyType  env rhs
               , cab_loc = loc }
  where
    (env, tvs1) = tidyTyVarBndrs emptyTidyEnv tvs
    -- See Note [Tidy axioms when we build them]
  

mkBranchedCoAxiom :: Name -> TyCon -> [CoAxBranch] -> CoAxiom Branched
mkBranchedCoAxiom ax_name fam_tc branches
  = CoAxiom { co_ax_unique   = nameUnique ax_name
            , co_ax_name     = ax_name
            , co_ax_tc       = fam_tc
            , co_ax_implicit = False
            , co_ax_branches = toBranchList branches }

mkSingleCoAxiom :: Name -> [TyVar] -> TyCon -> [Type] -> Type -> CoAxiom Unbranched
mkSingleCoAxiom ax_name tvs fam_tc lhs_tys rhs_ty
  = CoAxiom { co_ax_unique   = nameUnique ax_name
            , co_ax_name     = ax_name
            , co_ax_tc       = fam_tc
            , co_ax_implicit = False
            , co_ax_branches = FirstBranch branch }
  where
    branch = mkCoAxBranch tvs lhs_tys rhs_ty (getSrcSpan ax_name)
\end{code}


166
167
%************************************************************************
%*									*
168
            Coercions
169
170
%*									*
%************************************************************************
171

172
\begin{code}
173
174
-- | A 'Coercion' is concrete evidence of the equality/convertibility
-- of two types.
175

176
177
-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism] in coreSyn/CoreLint.lhs
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
data Coercion 
  -- These ones mirror the shape of types
  = Refl Type  -- See Note [Refl invariant]
          -- Invariant: applications of (Refl T) to a bunch of identity coercions
          --            always show up as Refl.
          -- For example  (Refl T) (Refl a) (Refl b) shows up as (Refl (T a b)).

          -- Applications of (Refl T) to some coercions, at least one of
          -- which is NOT the identity, show up as TyConAppCo.
          -- (They may not be fully saturated however.)
          -- ConAppCo coercions (like all coercions other than Refl)
          -- are NEVER the identity.

  -- These ones simply lift the correspondingly-named 
  -- Type constructors into Coercions
  | TyConAppCo TyCon [Coercion]    -- lift TyConApp 
    	       -- The TyCon is never a synonym; 
	       -- we expand synonyms eagerly
196
	       -- But it can be a type function
197
198
199
200
201
202
203
204

  | AppCo Coercion Coercion        -- lift AppTy

  -- See Note [Forall coercions]
  | ForAllCo TyVar Coercion       -- forall a. g

  -- These are special
  | CoVarCo CoVar
205
  | AxiomInstCo (CoAxiom Branched) BranchIndex [Coercion]
206
     -- See also [CoAxiom index]
207
208
209
210
211
     -- The coercion arguments always *precisely* saturate 
     -- arity of (that branch of) the CoAxiom.  If there are
     -- any left over, we use AppCo.  See 
     -- See [Coercion axioms applied to coercions]

212
213
214
215
216
  | UnsafeCo Type Type
  | SymCo Coercion
  | TransCo Coercion Coercion

  -- These are destructors
217
218
  | NthCo  Int         Coercion     -- Zero-indexed; decomposes (T t0 ... tn)
  | LRCo   LeftOrRight Coercion     -- Decomposes (t_left t_right)
219
220
  | InstCo Coercion Type
  deriving (Data.Data, Data.Typeable)
221

222
223
-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism] in coreSyn/CoreLint.lhs
224
225
226
227
228
229
data LeftOrRight = CLeft | CRight 
                 deriving( Eq, Data.Data, Data.Typeable )

pickLR :: LeftOrRight -> (a,a) -> a
pickLR CLeft  (l,_) = l
pickLR CRight (_,r) = r
230
231
\end{code}

batterseapower's avatar
batterseapower committed
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
Note [Refl invariant]
~~~~~~~~~~~~~~~~~~~~~
Coercions have the following invariant 
     Refl is always lifted as far as possible.  

You might think that a consequencs is:
     Every identity coercions has Refl at the root

But that's not quite true because of coercion variables.  Consider
     g         where g :: Int~Int
     Left h    where h :: Maybe Int ~ Maybe Int
etc.  So the consequence is only true of coercions that
have no coercion variables.

Note [Coercion axioms applied to coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The reason coercion axioms can be applied to coercions and not just
types is to allow for better optimization.  There are some cases where
we need to be able to "push transitivity inside" an axiom in order to
expose further opportunities for optimization.  

For example, suppose we have

  C a : t[a] ~ F a
  g   : b ~ c

and we want to optimize

  sym (C b) ; t[g] ; C c

which has the kind

  F b ~ F c

(stopping through t[b] and t[c] along the way).

We'd like to optimize this to just F g -- but how?  The key is
that we need to allow axioms to be instantiated by *coercions*,
not just by types.  Then we can (in certain cases) push
transitivity inside the axiom instantiations, and then react
opposite-polarity instantiations of the same axiom.  In this
case, e.g., we match t[g] against the LHS of (C c)'s kind, to
obtain the substitution  a |-> g  (note this operation is sort
of the dual of lifting!) and hence end up with

  C g : t[b] ~ F c

which indeed has the same kind as  t[g] ; C c.

Now we have

  sym (C b) ; C g

which can be optimized to F g.

288
289
290
291
292
293
294
295
296
297
298
299
Note [CoAxiom index]
~~~~~~~~~~~~~~~~~~~~
A CoAxiom has 1 or more branches. Each branch has contains a list
of the free type variables in that branch, the LHS type patterns,
and the RHS type for that branch. When we apply an axiom to a list
of coercions, we must choose which branch of the axiom we wish to
use, as the different branches may have different numbers of free
type variables. (The number of type patterns is always the same
among branches, but that doesn't quite concern us here.)

The Int in the AxiomInstCo constructor is the 0-indexed number
of the chosen branch.
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

Note [Forall coercions]
~~~~~~~~~~~~~~~~~~~~~~~
Constructing coercions between forall-types can be a bit tricky.
Currently, the situation is as follows:

  ForAllCo TyVar Coercion

represents a coercion between polymorphic types, with the rule

           v : k       g : t1 ~ t2
  ----------------------------------------------
  ForAllCo v g : (all v:k . t1) ~ (all v:k . t2)

Note that it's only necessary to coerce between polymorphic types
where the type variables have identical kinds, because equality on
kinds is trivial.

318
319
320
321
322
323
324
325
326
Note [Predicate coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
   g :: a~b
How can we coerce between types
   ([c]~a) => [a] -> c
and
   ([c]~b) => [b] -> c
where the equality predicate *itself* differs?
327

328
329
Answer: we simply treat (~) as an ordinary type constructor, so these
types really look like
330

331
332
   ((~) [c] a) -> [a] -> c
   ((~) [c] b) -> [b] -> c
333

334
So the coercion between the two is obviously
335

336
   ((~) [c] g) -> [g] -> c
337

338
339
Another way to see this to say that we simply collapse predicates to
their representation type (see Type.coreView and Type.predTypeRep).
340

341
342
343
344
345
This collapse is done by mkPredCo; there is no PredCo constructor
in Coercion.  This is important because we need Nth to work on 
predicates too:
    Nth 1 ((~) [c] g) = g
See Simplify.simplCoercionF, which generates such selections.
346

dreixel's avatar
dreixel committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Suppose T :: * -> *, and g :: A ~ B
Then the coercion
   TyConAppCo T [g]      T g : T A ~ T B

Now suppose S :: forall k. k -> *, and g :: A ~ B
Then the coercion
   TyConAppCo S [Refl *, g]   T <*> g : T * A ~ T * B

Notice that the arguments to TyConAppCo are coercions, but the first
represents a *kind* coercion. Now, we don't allow any non-trivial kind
coercions, so it's an invariant that any such kind coercions are Refl.
Lint checks this. 

However it's inconvenient to insist that these kind coercions are always
*structurally* (Refl k), because the key function exprIsConApp_maybe
pushes coercions into constructor arguments, so 
       C k ty e |> g
may turn into
       C (Nth 0 g) ....
Now (Nth 0 g) will optimise to Refl, but perhaps not instantly.

370
371
%************************************************************************
%*									*
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
\subsection{Coercion variables}
%*									*
%************************************************************************

\begin{code}
coVarName :: CoVar -> Name
coVarName = varName

setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique

setCoVarName :: CoVar -> Name -> CoVar
setCoVarName   = setVarName

isCoVar :: Var -> Bool
isCoVar v = isCoVarType (varType v)

isCoVarType :: Type -> Bool
Simon Peyton Jones's avatar
Simon Peyton Jones committed
390
isCoVarType ty 	    -- Tests for t1 ~# t2, the unboxed equality
391
392
393
  = case splitTyConApp_maybe ty of
      Just (tc,tys) -> tc `hasKey` eqPrimTyConKey && tys `lengthAtLeast` 2
      Nothing       -> False
394
395
396
397
398
399
400
401
402
403
404
\end{code}


\begin{code}
tyCoVarsOfCo :: Coercion -> VarSet
-- Extracts type and coercion variables from a coercion
tyCoVarsOfCo (Refl ty)           = tyVarsOfType ty
tyCoVarsOfCo (TyConAppCo _ cos)  = tyCoVarsOfCos cos
tyCoVarsOfCo (AppCo co1 co2)     = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (ForAllCo tv co)    = tyCoVarsOfCo co `delVarSet` tv
tyCoVarsOfCo (CoVarCo v)         = unitVarSet v
405
tyCoVarsOfCo (AxiomInstCo _ _ cos) = tyCoVarsOfCos cos
406
407
408
409
tyCoVarsOfCo (UnsafeCo ty1 ty2)  = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
tyCoVarsOfCo (SymCo co)          = tyCoVarsOfCo co
tyCoVarsOfCo (TransCo co1 co2)   = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (NthCo _ co)        = tyCoVarsOfCo co
410
tyCoVarsOfCo (LRCo _ co)         = tyCoVarsOfCo co
411
412
413
414
415
416
417
418
419
420
421
422
tyCoVarsOfCo (InstCo co ty)      = tyCoVarsOfCo co `unionVarSet` tyVarsOfType ty

tyCoVarsOfCos :: [Coercion] -> VarSet
tyCoVarsOfCos cos = foldr (unionVarSet . tyCoVarsOfCo) emptyVarSet cos

coVarsOfCo :: Coercion -> VarSet
-- Extract *coerction* variables only.  Tiresome to repeat the code, but easy.
coVarsOfCo (Refl _)            = emptyVarSet
coVarsOfCo (TyConAppCo _ cos)  = coVarsOfCos cos
coVarsOfCo (AppCo co1 co2)     = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (ForAllCo _ co)     = coVarsOfCo co
coVarsOfCo (CoVarCo v)         = unitVarSet v
423
coVarsOfCo (AxiomInstCo _ _ cos) = coVarsOfCos cos
424
425
426
427
coVarsOfCo (UnsafeCo _ _)      = emptyVarSet
coVarsOfCo (SymCo co)          = coVarsOfCo co
coVarsOfCo (TransCo co1 co2)   = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (NthCo _ co)        = coVarsOfCo co
428
coVarsOfCo (LRCo _ co)         = coVarsOfCo co
429
430
431
432
433
434
435
436
437
438
439
coVarsOfCo (InstCo co _)       = coVarsOfCo co

coVarsOfCos :: [Coercion] -> VarSet
coVarsOfCos cos = foldr (unionVarSet . coVarsOfCo) emptyVarSet cos

coercionSize :: Coercion -> Int
coercionSize (Refl ty)           = typeSize ty
coercionSize (TyConAppCo _ cos)  = 1 + sum (map coercionSize cos)
coercionSize (AppCo co1 co2)     = coercionSize co1 + coercionSize co2
coercionSize (ForAllCo _ co)     = 1 + coercionSize co
coercionSize (CoVarCo _)         = 1
440
coercionSize (AxiomInstCo _ _ cos) = 1 + sum (map coercionSize cos)
441
442
443
444
coercionSize (UnsafeCo ty1 ty2)  = typeSize ty1 + typeSize ty2
coercionSize (SymCo co)          = 1 + coercionSize co
coercionSize (TransCo co1 co2)   = 1 + coercionSize co1 + coercionSize co2
coercionSize (NthCo _ co)        = 1 + coercionSize co
445
coercionSize (LRCo  _ co)        = 1 + coercionSize co
446
447
448
coercionSize (InstCo co ty)      = 1 + coercionSize co + typeSize ty
\end{code}

Simon Peyton Jones's avatar
Simon Peyton Jones committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
%************************************************************************
%*									*
                            Tidying coercions
%*									*
%************************************************************************

\begin{code}
tidyCo :: TidyEnv -> Coercion -> Coercion
tidyCo env@(_, subst) co
  = go co
  where
    go (Refl ty)             = Refl (tidyType env ty)
    go (TyConAppCo tc cos)   = let args = map go cos
                               in args `seqList` TyConAppCo tc args
    go (AppCo co1 co2)       = (AppCo $! go co1) $! go co2
    go (ForAllCo tv co)      = ForAllCo tvp $! (tidyCo envp co)
                               where
                                 (envp, tvp) = tidyTyVarBndr env tv
    go (CoVarCo cv)          = case lookupVarEnv subst cv of
                                 Nothing  -> CoVarCo cv
                                 Just cv' -> CoVarCo cv'
    go (AxiomInstCo con ind cos) = let args = tidyCos env cos
                               in  args `seqList` AxiomInstCo con ind args
    go (UnsafeCo ty1 ty2)    = (UnsafeCo $! tidyType env ty1) $! tidyType env ty2
    go (SymCo co)            = SymCo $! go co
    go (TransCo co1 co2)     = (TransCo $! go co1) $! go co2
    go (NthCo d co)          = NthCo d $! go co
    go (LRCo lr co)          = LRCo lr $! go co
    go (InstCo co ty)        = (InstCo $! go co) $! tidyType env ty

tidyCos :: TidyEnv -> [Coercion] -> [Coercion]
tidyCos env = map (tidyCo env)
\end{code}

483
%************************************************************************
484
%*									*
485
486
                   Pretty-printing coercions
%*                                                                      *
487
488
%************************************************************************

489
490
491
492
493
@pprCo@ is the standard @Coercion@ printer; the overloaded @ppr@
function is defined to use this.  @pprParendCo@ is the same, except it
puts parens around the type, except for the atomic cases.
@pprParendCo@ works just by setting the initial context precedence
very high.
494
495

\begin{code}
496
497
498
499
500
501
502
503
instance Outputable Coercion where
  ppr = pprCo

pprCo, pprParendCo :: Coercion -> SDoc
pprCo       co = ppr_co TopPrec   co
pprParendCo co = ppr_co TyConPrec co

ppr_co :: Prec -> Coercion -> SDoc
504
ppr_co _ (Refl ty) = angleBrackets (ppr ty)
505

506
ppr_co p co@(TyConAppCo tc [_,_])
507
  | tc `hasKey` funTyConKey = ppr_fun_co p co
508

509
510
511
512
513
ppr_co p (TyConAppCo tc cos)   = pprTcApp   p ppr_co tc cos
ppr_co p (AppCo co1 co2)       = maybeParen p TyConPrec $
                                 pprCo co1 <+> ppr_co TyConPrec co2
ppr_co p co@(ForAllCo {})      = ppr_forall_co p co
ppr_co _ (CoVarCo cv)          = parenSymOcc (getOccName cv) (ppr cv)
514
515
516
517
ppr_co p (AxiomInstCo con index cos)
  = angleBrackets (pprPrefixApp p 
                    (ppr (getName con) <> brackets (ppr index))
                    (map (ppr_co TyConPrec) cos))
518

519
520
521
522
523
ppr_co p co@(TransCo {}) = maybeParen p FunPrec $
                           case trans_co_list co [] of
                             [] -> panic "ppr_co"
                             (co:cos) -> sep ( ppr_co FunPrec co
                                             : [ char ';' <+> ppr_co FunPrec co | co <- cos])
524
525
526
ppr_co p (InstCo co ty) = maybeParen p TyConPrec $
                          pprParendCo co <> ptext (sLit "@") <> pprType ty

527
528
ppr_co p (UnsafeCo ty1 ty2) = pprPrefixApp p (ptext (sLit "UnsafeCo")) 
                                           [pprParendType ty1, pprParendType ty2]
529
ppr_co p (SymCo co)         = pprPrefixApp p (ptext (sLit "Sym")) [pprParendCo co]
530
531
ppr_co p (NthCo n co)       = pprPrefixApp p (ptext (sLit "Nth:") <> int n) [pprParendCo co]
ppr_co p (LRCo sel co)      = pprPrefixApp p (ppr sel) [pprParendCo co]
532

533
534
535
536
trans_co_list :: Coercion -> [Coercion] -> [Coercion]
trans_co_list (TransCo co1 co2) cos = trans_co_list co1 (trans_co_list co2 cos)
trans_co_list co                cos = co : cos

537
538
539
instance Outputable LeftOrRight where
  ppr CLeft    = ptext (sLit "Left")
  ppr CRight   = ptext (sLit "Right")
540
541
542
543

ppr_fun_co :: Prec -> Coercion -> SDoc
ppr_fun_co p co = pprArrowChain p (split co)
  where
544
    split :: Coercion -> [SDoc]
545
546
547
548
549
550
551
552
    split (TyConAppCo f [arg,res])
      | f `hasKey` funTyConKey
      = ppr_co FunPrec arg : split res
    split co = [ppr_co TopPrec co]

ppr_forall_co :: Prec -> Coercion -> SDoc
ppr_forall_co p ty
  = maybeParen p FunPrec $
553
    sep [pprForAll tvs, ppr_co TopPrec rho]
554
555
556
557
558
559
  where
    (tvs,  rho) = split1 [] ty
    split1 tvs (ForAllCo tv ty) = split1 (tv:tvs) ty
    split1 tvs ty               = (reverse tvs, ty)
\end{code}

560
\begin{code}
561
562
563
564
565
566
pprCoAxiom :: CoAxiom br -> SDoc
pprCoAxiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
  = hang (ptext (sLit "axiom") <+> ppr ax <+> dcolon)
       2 (vcat (map (pprCoAxBranch tc) $ fromBranchList branches))

pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
Simon Peyton Jones's avatar
Simon Peyton Jones committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
pprCoAxBranch fam_tc (CoAxBranch { cab_lhs = lhs
                                 , cab_rhs = rhs })
  = pprTypeApp fam_tc lhs <+> equals <+> (ppr rhs)

pprCoAxBranchHdr :: CoAxiom br -> BranchIndex -> SDoc
pprCoAxBranchHdr ax@(CoAxiom { co_ax_tc = fam_tc, co_ax_name = name }) index
  | CoAxBranch { cab_lhs = tys, cab_loc = loc } <- coAxiomNthBranch ax index
  = hang (pprTypeApp fam_tc tys)
       2 (ptext (sLit "-- Defined") <+> ppr_loc loc)
  where
        ppr_loc loc
          | isGoodSrcSpan loc
          = ptext (sLit "at") <+> ppr (srcSpanStart loc)
    
          | otherwise
          = ptext (sLit "in") <+>
              quotes (ppr (nameModule name))
584
\end{code}
585
586
587
588
589
590

%************************************************************************
%*									*
	Functions over Kinds		
%*									*
%************************************************************************
batterseapower's avatar
batterseapower committed
591

592
593
\begin{code}
-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into
594
-- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence:
batterseapower's avatar
batterseapower committed
595
--
596
-- > decomposeCo 3 c = [nth 0 c, nth 1 c, nth 2 c]
597
decomposeCo :: Arity -> Coercion -> [Coercion]
598
599
600
decomposeCo arity co 
  = [mkNthCo n co | n <- [0..(arity-1)] ]
           -- Remember, Nth is zero-indexed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

-- | Attempts to obtain the type variable underlying a 'Coercion'
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo cv) = Just cv  
getCoVar_maybe _            = Nothing

-- | Attempts to tease a coercion apart into a type constructor and the application
-- of a number of coercion arguments to that constructor
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
splitTyConAppCo_maybe (Refl ty)           = (fmap . second . map) Refl (splitTyConApp_maybe ty)
splitTyConAppCo_maybe (TyConAppCo tc cos) = Just (tc, cos)
splitTyConAppCo_maybe _                   = Nothing

splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
-- ^ Attempt to take a coercion application apart.
splitAppCo_maybe (AppCo co1 co2) = Just (co1, co2)
splitAppCo_maybe (TyConAppCo tc cos)
618
619
620
  | isDecomposableTyCon tc || cos `lengthExceeds` tyConArity tc 
  , Just (cos', co') <- snocView cos
  = Just (mkTyConAppCo tc cos', co')    -- Never create unsaturated type family apps!
621
622
623
       -- Use mkTyConAppCo to preserve the invariant
       --  that identity coercions are always represented by Refl
splitAppCo_maybe (Refl ty) 
624
625
  | Just (ty1, ty2) <- splitAppTy_maybe ty 
  = Just (Refl ty1, Refl ty2)
626
627
628
629
630
splitAppCo_maybe _ = Nothing

splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion)
splitForAllCo_maybe (ForAllCo tv co) = Just (tv, co)
splitForAllCo_maybe _                = Nothing
631
632
633
634

-------------------------------------------------------
-- and some coercion kind stuff

635
coVarKind :: CoVar -> (Type,Type) 
636
637
638
639
640
641
coVarKind cv
 | Just (tc, [_kind,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
 = ASSERT (tc `hasKey` eqPrimTyConKey)
   (ty1,ty2)
 | otherwise = panic "coVarKind, non coercion variable"

642
-- | Makes a coercion type from two types: the types whose equality 
643
-- is proven by the relevant 'Coercion'
batterseapower's avatar
batterseapower committed
644
mkCoercionType :: Type -> Type -> Type
645
mkCoercionType = mkPrimEqPred
646

647
648
649
650
651
652
653
isReflCo :: Coercion -> Bool
isReflCo (Refl {}) = True
isReflCo _         = False

isReflCo_maybe :: Coercion -> Maybe Type
isReflCo_maybe (Refl ty) = Just ty
isReflCo_maybe _         = Nothing
654
\end{code}
655

656
657
658
659
660
%************************************************************************
%*									*
            Building coercions
%*									*
%************************************************************************
661

662
\begin{code}
663
mkCoVarCo :: CoVar -> Coercion
664
-- cv :: s ~# t
665
666
667
668
669
mkCoVarCo cv
  | ty1 `eqType` ty2 = Refl ty1
  | otherwise        = CoVarCo cv
  where
    (ty1, ty2) = ASSERT( isCoVar cv ) coVarKind cv
670

671
672
mkReflCo :: Type -> Coercion
mkReflCo = Refl
673

674
mkAxInstCo :: CoAxiom br -> Int -> [Type] -> Coercion
675
676
-- mkAxInstCo can legitimately be called over-staturated; 
-- i.e. with more type arguments than the coercion requires
677
678
mkAxInstCo ax index tys
  | arity == n_tys = AxiomInstCo ax_br index rtys
679
  | otherwise      = ASSERT( arity < n_tys )
680
                     foldl AppCo (AxiomInstCo ax_br index (take arity rtys))
681
682
683
                                 (drop arity rtys)
  where
    n_tys = length tys
684
    arity = coAxiomArity ax index
685
    rtys  = map Refl tys
686
687
688
689
690
691
    ax_br = toBranchedAxiom ax

-- to be used only with unbranched axioms
mkUnbranchedAxInstCo :: CoAxiom Unbranched -> [Type] -> Coercion
mkUnbranchedAxInstCo ax tys
  = mkAxInstCo ax 0 tys
692

693
mkAxInstLHS, mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> Type
694
695
696
-- Instantiate the axiom with specified types,
-- returning the instantiated RHS
-- A companion to mkAxInstCo: 
697
--    mkAxInstRhs ax index tys = snd (coercionKind (mkAxInstCo ax index tys))
698
699
700
mkAxInstLHS ax index tys
  | CoAxBranch { cab_tvs = tvs, cab_lhs = lhs } <- coAxiomNthBranch ax index
  , (tys1, tys2) <- splitAtList tvs tys
701
  = ASSERT( tvs `equalLength` tys1 ) 
702
703
704
705
706
707
708
    mkTyConApp (coAxiomTyCon ax) (substTysWith tvs tys1 lhs ++ tys2)

mkAxInstRHS ax index tys
  | CoAxBranch { cab_tvs = tvs, cab_rhs = rhs } <- coAxiomNthBranch ax index
  , (tys1, tys2) <- splitAtList tvs tys
  = ASSERT( tvs `equalLength` tys1 ) 
    mkAppTys (substTyWith tvs tys1 rhs) tys2
709
710
711

mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> Type
mkUnbranchedAxInstRHS ax = mkAxInstRHS ax 0
712

713
714
715
716
717
718
719
720
721
-- | Apply a 'Coercion' to another 'Coercion'.
mkAppCo :: Coercion -> Coercion -> Coercion
mkAppCo (Refl ty1) (Refl ty2)       = Refl (mkAppTy ty1 ty2)
mkAppCo (Refl (TyConApp tc tys)) co = TyConAppCo tc (map Refl tys ++ [co])
mkAppCo (TyConAppCo tc cos) co      = TyConAppCo tc (cos ++ [co])
mkAppCo co1 co2                     = AppCo co1 co2
-- Note, mkAppCo is careful to maintain invariants regarding
-- where Refl constructors appear; see the comments in the definition
-- of Coercion and the Note [Refl invariant] in types/TypeRep.lhs.
batterseapower's avatar
batterseapower committed
722
723

-- | Applies multiple 'Coercion's to another 'Coercion', from left to right.
724
725
726
-- See also 'mkAppCo'
mkAppCos :: Coercion -> [Coercion] -> Coercion
mkAppCos co1 tys = foldl mkAppCo co1 tys
727
728

-- | Apply a type constructor to a list of coercions.
729
730
731
732
mkTyConAppCo :: TyCon -> [Coercion] -> Coercion
mkTyConAppCo tc cos
	       -- Expand type synonyms
  | Just (tv_co_prs, rhs_ty, leftover_cos) <- tcExpandTyCon_maybe tc cos
733
  = mkAppCos (liftCoSubst tv_co_prs rhs_ty) leftover_cos
734
735
736
737
738

  | Just tys <- traverse isReflCo_maybe cos 
  = Refl (mkTyConApp tc tys)	-- See Note [Refl invariant]

  | otherwise = TyConAppCo tc cos
739
740

-- | Make a function 'Coercion' between two other 'Coercion's
741
742
mkFunCo :: Coercion -> Coercion -> Coercion
mkFunCo co1 co2 = mkTyConAppCo funTyCon [co1, co2]
batterseapower's avatar
batterseapower committed
743
744

-- | Make a 'Coercion' which binds a variable within an inner 'Coercion'
745
mkForAllCo :: Var -> Coercion -> Coercion
746
-- note that a TyVar should be used here, not a CoVar (nor a TcTyVar)
747
748
mkForAllCo tv (Refl ty) = ASSERT( isTyVar tv ) Refl (mkForAllTy tv ty)
mkForAllCo tv  co       = ASSERT ( isTyVar tv ) ForAllCo tv co
batterseapower's avatar
batterseapower committed
749

750
-------------------------------
batterseapower's avatar
batterseapower committed
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
-- | Create a symmetric version of the given 'Coercion' that asserts
--   equality between the same types but in the other "direction", so
--   a kind of @t1 ~ t2@ becomes the kind @t2 ~ t1@.
mkSymCo :: Coercion -> Coercion

-- Do a few simple optimizations, but don't bother pushing occurrences
-- of symmetry to the leaves; the optimizer will take care of that.
mkSymCo co@(Refl {})              = co
mkSymCo    (UnsafeCo ty1 ty2)    = UnsafeCo ty2 ty1
mkSymCo    (SymCo co)            = co
mkSymCo co                       = SymCo co

-- | Create a new 'Coercion' by composing the two given 'Coercion's transitively.
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo (Refl _) co = co
mkTransCo co (Refl _) = co
mkTransCo co1 co2     = TransCo co1 co2

mkNthCo :: Int -> Coercion -> Coercion
771
772
773
774
775
776
777
mkNthCo n (Refl ty) = ASSERT( ok_tc_app ty n ) 
                      Refl (tyConAppArgN n ty)
mkNthCo n co        = ASSERT( ok_tc_app _ty1 n && ok_tc_app _ty2 n )
                      NthCo n co
                    where
                      Pair _ty1 _ty2 = coercionKind co

778
779
780
781
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo lr (Refl ty) = Refl (pickLR lr (splitAppTy ty))
mkLRCo lr co        = LRCo lr co

782
783
784
785
ok_tc_app :: Type -> Int -> Bool
ok_tc_app ty n = case splitTyConApp_maybe ty of
                   Just (_, tys) -> tys `lengthExceeds` n
                   Nothing       -> False
786

787
-- | Instantiates a 'Coercion' with a 'Type' argument. 
788
mkInstCo :: Coercion -> Type -> Coercion
789
mkInstCo co ty = InstCo co ty
790
791
792
793
794
795
796
797
798

-- | Manufacture a coercion from thin air. Needless to say, this is
--   not usually safe, but it is used when we know we are dealing with
--   bottom, which is one case in which it is safe.  This is also used
--   to implement the @unsafeCoerce#@ primitive.  Optimise by pushing
--   down through type constructors.
mkUnsafeCo :: Type -> Type -> Coercion
mkUnsafeCo ty1 ty2 | ty1 `eqType` ty2 = Refl ty1
mkUnsafeCo (TyConApp tc1 tys1) (TyConApp tc2 tys2)
799
  | tc1 == tc2
800
  = mkTyConAppCo tc1 (zipWith mkUnsafeCo tys1 tys2)
801

802
803
mkUnsafeCo (FunTy a1 r1) (FunTy a2 r2)
  = mkFunCo (mkUnsafeCo a1 a2) (mkUnsafeCo r1 r2)
804

805
mkUnsafeCo ty1 ty2 = UnsafeCo ty1 ty2
806

807
-- See note [Newtype coercions] in TyCon
batterseapower's avatar
batterseapower committed
808

809
810
811
812
813
-- | Create a coercion constructor (axiom) suitable for the given
--   newtype 'TyCon'. The 'Name' should be that of a new coercion
--   'CoAxiom', the 'TyVar's the arguments expected by the @newtype@ and
--   the type the appropriate right hand side of the @newtype@, with
--   the free variables a subset of those 'TyVar's.
814
mkNewTypeCo :: Name -> TyCon -> [TyVar] -> Type -> CoAxiom Unbranched
815
mkNewTypeCo name tycon tvs rhs_ty
816
817
818
  = CoAxiom { co_ax_unique   = nameUnique name
            , co_ax_name     = name
            , co_ax_implicit = True  -- See Note [Implicit axioms] in TyCon
819
820
            , co_ax_tc       = tycon
            , co_ax_branches = FirstBranch branch }
821
822
  where branch = CoAxBranch { cab_loc = getSrcSpan name
                            , cab_tvs = tvs
823
824
                            , cab_lhs = mkTyVarTys tvs
                            , cab_rhs = rhs_ty }
825
826
827
828
829
830
831

mkPiCos :: [Var] -> Coercion -> Coercion
mkPiCos vs co = foldr mkPiCo co vs

mkPiCo  :: Var -> Coercion -> Coercion
mkPiCo v co | isTyVar v = mkForAllCo v co
            | otherwise = mkFunCo (mkReflCo (varType v)) co
832
833
834
835
836
837
838
839
840
841
842
843

mkCoCast :: Coercion -> Coercion -> Coercion
-- (mkCoCast (c :: s1 ~# t1) (g :: (s1 ~# t1) ~# (s2 ~# t2)
mkCoCast c g
  = mkSymCo g1 `mkTransCo` c `mkTransCo` g2
  where
       -- g  :: (s1 ~# s2) ~# (t1 ~#  t2)
       -- g1 :: s1 ~# t1
       -- g2 :: s2 ~# t2
    [_reflk, g1, g2] = decomposeCo 3 g
            -- Remember, (~#) :: forall k. k -> k -> *
            -- so it takes *three* arguments, not two
844
\end{code}
845

846
847
848
849
850
%************************************************************************
%*									*
            Newtypes
%*									*
%************************************************************************
851

852
\begin{code}
853
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
batterseapower's avatar
batterseapower committed
854
855
856
-- ^ If @co :: T ts ~ rep_ty@ then:
--
-- > instNewTyCon_maybe T ts = Just (rep_ty, co)
857
instNewTyCon_maybe tc tys
858
  | Just (tvs, ty, co_tc) <- unwrapNewTyCon_maybe tc
859
  = ASSERT( tys `lengthIs` tyConArity tc )
860
    Just (substTyWith tvs tys ty, mkUnbranchedAxInstCo co_tc tys)
861
862
863
  | otherwise
  = Nothing

864
865
-- this is here to avoid module loops
splitNewTypeRepCo_maybe :: Type -> Maybe (Type, Coercion)  
batterseapower's avatar
batterseapower committed
866
867
868
869
870
871
872
873
-- ^ Sometimes we want to look through a @newtype@ and get its associated coercion.
-- This function only strips *one layer* of @newtype@ off, so the caller will usually call
-- itself recursively. Furthermore, this function should only be applied to types of kind @*@,
-- hence the newtype is always saturated. If @co : ty ~ ty'@ then:
--
-- > splitNewTypeRepCo_maybe ty = Just (ty', co)
--
-- The function returns @Nothing@ for non-@newtypes@ or fully-transparent @newtype@s.
874
875
876
splitNewTypeRepCo_maybe ty 
  | Just ty' <- coreView ty = splitNewTypeRepCo_maybe ty'
splitNewTypeRepCo_maybe (TyConApp tc tys)
877
878
879
  | Just (ty', co) <- instNewTyCon_maybe tc tys
  = case co of
	Refl _ -> panic "splitNewTypeRepCo_maybe"
880
			-- This case handled by coreView
881
	_      -> Just (ty', co)
882
splitNewTypeRepCo_maybe _
883
  = Nothing
884

batterseapower's avatar
batterseapower committed
885
-- | Determines syntactic equality of coercions
886
coreEqCoercion :: Coercion -> Coercion -> Bool
887
888
coreEqCoercion co1 co2 = coreEqCoercion2 rn_env co1 co2
  where rn_env = mkRnEnv2 (mkInScopeSet (tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2))
889
890

coreEqCoercion2 :: RnEnv2 -> Coercion -> Coercion -> Bool
891
892
893
894
895
896
897
898
899
900
901
902
903
coreEqCoercion2 env (Refl ty1) (Refl ty2) = eqTypeX env ty1 ty2
coreEqCoercion2 env (TyConAppCo tc1 cos1) (TyConAppCo tc2 cos2)
  = tc1 == tc2 && all2 (coreEqCoercion2 env) cos1 cos2

coreEqCoercion2 env (AppCo co11 co12) (AppCo co21 co22)
  = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22

coreEqCoercion2 env (ForAllCo v1 co1) (ForAllCo v2 co2)
  = coreEqCoercion2 (rnBndr2 env v1 v2) co1 co2

coreEqCoercion2 env (CoVarCo cv1) (CoVarCo cv2)
  = rnOccL env cv1 == rnOccR env cv2

904
coreEqCoercion2 env (AxiomInstCo con1 ind1 cos1) (AxiomInstCo con2 ind2 cos2)
905
  = con1 == con2
906
    && ind1 == ind2
907
908
909
910
    && all2 (coreEqCoercion2 env) cos1 cos2

coreEqCoercion2 env (UnsafeCo ty11 ty12) (UnsafeCo ty21 ty22)
  = eqTypeX env ty11 ty21 && eqTypeX env ty12 ty22
TomSchrijvers's avatar
TomSchrijvers committed
911

912
913
914
915
916
917
918
919
coreEqCoercion2 env (SymCo co1) (SymCo co2)
  = coreEqCoercion2 env co1 co2

coreEqCoercion2 env (TransCo co11 co12) (TransCo co21 co22)
  = coreEqCoercion2 env co11 co21 && coreEqCoercion2 env co12 co22

coreEqCoercion2 env (NthCo d1 co1) (NthCo d2 co2)
  = d1 == d2 && coreEqCoercion2 env co1 co2
920
921
coreEqCoercion2 env (LRCo d1 co1) (LRCo d2 co2)
  = d1 == d2 && coreEqCoercion2 env co1 co2
922
923
924
925
926
927

coreEqCoercion2 env (InstCo co1 ty1) (InstCo co2 ty2)
  = coreEqCoercion2 env co1 co2 && eqTypeX env ty1 ty2

coreEqCoercion2 _ _ _ = False
\end{code}
TomSchrijvers's avatar
TomSchrijvers committed
928

929
930
%************************************************************************
%*									*
931
932
                   Substitution of coercions
%*                                                                      *
933
934
%************************************************************************

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
\begin{code}
-- | A substitution of 'Coercion's for 'CoVar's (OR 'TyVar's, when
--   doing a \"lifting\" substitution)
type CvSubstEnv = VarEnv Coercion

emptyCvSubstEnv :: CvSubstEnv
emptyCvSubstEnv = emptyVarEnv

data CvSubst 		
  = CvSubst InScopeSet 	-- The in-scope type variables
	    TvSubstEnv	-- Substitution of types
            CvSubstEnv  -- Substitution of coercions

instance Outputable CvSubst where
  ppr (CvSubst ins tenv cenv)
    = brackets $ sep[ ptext (sLit "CvSubst"),
		      nest 2 (ptext (sLit "In scope:") <+> ppr ins), 
		      nest 2 (ptext (sLit "Type env:") <+> ppr tenv),
		      nest 2 (ptext (sLit "Coercion env:") <+> ppr cenv) ]

emptyCvSubst :: CvSubst
emptyCvSubst = CvSubst emptyInScopeSet emptyVarEnv emptyVarEnv

isEmptyCvSubst :: CvSubst -> Bool
isEmptyCvSubst (CvSubst _ tenv cenv) = isEmptyVarEnv tenv && isEmptyVarEnv cenv

getCvInScope :: CvSubst -> InScopeSet
getCvInScope (CvSubst in_scope _ _) = in_scope

zapCvSubstEnv :: CvSubst -> CvSubst
zapCvSubstEnv (CvSubst in_scope _ _) = CvSubst in_scope emptyVarEnv emptyVarEnv

cvTvSubst :: CvSubst -> TvSubst
cvTvSubst (CvSubst in_scope tvs _) = TvSubst in_scope tvs

tvCvSubst :: TvSubst -> CvSubst
tvCvSubst (TvSubst in_scope tenv) = CvSubst in_scope tenv emptyCvSubstEnv

extendTvSubst :: CvSubst -> TyVar -> Type -> CvSubst
extendTvSubst (CvSubst in_scope tenv cenv) tv ty
  = CvSubst in_scope (extendVarEnv tenv tv ty) cenv

977
978
979
980
981
982
983
extendCvSubstAndInScope :: CvSubst -> CoVar -> Coercion -> CvSubst
-- Also extends the in-scope set
extendCvSubstAndInScope (CvSubst in_scope tenv cenv) cv co
  = CvSubst (in_scope `extendInScopeSetSet` tyCoVarsOfCo co)
            tenv
            (extendVarEnv cenv cv co)

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
substCoVarBndr :: CvSubst -> CoVar -> (CvSubst, CoVar)
substCoVarBndr subst@(CvSubst in_scope tenv cenv) old_var
  = ASSERT( isCoVar old_var )
    (CvSubst (in_scope `extendInScopeSet` new_var) tenv new_cenv, new_var)
  where
    -- When we substitute (co :: t1 ~ t2) we may get the identity (co :: t ~ t)
    -- In that case, mkCoVarCo will return a ReflCoercion, and
    -- we want to substitute that (not new_var) for old_var
    new_co    = mkCoVarCo new_var
    no_change = new_var == old_var && not (isReflCo new_co)

    new_cenv | no_change = delVarEnv cenv old_var
             | otherwise = extendVarEnv cenv old_var new_co

    new_var = uniqAway in_scope subst_old_var
    subst_old_var = mkCoVar (varName old_var) (substTy subst (varType old_var))
		  -- It's important to do the substitution for coercions,
1001
		  -- because they can have free type variables
1002
1003
1004
1005
1006
1007

substTyVarBndr :: CvSubst -> TyVar -> (CvSubst, TyVar)
substTyVarBndr (CvSubst in_scope tenv cenv) old_var
  = case Type.substTyVarBndr (TvSubst in_scope tenv) old_var of
      (TvSubst in_scope' tenv', new_var) -> (CvSubst in_scope' tenv' cenv, new_var)

1008
1009
1010
mkCvSubst :: InScopeSet -> [(Var,Coercion)] -> CvSubst
mkCvSubst in_scope prs = CvSubst in_scope Type.emptyTvSubstEnv (mkVarEnv prs)

1011
1012
1013
1014
1015
1016
1017
zipOpenCvSubst :: [Var] -> [Coercion] -> CvSubst
zipOpenCvSubst vs cos
  | debugIsOn && (length vs /= length cos)
  = pprTrace "zipOpenCvSubst" (ppr vs $$ ppr cos) emptyCvSubst
  | otherwise 
  = CvSubst (mkInScopeSet (tyCoVarsOfCos cos)) emptyTvSubstEnv (zipVarEnv vs cos)

1018
1019
substCoWithTy :: InScopeSet -> TyVar -> Type -> Coercion -> Coercion
substCoWithTy in_scope tv ty = substCoWithTys in_scope [tv] [ty]
1020

1021
1022
substCoWithTys :: InScopeSet -> [TyVar] -> [Type] -> Coercion -> Coercion
substCoWithTys in_scope tvs tys co
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
  | debugIsOn && (length tvs /= length tys)
  = pprTrace "substCoWithTys" (ppr tvs $$ ppr tys) co
  | otherwise 
  = ASSERT( length tvs == length tys )
    substCo (CvSubst in_scope (zipVarEnv tvs tys) emptyVarEnv) co

-- | Substitute within a 'Coercion'
substCo :: CvSubst -> Coercion -> Coercion
substCo subst co | isEmptyCvSubst subst = co
                 | otherwise            = subst_co subst co

-- | Substitute within several 'Coercion's
substCos :: CvSubst -> [Coercion] -> [Coercion]
substCos subst cos | isEmptyCvSubst subst = cos
                   | otherwise            = map (substCo subst) cos

substTy :: CvSubst -> Type -> Type
substTy subst = Type.substTy (cvTvSubst subst)

subst_co :: CvSubst -> Coercion -> Coercion
subst_co subst co
  = go co
  where
    go_ty :: Type -> Type
    go_ty = Coercion.substTy subst

    go :: Coercion -> Coercion
    go (Refl ty)             = Refl $! go_ty ty
    go (TyConAppCo tc cos)   = let args = map go cos
                               in  args `seqList` TyConAppCo tc args
    go (AppCo co1 co2)       = mkAppCo (go co1) $! go co2
    go (ForAllCo tv co)      = case substTyVarBndr subst tv of
                                 (subst', tv') ->
                                   ForAllCo tv' $! subst_co subst' co
    go (CoVarCo cv)          = substCoVar subst cv
1058
    go (AxiomInstCo con ind cos) = AxiomInstCo con ind $! map go cos
1059
1060
1061
1062
    go (UnsafeCo ty1 ty2)    = (UnsafeCo $! go_ty ty1) $! go_ty ty2
    go (SymCo co)            = mkSymCo (go co)
    go (TransCo co1 co2)     = mkTransCo (go co1) (go co2)
    go (NthCo d co)          = mkNthCo d (go co)
1063
    go (LRCo lr co)          = mkLRCo lr (go co)
1064
1065
1066
1067
1068
1069
    go (InstCo co ty)        = mkInstCo (go co) $! go_ty ty

substCoVar :: CvSubst -> CoVar -> Coercion
substCoVar (CvSubst in_scope _ cenv) cv
  | Just co  <- lookupVarEnv cenv cv      = co
  | Just cv1 <- lookupInScope in_scope cv = ASSERT( isCoVar cv1 ) CoVarCo cv1
1070
  | otherwise = WARN( True, ptext (sLit "substCoVar not in scope") <+> ppr cv $$ ppr in_scope)
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
                ASSERT( isCoVar cv ) CoVarCo cv

substCoVars :: CvSubst -> [CoVar] -> [Coercion]
substCoVars subst cvs = map (substCoVar subst) cvs

lookupTyVar :: CvSubst -> TyVar  -> Maybe Type
lookupTyVar (CvSubst _ tenv _) tv = lookupVarEnv tenv tv

lookupCoVar :: CvSubst -> Var  -> Maybe Coercion
lookupCoVar (CvSubst _ _ cenv) v = lookupVarEnv cenv v
\end{code}

%************************************************************************
%*									*
                   "Lifting" substitution
	   [(TyVar,Coercion)] -> Type -> Coercion
%*                                                                      *
%************************************************************************
TomSchrijvers's avatar
TomSchrijvers committed
1089
1090

\begin{code}
1091
1092
1093
1094
1095
1096
data LiftCoSubst = LCS InScopeSet LiftCoEnv

type LiftCoEnv = VarEnv Coercion
     -- Maps *type variables* to *coercions*
     -- That's the whole point of this function!

1097
liftCoSubstWith :: [TyVar] -> [Coercion] -> Type -> Coercion
1098
1099
1100
1101
1102
1103
1104
1105
liftCoSubstWith tvs cos ty
  = liftCoSubst (zipEqual "liftCoSubstWith" tvs cos) ty

liftCoSubst :: [(TyVar,Coercion)] -> Type -> Coercion
liftCoSubst prs ty
 | null prs  = Refl ty
 | otherwise = ty_co_subst (LCS (mkInScopeSet (tyCoVarsOfCos (map snd prs)))
                                (mkVarEnv prs)) ty
1106
1107
1108

-- | The \"lifting\" operation which substitutes coercions for type
--   variables in a type to produce a coercion.
batterseapower's avatar
batterseapower committed
1109
--
1110
--   For the inverse operation, see 'liftCoMatch' 
1111
ty_co_subst :: LiftCoSubst -> Type -> Coercion
1112
1113
1114
1115
ty_co_subst subst ty
  = go ty
  where
    go (TyVarTy tv)      = liftCoSubstTyVar subst tv `orElse` Refl (TyVarTy tv)
1116
1117
       			     -- A type variable from a non-cloned forall
			     -- won't be in the substitution
1118
1119
    go (AppTy ty1 ty2)   = mkAppCo (go ty1) (go ty2)
    go (TyConApp tc tys) = mkTyConAppCo tc (map go tys)
dreixel's avatar
dreixel committed
1120
1121
1122
                           -- IA0_NOTE: Do we need to do anything
                           -- about kind instantiations? I don't think
                           -- so.  see Note [Kind coercions]
1123
1124
1125
1126
    go (FunTy ty1 ty2)   = mkFunCo (go ty1) (go ty2)
    go (ForAllTy v ty)   = mkForAllCo v' $! (ty_co_subst subst' ty)
                         where
                           (subst', v') = liftCoSubstTyVarBndr subst v
1127
    go ty@(LitTy {})     = mkReflCo ty
1128

1129
1130
1131
1132
1133
1134
liftCoSubstTyVar :: LiftCoSubst -> TyVar -> Maybe Coercion
liftCoSubstTyVar (LCS _ cenv) tv = lookupVarEnv cenv tv 

liftCoSubstTyVarBndr :: LiftCoSubst -> TyVar -> (LiftCoSubst, TyVar)
liftCoSubstTyVarBndr (LCS in_scope cenv) old_var
  = (LCS (in_scope `extendInScopeSet` new_var) new_cenv, new_var)		
1135
  where
1136
1137
    new_cenv | no_change = delVarEnv cenv old_var
	     | otherwise = extendVarEnv cenv old_var (Refl (TyVarTy new_var))
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

    no_change = new_var == old_var
    new_var = uniqAway in_scope old_var
\end{code}

\begin{code}
-- | 'liftCoMatch' is sort of inverse to 'liftCoSubst'.  In particular, if
--   @liftCoMatch vars ty co == Just s@, then @tyCoSubst s ty == co@.
--   That is, it matches a type against a coercion of the same
--   "shape", and returns a lifting substitution which could have been
--   used to produce the given coercion from the given type.
1149
liftCoMatch :: TyVarSet -> Type -> Coercion -> Maybe LiftCoSubst
1150
liftCoMatch tmpls ty co 
1151
1152
1153
  = case ty_co_match menv emptyVarEnv ty co of
      Just cenv -> Just (LCS in_scope cenv)
      Nothing   -> Nothing
1154
1155
1156
1157
1158
1159
1160
  where
    menv     = ME { me_tmpls = tmpls, me_env = mkRnEnv2 in_scope }
    in_scope = mkInScopeSet (tmpls `unionVarSet` tyCoVarsOfCo co)
    -- Like tcMatchTy, assume all the interesting variables 
    -- in ty are in tmpls

-- | 'ty_co_match' does all the actual work for 'liftCoMatch'.
1161
1162
1163
ty_co_match :: MatchEnv -> LiftCoEnv -> Type -> Coercion -> Maybe LiftCoEnv
ty_co_match menv subst ty co 
  | Just ty' <- coreView ty = ty_co_match menv subst ty' co
1164
1165

  -- Match a type variable against a non-refl coercion
1166
ty_co_match menv cenv (TyVarTy tv1) co
1167
1168
  | Just co1' <- lookupVarEnv cenv tv1'      -- tv1' is already bound to co1
  = if coreEqCoercion2 (nukeRnEnvL rn_env) co1' co
1169
    then Just cenv
1170
1171
1172
1173
1174
    else Nothing       -- no match since tv1 matches two different coercions

  | tv1' `elemVarSet` me_tmpls menv           -- tv1' is a template var
  = if any (inRnEnvR rn_env) (varSetElems (tyCoVarsOfCo co))
    then Nothing      -- occurs check failed
1175
    else return (extendVarEnv cenv tv1' co)
1176
1177
1178
1179
1180
1181
1182
        -- BAY: I don't think we need to do any kind matching here yet
        -- (compare 'match'), but we probably will when moving to SHE.

  | otherwise    -- tv1 is not a template ty var, so the only thing it
                 -- can match is a reflexivity coercion for itself.
		 -- But that case is dealt with already
  = Nothing
1183
1184

  where
1185
1186
1187
    rn_env = me_env menv
    tv1' = rnOccL rn_env tv1

1188
1189
ty_co_match menv subst (AppTy ty1 ty2) co
  | Just (co1, co2) <- splitAppCo_maybe co	-- c.f. Unify.match on AppTy
1190
1191
  = do { subst' <- ty_co_match menv subst ty1 co1 
       ; ty_co_match menv subst' ty2 co2 }
TomSchrijvers's avatar
TomSchrijvers committed
1192

1193
1194
ty_co_match menv subst (TyConApp tc1 tys) (TyConAppCo tc2 cos)
  | tc1 == tc2 = ty_co_matches menv subst tys cos
TomSchrijvers's avatar
TomSchrijvers committed
1195

1196
1197
ty_co_match menv subst (FunTy ty1 ty2) (TyConAppCo tc cos)
  | tc == funTyCon = ty_co_matches menv subst [ty1,ty2] cos
1198

1199
1200
1201
1202
ty_co_match menv subst (ForAllTy tv1 ty) (ForAllCo tv2 co) 
  = ty_co_match menv' subst ty co
  where
    menv' = menv { me_env = rnBndr2 (me_env menv) tv1 tv2 }
1203

1204
1205
1206
ty_co_match menv subst ty co
  | Just co' <- pushRefl co = ty_co_match menv subst ty co'
  | otherwise               = Nothing
1207

1208
ty_co_matches :: MatchEnv -> LiftCoEnv -> [Type] -> [Coercion] -> Maybe LiftCoEnv
1209
ty_co_matches menv = matchList (ty_co_match menv)
1210
1211
1212
1213
1214
1215
1216

pushRefl :: Coercion -> Maybe Coercion
pushRefl (Refl (AppTy ty1 ty2))   = Just (AppCo (Refl ty1) (Refl ty2))
pushRefl (Refl (FunTy ty1 ty2))   = Just (TyConAppCo funTyCon [Refl ty1, Refl ty2])
pushRefl (Refl (TyConApp tc tys)) = Just (TyConAppCo tc (map Refl tys))
pushRefl (Refl (ForAllTy tv ty))  = Just (ForAllCo tv (Refl ty))
pushRefl _                        = Nothing
TomSchrijvers's avatar
TomSchrijvers committed
1217
\end{code}
1218
1219

%************************************************************************
1220
%*									*
1221
            Sequencing on coercions
1222
%*									*
1223
1224
1225
%************************************************************************

\begin{code}
1226
1227
1228
1229
1230
1231
seqCo :: Coercion -> ()
seqCo (Refl ty)             = seqType ty
seqCo (TyConAppCo tc cos)   = tc `seq` seqCos cos
seqCo (AppCo co1 co2)       = seqCo co1 `seq` seqCo co2
seqCo (ForAllCo tv co)      = tv `seq` seqCo co
seqCo (CoVarCo cv)          = cv `seq` ()
1232
seqCo (AxiomInstCo con ind cos) = con `seq` ind `seq` seqCos cos
1233
1234
1235
1236
seqCo (UnsafeCo ty1 ty2)    = seqType ty1 `seq` seqType ty2
seqCo (SymCo co)            = seqCo co
seqCo (TransCo co1 co2)     = seqCo co1 `seq` seqCo co2
seqCo (NthCo _ co)          = seqCo co
1237
seqCo (LRCo _ co)           = seqCo co
1238
1239
1240
1241
1242
1243
seqCo (InstCo co ty)        = seqCo co `seq` seqType ty

seqCos :: [Coercion] -> ()
seqCos []       = ()
seqCos (co:cos) = seqCo co `seq` seqCos cos
\end{code}
1244

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

%************************************************************************
%*									*
	     The kind of a type, and of a coercion
%*									*
%************************************************************************

\begin{code}
coercionType :: Coercion -> Type
coercionType co = case coercionKind co of
batterseapower's avatar
batterseapower committed
1255
                    Pair ty1 ty2 -> mkCoercionType ty1 ty2
1256
1257
1258
1259
1260
1261

------------------
-- | If it is the case that
--
-- > c :: (t1 ~ t2)
--
1262
-- i.e. the kind of @c@ relates @t1@ and @t2@, then @coercionKind c = Pair t1 t2@.
1263
1264

coercionKind :: Coercion -> Pair Type 
1265
coercionKind co = go co
1266
1267
1268
1269
1270
  where 
    go (Refl ty)            = Pair ty ty
    go (TyConAppCo tc cos)  = mkTyConApp tc <$> (sequenceA $ map go cos)
    go (AppCo co1 co2)      = mkAppTy <$> go co1 <*> go co2
    go (ForAllCo tv co)     = mkForAllTy tv <$> go co
1271
    go (CoVarCo cv)         = toPair $ coVarKind cv
1272
    go (AxiomInstCo ax ind cos)
1273
      | CoAxBranch { cab_tvs = tvs, cab_lhs = lhs, cab_rhs = rhs } <- coAxiomNthBranch ax ind
1274
1275
1276
1277
1278
      , Pair tys1 tys2 <- sequenceA (map go cos)
      = ASSERT( cos `equalLength` tvs )  -- Invariant of AxiomInstCo: cos should 
                                         -- exactly saturate the axiom branch
        Pair (substTyWith tvs tys1 (mkTyConApp (coAxiomTyCon ax) lhs))
             (substTyWith tvs tys2 rhs)
1279
1280
1281
    go (UnsafeCo ty1 ty2)   = Pair ty1 ty2
    go (SymCo co)           = swap $ go co
    go (TransCo co1 co2)    = Pair (pFst $ go co1) (pSnd $ go co2)
1282
    go (NthCo d co)         = tyConAppArgN d <$> go co
1283
    go (LRCo lr co)         = (pickLR lr . splitAppTy) <$> go co
1284
1285
1286
1287
1288
1289
1290
    go (InstCo aco ty)      = go_app aco [ty]

    go_app :: Coercion -> [Type] -> Pair Type
    -- Collect up all the arguments and apply all at once
    -- See Note [Nested InstCos]
    go_app (InstCo co ty) tys = go_app co (ty:tys)
    go_app co             tys = (`applyTys` tys) <$> go co
1291
1292

-- | Apply 'coercionKind' to multiple 'Coercion's
1293
1294
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds tys = sequenceA $ map coercionKind tys
1295
\end{code}
1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
Note [Nested InstCos]
~~~~~~~~~~~~~~~~~~~~~
In Trac #5631 we found that 70% of the entire compilation time was
being spent in coercionKind!  The reason was that we had
   (g @ ty1 @ ty2 .. @ ty100)    -- The "@s" are InstCos
where 
   g :: forall a1 a2 .. a100. phi
If we deal with the InstCos one at a time, we'll do this:
   1.  Find the kind of (g @ ty1 .. @ ty99) : forall a100. phi'
   2.  Substitute phi'[ ty100/a100 ], a single tyvar->type subst
But this is a *quadratic* algorithm, and the blew up Trac #5631.
So it's very important to do the substitution simultaneously.

cf Type.applyTys (which in fact we call here)


1313
1314
1315
1316
1317
1318
\begin{code}
applyCo :: Type -> Coercion -> Type
-- Gives the type of (e co) where e :: (a~b) => ty
applyCo ty co | Just ty' <- coreView ty = applyCo ty' co
applyCo (FunTy _ ty) _ = ty
applyCo _            _ = panic "applyCo"
batterseapower's avatar
batterseapower committed
1319
\end{code}
dreixel's avatar
dreixel committed
1320
1321
1322
1323
1324
1325

Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Kind coercions are only of the form: Refl kind. They are only used to
instantiate kind polymorphic type constructors in TyConAppCo. Remember
that kind instantiation only happens with TyConApp, not AppTy.