Commit 73d6e508 authored by Ben Gamari's avatar Ben Gamari 🐢 Committed by Marge Bot

base: Various haddock fixes

Just a few things I found while looking at #17383.
parent a9743eb7
Pipeline #12030 failed with stages
in 409 minutes and 50 seconds
......@@ -46,16 +46,16 @@ import Text.Read.Lex
default () -- avoid any defaulting shenanigans
-- | generalisation of 'div' to any instance of 'Real'
-- | Generalisation of 'div' to any instance of 'Real'
div' :: (Real a,Integral b) => a -> a -> b
div' n d = floor ((toRational n) / (toRational d))
-- | generalisation of 'divMod' to any instance of 'Real'
-- | Generalisation of 'divMod' to any instance of 'Real'
divMod' :: (Real a,Integral b) => a -> a -> (b,a)
divMod' n d = (f,n - (fromIntegral f) * d) where
f = div' n d
-- | generalisation of 'mod' to any instance of 'Real'
-- | Generalisation of 'mod' to any instance of 'Real'
mod' :: (Real a) => a -> a -> a
mod' n d = n - (fromInteger f) * d where
f = div' n d
......
......@@ -134,7 +134,7 @@ class (Num a, Ord a) => Real a where
--
-- The Haskell Report defines no laws for 'Integral'. However, 'Integral'
-- instances are customarily expected to define a Euclidean domain and have the
-- following properties for the `div`\/`mod` and `quot`\/`rem` pairs, given
-- following properties for the 'div'\/'mod' and 'quot'\/'rem' pairs, given
-- suitable Euclidean functions @f@ and @g@:
--
-- * @x@ = @y * quot x y + rem x y@ with @rem x y@ = @fromInteger 0@ or
......@@ -142,7 +142,7 @@ class (Num a, Ord a) => Real a where
-- * @x@ = @y * div x y + mod x y@ with @mod x y@ = @fromInteger 0@ or
-- @f (mod x y)@ < @f y@
--
-- An example of a suitable Euclidean function, for `Integer`'s instance, is
-- An example of a suitable Euclidean function, for 'Integer'\'s instance, is
-- 'abs'.
class (Real a, Enum a) => Integral a where
-- | integer division truncated toward zero
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment