DsBinds.hs 47.3 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5 6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8 9 10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
Ian Lynagh's avatar
Ian Lynagh committed
14

15
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
16
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds
17
  ) where
18

19 20
#include "HsVersions.h"

21 22
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
23

24
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
25
import DsGRHSs
26
import DsUtils
27

28 29
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
30
import Literal          ( Literal(MachStr) )
31
import CoreSubst
32
import OccurAnal        ( occurAnalyseExpr )
33
import MkCore
Simon Marlow's avatar
Simon Marlow committed
34
import CoreUtils
35
import CoreArity ( etaExpand )
36
import CoreUnfold
37
import CoreFVs
38
import UniqSupply
39
import Digraph
40

41
import PrelNames
42
import TysPrim ( mkProxyPrimTy )
43
import TyCon
44
import TcEvidence
45
import TcType
46
import Type
Iavor S. Diatchki's avatar
Iavor S. Diatchki committed
47
import Kind (returnsConstraintKind)
batterseapower's avatar
batterseapower committed
48
import Coercion hiding (substCo)
49
import TysWiredIn ( eqBoxDataCon, coercibleDataCon, mkListTy
50
                  , mkBoxedTupleTy, charTy, typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
51
import Id
52
import MkId(proxyHashId)
53
import Class
54
import DataCon  ( dataConTyCon )
55
import Name
56
import IdInfo   ( IdDetails(..) )
57
import Var
58
import VarSet
Simon Marlow's avatar
Simon Marlow committed
59
import Rules
60
import VarEnv
61
import Outputable
62
import Module
Simon Marlow's avatar
Simon Marlow committed
63 64
import SrcLoc
import Maybes
65
import OrdList
Simon Marlow's avatar
Simon Marlow committed
66 67
import Bag
import BasicTypes hiding ( TopLevel )
Ian Lynagh's avatar
Ian Lynagh committed
68
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
69
import FastString
70
import Util
71
import MonadUtils
72
import Control.Monad(liftM)
73
import Fingerprint(Fingerprint(..), fingerprintString)
74

Austin Seipp's avatar
Austin Seipp committed
75 76 77
{-
************************************************************************
*                                                                      *
78
\subsection[dsMonoBinds]{Desugaring a @MonoBinds@}
Austin Seipp's avatar
Austin Seipp committed
79 80 81
*                                                                      *
************************************************************************
-}
82

83 84
dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
dsTopLHsBinds binds = ds_lhs_binds binds
85

86
dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)]
87
dsLHsBinds binds = do { binds' <- ds_lhs_binds binds
88
                      ; return (fromOL binds') }
89 90

------------------------
91
ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr))
92

93 94
ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds
                        ; return (foldBag appOL id nilOL ds_bs) }
95

96 97
dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr))
dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind
98

99
dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr))
100

101
dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless })
102 103
  = do  { dflags <- getDynFlags
        ; core_expr <- dsLExpr expr
104

105 106
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
107
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
108
                   | otherwise         = var
109

110
        ; return (unitOL (makeCorePair dflags var' False 0 core_expr)) }
111

112 113 114
dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches
                  , fun_co_fn = co_fn, fun_tick = tick
                  , fun_infix = inf })
115
 = do   { dflags <- getDynFlags
116
        ; (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches
117
        ; let body' = mkOptTickBox tick body
118
        ; rhs <- dsHsWrapper co_fn (mkLams args body')
119
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
120
           return (unitOL (makeCorePair dflags fun False 0 rhs)) }
121 122 123

dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
                  , pat_ticks = (rhs_tick, var_ticks) })
124
  = do  { body_expr <- dsGuarded grhss ty
125 126
        ; let body' = mkOptTickBox rhs_tick body_expr
        ; sel_binds <- mkSelectorBinds var_ticks pat body'
127 128
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
129
    ; return (toOL sel_binds) }
sof's avatar
sof committed
130

131 132 133 134
        -- A common case: one exported variable
        -- Non-recursive bindings come through this way
        -- So do self-recursive bindings, and recursive bindings
        -- that have been chopped up with type signatures
135 136 137
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
138 139
  | ABE { abe_wrap = wrap, abe_poly = global
        , abe_mono = local, abe_prags = prags } <- export
140
  = do  { dflags <- getDynFlags
141 142 143
        ; bind_prs <- ds_lhs_binds binds
        ; let core_bind = Rec (fromOL bind_prs)
        ; ds_binds <- dsTcEvBinds_s ev_binds
144
        ; rhs <- dsHsWrapper wrap $  -- Usually the identity
145 146
                            mkLams tyvars $ mkLams dicts $
                            mkCoreLets ds_binds $
147 148
                            Let core_bind $
                            Var local
149

150 151 152 153 154 155 156
        ; (spec_binds, rules) <- dsSpecs rhs prags

        ; let   global'   = addIdSpecialisations global rules
                main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                         (dictArity dicts) rhs

        ; return (main_bind `consOL` spec_binds) }
sof's avatar
sof committed
157

158 159 160
dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
161
         -- See Note [Desugaring AbsBinds]
162 163 164
  = do  { dflags <- getDynFlags
        ; bind_prs    <- ds_lhs_binds binds
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
165
                              | (lcl_id, rhs) <- fromOL bind_prs ]
166
                -- Monomorphic recursion possible, hence Rec
167

168 169 170
              locals       = map abe_mono exports
              tup_expr     = mkBigCoreVarTup locals
              tup_ty       = exprType tup_expr
171
        ; ds_binds <- dsTcEvBinds_s ev_binds
172 173 174 175
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
                             Let core_bind $
                             tup_expr
176

177
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
178

179
        ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global
180
                           , abe_mono = local, abe_prags = spec_prags })
181 182
                = do { tup_id  <- newSysLocalDs tup_ty
                     ; rhs <- dsHsWrapper wrap $
183
                                 mkLams tyvars $ mkLams dicts $
184 185
                                 mkTupleSelector locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
186
                     ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
187 188
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
189 190 191
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
192 193
                           -- Id is just the selector.  Hmm.
                     ; return ((global', rhs) `consOL` spec_binds) }
194

195
        ; export_binds_s <- mapM mk_bind exports
196

197 198
        ; return ((poly_tup_id, poly_tup_rhs) `consOL`
                    concatOL export_binds_s) }
199 200 201 202 203 204 205 206 207 208 209
  where
    inline_env :: IdEnv Id   -- Maps a monomorphic local Id to one with
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
    inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                          | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                          , let prag = idInlinePragma gbl_id ]

    add_inline :: Id -> Id    -- tran
    add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id
210

cactus's avatar
cactus committed
211 212
dsHsBind (PatSynBind{}) = panic "dsHsBind: PatSynBind"

213
------------------------
214 215
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr)
makeCorePair dflags gbl_id is_default_method dict_arity rhs
216
  | is_default_method                 -- Default methods are *always* inlined
217 218
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

219
  | DFunId is_newtype <- idDetails gbl_id
220 221
  = (mk_dfun_w_stuff is_newtype, rhs)

222 223
  | otherwise
  = case inlinePragmaSpec inline_prag of
224 225 226
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
227
          Inline          -> inline_pair
228

229 230
  where
    inline_prag   = idInlinePragma gbl_id
231
    inlinable_unf = mkInlinableUnfolding dflags rhs
232 233
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
234 235
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
236
       , let real_arity = dict_arity + arity
237
        -- NB: The arity in the InlineRule takes account of the dictionaries
238 239 240 241 242 243
       = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
         (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs)
244

245 246 247
                -- See Note [ClassOp/DFun selection] in TcInstDcls
                -- See Note [Single-method classes]  in TcInstDcls
    mk_dfun_w_stuff is_newtype
Austin Seipp's avatar
Austin Seipp committed
248
       | is_newtype
249 250 251 252 253 254 255 256 257 258 259 260
       = gbl_id `setIdUnfolding`  mkInlineUnfolding (Just 0) rhs
                `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
       | otherwise
       = gbl_id `setIdUnfolding`  mkDFunUnfolding dfun_bndrs dfun_constr dfun_args
                `setInlinePragma` dfunInlinePragma
    (dfun_bndrs, dfun_body) = collectBinders (simpleOptExpr rhs)
    (dfun_con, dfun_args)   = collectArgs dfun_body
    dfun_constr | Var id <- dfun_con
                , DataConWorkId con <- idDetails id
                = con
                | otherwise = pprPanic "makeCorePair: dfun" (ppr rhs)

261 262 263 264

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
265

Austin Seipp's avatar
Austin Seipp committed
266
{-
267 268 269 270 271 272 273 274 275 276
[Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

277 278 279 280 281
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
282 283
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
284
But we don't want that, because if M.f isn't exported,
285 286
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
287 288 289
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
290 291 292
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
293 294 295 296
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
297
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
298
Although I'm a bit worried about whether full laziness might
299
float the f_lcl binding out and then inline M.f at its call site
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

315
The top-level AbsBinds for $cround has no tyvars or dicts (because the
316 317 318 319 320 321 322
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

323 324 325 326 327
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
328 329 330

and desugar it to

331 332 333
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
334 335

where B is the *non-recursive* binding
336 337 338
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
339 340

Notice (a) g has a different number of type variables to f, so we must
341 342
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
343

344 345 346 347
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
348

349 350 351 352
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
353 354

Why got to this trouble?  It's a common case, and it removes the
355
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
356 357 358 359
compilation, especially in a case where there are a *lot* of
bindings.


360 361 362 363 364 365 366 367
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
368
happen as a result of method sharing), there's a danger that we never
369 370 371 372
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
373
has the arity with which it is declared in the source code.  In this
374
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
375
should mean that (foo d) is a PAP and we don't share it.
376 377 378

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
379 380 381 382 383 384 385 386 387 388 389 390 391 392
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
Austin Seipp's avatar
Austin Seipp committed
393
-}
394

395
------------------------
396
dsSpecs :: CoreExpr     -- Its rhs
397
        -> TcSpecPrags
398 399
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
400
-- See Note [Handling SPECIALISE pragmas] in TcBinds
401 402 403 404 405 406
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

407 408 409
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
410 411 412
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
413
  | isJust (isClassOpId_maybe poly_id)
414 415
  = putSrcSpanDs loc $
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector")
416 417
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- There is no point in trying to specialise a class op
418 419
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
420

421 422
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
423 424 425
    do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:")
                 <+> quotes (ppr poly_id))
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
426
                            -- See Note [Activation pragmas for SPECIALISE]
427

428
  | otherwise
429
  = putSrcSpanDs loc $
430 431
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
432 433
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
434 435 436
       ; (bndrs, ds_lhs) <- liftM collectBinders
                                  (dsHsWrapper spec_co (Var poly_id))
       ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs)
437 438 439 440
       ; -- pprTrace "dsRule" (vcat [ ptext (sLit "Id:") <+> ppr poly_id
         --                         , ptext (sLit "spec_co:") <+> ppr spec_co
         --                         , ptext (sLit "ds_rhs:") <+> ppr ds_lhs ]) $
         case decomposeRuleLhs bndrs ds_lhs of {
441
           Left msg -> do { warnDs msg; return Nothing } ;
442
           Right (rule_bndrs, _fn, args) -> do
443

444
       { dflags <- getDynFlags
445
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
446 447 448 449
       ; let fn_unf    = realIdUnfolding poly_id
             unf_fvs   = stableUnfoldingVars fn_unf `orElse` emptyVarSet
             in_scope  = mkInScopeSet (unf_fvs `unionVarSet` exprsFreeVars args)
             spec_unf  = specUnfolding dflags (mkEmptySubst in_scope) bndrs args fn_unf
450 451 452
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
453
             rule =  mkRule this_mod False {- Not auto -} is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
454
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
455 456 457
                        rule_act poly_name
                        rule_bndrs args
                        (mkVarApps (Var spec_id) bndrs)
458

459
       ; spec_rhs <- dsHsWrapper spec_co poly_rhs
460

461 462 463 464
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
--              (warnDs $ ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:")
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
465 466 467 468 469

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
470 471 472 473
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
474
             = rhs          -- Local Id; this is its rhs
475 476
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
477 478 479
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
480
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
481
                            -- The type checker has checked that it *has* an unfolding
482

483 484 485 486 487
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
488
                                 -- in OccurAnal
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


506

507 508 509 510 511 512 513 514 515 516 517 518 519
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

520 521 522 523 524 525 526 527
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

528
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
550
SPEC [n] f :: ty            [n]   INLINE [k]
551 552 553 554 555 556 557 558 559 560
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
561 562
************************************************************************
*                                                                      *
563
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
564 565 566
*                                                                      *
************************************************************************
-}
567

568
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
569 570
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
571
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
572
--
573
-- Returns Nothing if the LHS isn't of the expected shape
574 575 576 577 578 579
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))

580 581
  | Just (fn_id, args) <- decompose fun2 args2
  , let extra_dict_bndrs = mk_extra_dict_bndrs fn_id args
582 583 584
  = -- pprTrace "decmposeRuleLhs" (vcat [ ptext (sLit "orig_bndrs:") <+> ppr orig_bndrs
    --                                  , ptext (sLit "orig_lhs:") <+> ppr orig_lhs
    --                                  , ptext (sLit "lhs1:")     <+> ppr lhs1
585 586
    --                                  , ptext (sLit "extra_dict_bndrs:") <+> ppr extra_dict_bndrs
    --                                  , ptext (sLit "fn_id:") <+> ppr fn_id
587
    --                                  , ptext (sLit "args:")   <+> ppr args]) $
588
    Right (orig_bndrs ++ extra_dict_bndrs, fn_id, args)
589

590
  | otherwise
591
  = Left bad_shape_msg
592
 where
593 594 595 596
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

597 598
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
599

600
   orig_bndr_set = mkVarSet orig_bndrs
601

602
        -- Add extra dict binders: Note [Free dictionaries]
603 604 605 606 607 608 609 610 611 612 613 614
   mk_extra_dict_bndrs fn_id args
     = [ mkLocalId (localiseName (idName d)) (idType d)
       | d <- varSetElems (exprsFreeVars args `delVarSetList` (fn_id : orig_bndrs))
              -- fn_id: do not quantify over the function itself, which may
              -- itself be a dictionary (in pathological cases, Trac #10251)
       , isDictId d ]

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
615 616

   bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar"))
617 618
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
619
   dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr
620
                             , ptext (sLit "is not bound in RULE lhs")])
621 622 623
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
624
   pp_bndr bndr
625 626 627
    | isTyVar bndr                      = ptext (sLit "type variable") <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred)
    | otherwise                         = ptext (sLit "variable") <+> quotes (ppr bndr)
628 629

   drop_dicts :: CoreExpr -> CoreExpr
630
   drop_dicts e
631 632 633
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
634
       (bnds, body) = split_lets (occurAnalyseExpr e)
635
           -- The occurAnalyseExpr drops dead bindings which is
636 637
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
   split_lets e
     | Let (NonRec d r) body <- e
     , isDictId d
     , (bs, body') <- split_lets body
     = ((d,r):bs, body')
     | otherwise
     = ([], e)

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
     | rhs_fvs `intersectsVarSet` needed = Let (NonRec d r) (wrap_lets needed' bs body)
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
656

Austin Seipp's avatar
Austin Seipp committed
657
{-
658
Note [Decomposing the left-hand side of a RULE]
659
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
660
There are several things going on here.
661 662
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
663
* extra_dict_bndrs: see Note [Free dictionaries]
664 665 666

Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
667
drop_dicts drops dictionary bindings on the LHS where possible.
668 669
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
670
   Reasoning here is that there is only one d:Eq [Int], and so we can
671 672 673 674
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
675
         one of the orig_bndrs, which we assume occur on RHS.
676 677 678 679 680 681
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
682
         to match, but there is no other way to get d:Eq a
683

684
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
685 686 687 688 689 690
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
691
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
692 693 694 695 696 697
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
698
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
699 700
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

701 702 703
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

704 705 706 707 708 709 710 711 712 713
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
714
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
715 716 717 718 719 720
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


721 722 723 724
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

725
   (a) Inline any remaining dictionary bindings (which hopefully
726 727 728
       occur just once)

   (b) Substitute trivial lets so that they don't get in the way
729
       Note that we substitute the function too; we might
730 731
       have this as a LHS:  let f71 = M.f Int in f71

732
   (c) Do eta reduction.  To see why, consider the fold/build rule,
733 734 735 736
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
737
         augment g (build h)
738
       we do not want to get
739
         augment (\a. g a) (build h)
740 741
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
742

743
Note [Matching seqId]
744 745
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
746
and this code turns it back into an application of seq!
747 748
See Note [Rules for seq] in MkId for the details.

749 750 751
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
752
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
753
        ... SPECIALISE f :: Eq a => a -> a ...
754 755
It's true that this *is* a more specialised type, but the rule
we get is something like this:
756 757
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos  
Gabor Greif committed
758 759
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
760 761 762 763
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

764 765
Note [Free dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~
766 767
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
768 769 770
over it too.  *Any* dict with that type will do.

So for example when you have
771 772
        f :: Eq a => a -> a
        f = <rhs>
Austin Seipp's avatar
Austin Seipp committed
773
        ... SPECIALISE f :: Int -> Int ...
774 775

Then we get the SpecPrag
776
        SpecPrag (f Int dInt)
777 778

And from that we want the rule
779 780 781

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt
782 783 784 785 786 787 788

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

789

Austin Seipp's avatar
Austin Seipp committed
790 791
************************************************************************
*                                                                      *
792
                Desugaring evidence
Austin Seipp's avatar
Austin Seipp committed
793 794
*                                                                      *
************************************************************************
795

Austin Seipp's avatar
Austin Seipp committed
796
-}
797

798
dsHsWrapper :: HsWrapper -> CoreExpr -> DsM CoreExpr
799
dsHsWrapper WpHole            e = return e
800 801 802
dsHsWrapper (WpTyApp ty)      e = return $ App e (Type ty)
dsHsWrapper (WpLet ev_binds)  e = do bs <- dsTcEvBinds ev_binds
                                     return (mkCoreLets bs e)
803 804 805 806 807 808
dsHsWrapper (WpCompose c1 c2) e = do { e1 <- dsHsWrapper c2 e
                                     ; dsHsWrapper c1 e1 }
dsHsWrapper (WpFun c1 c2 t1 _) e = do { x <- newSysLocalDs t1
                                      ; e1 <- dsHsWrapper c1 (Var x)
                                      ; e2 <- dsHsWrapper c2 (e `mkCoreAppDs` e1)
                                      ; return (Lam x e2) }
809
dsHsWrapper (WpCast co)       e = ASSERT(tcCoercionRole co == Representational)
810
                                  dsTcCoercion co (mkCastDs e)
811 812
dsHsWrapper (WpEvLam ev)      e = return $ Lam ev e
dsHsWrapper (WpTyLam tv)      e = return $ Lam tv e
813
dsHsWrapper (WpEvApp    tm)   e = liftM (App e) (dsEvTerm tm)
814 815

--------------------------------------
816 817 818 819 820
dsTcEvBinds_s :: [TcEvBinds] -> DsM [CoreBind]
dsTcEvBinds_s []       = return []
dsTcEvBinds_s (b:rest) = ASSERT( null rest )  -- Zonker ensures null
                         dsTcEvBinds b

821
dsTcEvBinds :: TcEvBinds -> DsM [CoreBind]
822
dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds"    -- Zonker has got rid of this
823 824
dsTcEvBinds (EvBinds bs)   = dsEvBinds bs

825
dsEvBinds :: Bag EvBind -> DsM [CoreBind]
826
dsEvBinds bs = mapM ds_scc (sccEvBinds bs)
827
  where
828 829 830
    ds_scc (AcyclicSCC (EvBind { eb_lhs = v, eb_rhs = r }))
                          = liftM (NonRec v) (dsEvTerm r)
    ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs)
831

832
    ds_pair (EvBind { eb_lhs = v, eb_rhs = r }) = liftM ((,) v) (dsEvTerm r)
833 834 835 836 837

sccEvBinds :: Bag EvBind -> [SCC EvBind]
sccEvBinds bs = stronglyConnCompFromEdgedVertices edges
  where
    edges :: [(EvBind, EvVar, [EvVar])]
838
    edges = foldrBag ((:) . mk_node) [] bs
839 840

    mk_node :: EvBind -> (EvBind, EvVar, [EvVar])
841 842
    mk_node b@(EvBind { eb_lhs = var, eb_rhs = term })
       = (b, var, varSetElems (evVarsOfTerm term))
843 844 845


---------------------------------------
846
dsEvTerm :: EvTerm -> DsM CoreExpr
847
dsEvTerm (EvId v) = return (Var v)
848

849
dsEvTerm (EvCast tm co)
850
  = do { tm' <- dsEvTerm tm
851
       ; dsTcCoercion co $ mkCastDs tm' }
852 853 854
                        -- 'v' is always a lifted evidence variable so it is
                        -- unnecessary to call varToCoreExpr v here.

855
dsEvTerm (EvDFunApp df tys tms)     = return (Var df `mkTyApps` tys `mkApps` (map Var tms))
856
dsEvTerm (EvCoercion (TcCoVarCo v)) = return (Var v)  -- See Note [Simple coercions]
Joachim Breitner's avatar
Joachim Breitner committed
857
dsEvTerm (EvCoercion co)            = dsTcCoercion co mkEqBox
858
dsEvTerm (EvSuperClass d n)
859 860
  = do { d' <- dsEvTerm d
       ; let (cls, tys) = getClassPredTys (exprType d')
861
             sc_sel_id  = classSCSelId cls n    -- Zero-indexed
862 863
       ; return $ Var sc_sel_id `mkTyApps` tys `App` d' }

864
dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg]
865
  where
866
    errorId = tYPE_ERROR_ID
867
    litMsg  = Lit (MachStr (fastStringToByteString msg))
868

869 870 871 872
dsEvTerm (EvLit l) =
  case l of
    EvNum n -> mkIntegerExpr n
    EvStr s -> mkStringExprFS s
873

874 875
dsEvTerm (EvCallStack cs) = dsEvCallStack cs