Commit 0e703316 authored by sof's avatar sof
Browse files

[project @ 1997-05-26 05:47:45 by sof]

New test dump files
parent 349880a7
--================================================================================
Simplified:
`$d5' ::
`{PrelBase.Eval (Pair a{-r3U-} b{-r3V-})}'
`$d5' =
_/\_ `a{-s1gp-}' `b{-s1gq-}' ->
`PrelBase.void'
`$d4' ::
`{PrelBase.Eval (LList alpha{-r3S-})}'
`$d4' =
_/\_ `alpha{-s1gr-}' ->
`PrelBase.void'
`$d2' ::
`{PrelBase.Eval (Tree x{-r3P-})}'
`$d2' =
_/\_ `x{-s1gs-}' ->
`PrelBase.void'
`$d1' ::
`{PrelBase.Eval (A a{-r3N-})}'
`$d1' =
_/\_ `a{-s1gt-}' ->
`PrelBase.void'
`MkPair' ::
`a{-r3U-} -> b{-r3V-} -> Pair a{-r3U-} b{-r3V-}'
`MkPair' =
_/\_ `a{-s1gc-}' `b{-s1gd-}' -> \ `tpl' ::
`a{-s1gc-}'
`tpl' `tpl' ::
`b{-s1gd-}'
`tpl' ->
`MkPair'
{_@_ `a{-s1gc-}' _@_ `b{-s1gd-}' `tpl' `tpl'}
`MkA' ::
`a{-r3N-} -> A a{-r3N-} -> A a{-r3N-}'
`MkA' =
_/\_ `a{-s1ge-}' -> \ `tpl' ::
`a{-s1ge-}'
`tpl' `tpl' ::
`A a{-s1ge-}'
`tpl' ->
`MkA'
{_@_ `a{-s1ge-}' `tpl' `tpl'}
`FF' ::
`Boolean'
`FF' =
`FF'
{}
`TT' ::
`Boolean'
`TT' =
`TT'
{}
`Nill' ::
`LList alpha{-r3S-}'
`Nill' =
_/\_ `alpha{-s1gf-}' ->
`Nill'
{_@_ `alpha{-s1gf-}'}
`Conss' ::
`alpha{-r3S-} -> LList alpha{-r3S-} -> LList alpha{-r3S-}'
`Conss' =
_/\_ `alpha{-s1gg-}' -> \ `tpl' ::
`alpha{-s1gg-}'
`tpl' `tpl' ::
`LList alpha{-s1gg-}'
`tpl' ->
`Conss'
{_@_ `alpha{-s1gg-}' `tpl' `tpl'}
Rec {
`append' ::
`LList a{-aH9-} -> LList a{-aH9-} -> LList a{-aH9-}'
`append' =
_/\_ `a{-s1gh-}' -> \ `xs' ::
`LList a{-s1gh-}'
`xs' `ys' ::
`LList a{-s1gh-}'
`ys' ->
case `xs' of {
`Nill' ->
`ys';
`Conss' `z' `zs' ->
let {
`ds' ::
`LList a{-s1gh-}'
`ds' =
`append'
_@_ `a{-s1gh-}' `zs' `ys'
} in
`Conss'
{_@_ `a{-s1gh-}' `z' `ds'};
}
end Rec }
`Zero' ::
`Nat'
`Zero' =
`Zero'
{}
`Succ' ::
`Nat -> Nat'
`Succ' =
\ `tpl' ::
`Nat'
`tpl' ->
`Succ'
{`tpl'}
`Leaf' ::
`x{-r3P-} -> Tree x{-r3P-}'
`Leaf' =
_/\_ `x{-s1gl-}' -> \ `tpl' ::
`x{-s1gl-}'
`tpl' ->
`Leaf'
{_@_ `x{-s1gl-}' `tpl'}
`Node' ::
`Tree x{-r3P-} -> Tree x{-r3P-} -> Tree x{-r3P-}'
`Node' =
_/\_ `x{-s1go-}' -> \ `tpl' ::
`Tree x{-s1go-}'
`tpl' `tpl' ::
`Tree x{-s1go-}'
`tpl' ->
`Node'
{_@_ `x{-s1go-}' `tpl' `tpl'}
`$d6' ::
`{PrelBase.Eval Boolean}'
`$d6' =
`PrelBase.void'
`$d3' ::
`{PrelBase.Eval Nat}'
`$d3' =
`PrelBase.void'
--================================================================================
Simplified:
Rec {
`s1BQ' ::
`GHC.Int# -> PrelBase.Int'
`s1BQ' =
\ `ww' ::
`GHC.Int#'
`ww' ->
case# `ww' of {
0 ->
`PrelBase.I#'
{2};
`s' ->
case
`s1BQ'
`ww'
of {
`PrelBase.I#' `s1tCY' ->
case# *#! `s1tCY' `ww' of { `s1tDv' ->
`PrelBase.I#'
{`s1tDv'};};};
}
end Rec }
`fact' ::
`PrelBase.Int -> PrelBase.Int'
`fact' =
\ `n' ::
`PrelBase.Int'
`n' ->
case `n' of { `PrelBase.I#' `ww' ->
`s1BQ'
`ww';}
--================================================================================
Simplified:
`$d5' ::
`{PrelBase.Eval (Pair a{-r4b-} b{-r4c-})}'
`$d5' =
_/\_ `a{-s1NX-}' `b{-s1NY-}' ->
`PrelBase.void'
`$d4' ::
`{PrelBase.Eval (LList alpha{-r49-})}'
`$d4' =
_/\_ `alpha{-s1NZ-}' ->
`PrelBase.void'
`$d2' ::
`{PrelBase.Eval (Tree x{-r46-})}'
`$d2' =
_/\_ `x{-s1O0-}' ->
`PrelBase.void'
`$d1' ::
`{PrelBase.Eval (A a{-r44-})}'
`$d1' =
_/\_ `a{-s1O1-}' ->
`PrelBase.void'
`MkPair' ::
`a{-r4b-} -> b{-r4c-} -> Pair a{-r4b-} b{-r4c-}'
`MkPair' =
_/\_ `a{-s1NI-}' `b{-s1NJ-}' -> \ `tpl' ::
`a{-s1NI-}'
`tpl' `tpl' ::
`b{-s1NJ-}'
`tpl' ->
`MkPair'
{_@_ `a{-s1NI-}' _@_ `b{-s1NJ-}' `tpl' `tpl'}
`MkA' ::
`a{-r44-} -> A a{-r44-} -> A a{-r44-}'
`MkA' =
_/\_ `a{-s1NK-}' -> \ `tpl' ::
`a{-s1NK-}'
`tpl' `tpl' ::
`A a{-s1NK-}'
`tpl' ->
`MkA'
{_@_ `a{-s1NK-}' `tpl' `tpl'}
`FF' ::
`Boolean'
`FF' =
`FF'
{}
`TT' ::
`Boolean'
`TT' =
`TT'
{}
`Nill' ::
`LList alpha{-r49-}'
`Nill' =
_/\_ `alpha{-s1NL-}' ->
`Nill'
{_@_ `alpha{-s1NL-}'}
`Conss' ::
`alpha{-r49-} -> LList alpha{-r49-} -> LList alpha{-r49-}'
`Conss' =
_/\_ `alpha{-s1NM-}' -> \ `tpl' ::
`alpha{-s1NM-}'
`tpl' `tpl' ::
`LList alpha{-s1NM-}'
`tpl' ->
`Conss'
{_@_ `alpha{-s1NM-}' `tpl' `tpl'}
Rec {
`append' ::
`LList a{-aHq-} -> LList a{-aHq-} -> LList a{-aHq-}'
`append' =
_/\_ `a{-s1NN-}' -> \ `xs' ::
`LList a{-s1NN-}'
`xs' `ys' ::
`LList a{-s1NN-}'
`ys' ->
case `xs' of {
`Nill' ->
`ys';
`Conss' `z' `zs' ->
let {
`ds' ::
`LList a{-s1NN-}'
`ds' =
`append'
_@_ `a{-s1NN-}' `zs' `ys'
} in
`Conss'
{_@_ `a{-s1NN-}' `z' `ds'};
}
end Rec }
Rec {
`flat' ::
`Tree (Pair a{-aHT-} b{-aHU-}) -> LList a{-aHT-}'
`flat' =
_/\_ `b{-s1NQ-}' `a{-s1NP-}' -> \ `s' ::
`Tree (Pair a{-s1NP-} b{-s1NQ-})'
`s' ->
case `s' of {
`Leaf' `ds' ->
case `ds' of { `MkPair' `a' `b' ->
let {
`ds' ::
`LList a{-s1NP-}'
`ds' =
`Nill'
{_@_ `a{-s1NP-}'}
} in
`Conss'
{_@_ `a{-s1NP-}' `a' `ds'};};
`Node' `l' `r' ->
case
`flat'
_@_ `b{-s1NQ-}' _@_ `a{-s1NP-}' `l'
of {
`ds' ->
let {
`ds' ::
`LList a{-s1NP-}'
`ds' =
`flat'
_@_ `b{-s1NQ-}' _@_ `a{-s1NP-}' `r'
} in
`append'
_@_ `a{-s1NP-}' `ds' `ds';};
}
end Rec }
`Zero' ::
`Nat'
`Zero' =
`Zero'
{}
`Succ' ::
`Nat -> Nat'
`Succ' =
\ `tpl' ::
`Nat'
`tpl' ->
`Succ'
{`tpl'}
`Leaf' ::
`x{-r46-} -> Tree x{-r46-}'
`Leaf' =
_/\_ `x{-s1NU-}' -> \ `tpl' ::
`x{-s1NU-}'
`tpl' ->
`Leaf'
{_@_ `x{-s1NU-}' `tpl'}
`Node' ::
`Tree x{-r46-} -> Tree x{-r46-} -> Tree x{-r46-}'
`Node' =
_/\_ `x{-s1NV-}' -> \ `tpl' ::
`Tree x{-s1NV-}'
`tpl' `tpl' ::
`Tree x{-s1NV-}'
`tpl' ->
`Node'
{_@_ `x{-s1NV-}' `tpl' `tpl'}
`$d6' ::
`{PrelBase.Eval Boolean}'
`$d6' =
`PrelBase.void'
`$d3' ::
`{PrelBase.Eval Nat}'
`$d3' =
`PrelBase.void'
`s1h2' ::
`Pair Boolean Nat'
`s1h2' =
`MkPair'
{_@_ `Boolean' _@_ `Nat' `TT' `Zero'}
`s1h7' ::
`Tree (Pair Boolean Nat)'
`s1h7' =
`Leaf'
{_@_ (`Pair' `Boolean' `Nat') `s1h2'}
`s1l4' ::
`LList Boolean'
`s1l4' =
`flat'
_@_ `Nat' _@_ `Boolean' `s1h7'
`fl' ::
`Boolean -> LList Boolean'
`fl' =
\ `x' ::
`Boolean'
`x' ->
`s1l4'
--================================================================================
Simplified:
`$d5' ::
`{PrelBase.Eval (Pair a{-r3R-} b{-r3S-})}'
`$d5' =
_/\_ `a{-s1g3-}' `b{-s1g4-}' ->
`PrelBase.void'
`$d4' ::
`{PrelBase.Eval (LList alpha{-r3P-})}'
`$d4' =
_/\_ `alpha{-s1g5-}' ->
`PrelBase.void'
`$d2' ::
`{PrelBase.Eval (Tree x{-r3M-})}'
`$d2' =
_/\_ `x{-s1g6-}' ->
`PrelBase.void'
`$d1' ::
`{PrelBase.Eval (A a{-r3K-})}'
`$d1' =
_/\_ `a{-s1g7-}' ->
`PrelBase.void'
`MkPair' ::
`a{-r3R-} -> b{-r3S-} -> Pair a{-r3R-} b{-r3S-}'
`MkPair' =
_/\_ `a{-s1fQ-}' `b{-s1fR-}' -> \ `tpl' ::
`a{-s1fQ-}'
`tpl' `tpl' ::
`b{-s1fR-}'
`tpl' ->
`MkPair'
{_@_ `a{-s1fQ-}' _@_ `b{-s1fR-}' `tpl' `tpl'}
`MkA' ::
`a{-r3K-} -> A a{-r3K-} -> A a{-r3K-}'
`MkA' =
_/\_ `a{-s1fS-}' -> \ `tpl' ::
`a{-s1fS-}'
`tpl' `tpl' ::
`A a{-s1fS-}'
`tpl' ->
`MkA'
{_@_ `a{-s1fS-}' `tpl' `tpl'}
`FF' ::
`Boolean'
`FF' =
`FF'
{}
`TT' ::
`Boolean'
`TT' =
`TT'
{}
`Nill' ::
`LList alpha{-r3P-}'
`Nill' =
_/\_ `alpha{-s1fT-}' ->
`Nill'
{_@_ `alpha{-s1fT-}'}
`Conss' ::
`alpha{-r3P-} -> LList alpha{-r3P-} -> LList alpha{-r3P-}'
`Conss' =
_/\_ `alpha{-s1fU-}' -> \ `tpl' ::
`alpha{-s1fU-}'
`tpl' `tpl' ::
`LList alpha{-s1fU-}'
`tpl' ->
`Conss'
{_@_ `alpha{-s1fU-}' `tpl' `tpl'}
Rec {
`idl' ::
`LList a{-aH5-} -> LList a{-aH5-}'
`idl' =
_/\_ `a{-s1fV-}' -> \ `xs' ::
`LList a{-s1fV-}'
`xs' ->
case `xs' of {
`Nill' ->
`Nill'
{_@_ `a{-s1fV-}'};
`Conss' `y' `ys' ->
let {
`ds' ::
`LList a{-s1fV-}'
`ds' =
`idl'
_@_ `a{-s1fV-}' `ys'
} in
`Conss'
{_@_ `a{-s1fV-}' `y' `ds'};
}
end Rec }
`Zero' ::
`Nat'
`Zero' =
`Zero'
{}
`Succ' ::
`Nat -> Nat'
`Succ' =
\ `tpl' ::
`Nat'
`tpl' ->
`Succ'
{`tpl'}
`Leaf' ::
`x{-r3M-} -> Tree x{-r3M-}'
`Leaf' =
_/\_ `x{-s1fZ-}' -> \ `tpl' ::
`x{-s1fZ-}'
`tpl' ->
`Leaf'
{_@_ `x{-s1fZ-}' `tpl'}
`Node' ::
`Tree x{-r3M-} -> Tree x{-r3M-} -> Tree x{-r3M-}'
`Node' =
_/\_ `x{-s1g2-}' -> \ `tpl' ::
`Tree x{-s1g2-}'
`tpl' `tpl' ::
`Tree x{-s1g2-}'
`tpl' ->
`Node'
{_@_ `x{-s1g2-}' `tpl' `tpl'}
`$d6' ::
`{PrelBase.Eval Boolean}'
`$d6' =
`PrelBase.void'
`$d3' ::
`{PrelBase.Eval Nat}'
`$d3' =
`PrelBase.void'
--================================================================================
Simplified:
`$d2' ::
`{PrelBase.Eval (M a{-r3H-})}'
`$d2' =
_/\_ `a{-s191-}' ->
`PrelBase.void'
`$d1' ::
`{PrelBase.Eval (L a{-r3F-})}'
`$d1' =
_/\_ `a{-s192-}' ->
`PrelBase.void'
`A' ::
`M a{-r3H-}'
`A' =
_/\_ `a{-s18T-}' ->
`A' {_@_ `a{-s18T-}'}
`B' ::
`a{-r3H-} -> M a{-r3H-} -> M a{-r3H-}'
`B' =
_/\_ `a{-s18U-}' -> \ `tpl' ::
`a{-s18U-}'
`tpl' `tpl' ::
`M a{-s18U-}'
`tpl' ->
`B' {_@_ `a{-s18U-}' `tpl' `tpl'}
`N' ::
`L a{-r3F-}'
`N' =
_/\_ `a{-s18V-}' ->
`N' {_@_ `a{-s18V-}'}
`C' ::
`a{-r3F-} -> Syn a{-r3F-} -> L a{-r3F-}'
`C' =
_/\_ `a{-s18W-}' -> \ `tpl' ::
`a{-s18W-}'
`tpl' `tpl' ::
`Syn a{-s18W-}'
`tpl' ->
`C' {_@_ `a{-s18W-}' `tpl' `tpl'}
Rec {
`idL' ::
`L (Syn c{-aGI-}) -> L (Syn c{-aGI-})'
`idL' =
_/\_ `c{-s18X-}' -> \ `ds' ::
`L (Syn c{-s18X-})'
`ds' ->
case `ds' of {
`N' ->
`N' {_@_ (`Syn' `c{-s18X-}')};
`C' `x' `l' ->
let {
`ds' ::
`L (Syn c{-s18X-})'
`ds' =
`idL'
_@_ `c{-s18X-}' `l'
} in
`C' {_@_ (`Syn' `c{-s18X-}') `x' `ds'};
}
end Rec }
Rec {
`idM' ::
`M (L (Syn x{-aH8-})) -> M (L (Syn x{-aH8-}))'
`idM' =
_/\_ `x{-s18Z-}' -> \ `ds' ::
`M (L (Syn x{-s18Z-}))'
`ds' ->
case `ds' of {
`A' ->
`A' {_@_ (`L' (`Syn' `x{-s18Z-}'))};
`B' `x' `l' ->
let {
`ds' ::
`L (Syn x{-s18Z-})'
`ds' =
`idL'
_@_ `x{-s18Z-}' `x' } in
let {
`ds' ::
`M (L (Syn x{-s18Z-}))'
`ds' =
`idM'
_@_ `x{-s18Z-}' `l'
} in
`B' {_@_ (`L' (`Syn' `x{-s18Z-}')) `ds' `ds'};
}
end Rec }
--================================================================================
Simplified:
`$d2' ::
`{PrelBase.Eval (LList t{-r3s-})}'
`$d2' =
_/\_ `t{-sUf-}' ->
`PrelBase.void'
`Nill' ::
`LList t{-r3s-}'
`Nill' =
_/\_ `t{-sUc-}' ->
`Nill'
{_@_ `t{-sUc-}'}
`Conss' ::
`t{-r3s-} -> LList t{-r3s-} -> LList t{-r3s-}'
`Conss' =
_/\_ `t{-sUd-}' -> \ `tpl' ::
`t{-sUd-}'
`tpl' `tpl' ::
`LList t{-sUd-}'
`tpl' ->
`Conss'
{_@_ `t{-sUd-}' `tpl' `tpl'}
`TTrue' ::
`BBool'
`TTrue' =
`TTrue'
{}
`FFalse' ::
`BBool'
`FFalse' =
`FFalse'
{}
`f' ::
`LList t{-aGi-} -> BBool'
`f' =
_/\_ `t{-sUe-}' -> \ `ds' ::
`LList t{-sUe-}'
`ds' ->
case `ds' of {
`Nill' ->
`TTrue'
{};
`Conss' `a' `as' ->
`FFalse'
{};
}
`$d1' ::
`{PrelBase.Eval BBool}'
`$d1' =
`PrelBase.void'