Commit 8419653f authored by Simon Marlow's avatar Simon Marlow
Browse files

add test for a new assertion failure

parent cb0242d2
{-# OPTIONS -fglasgow-exts -cpp #-}
import Char
#if __GLASGOW_HASKELL__ >= 503
import Data.Array
#else
import Array
#endif
#if __GLASGOW_HASKELL__ >= 503
import GHC.Exts
#else
import GlaExts
#endif
#if __GLASGOW_HASKELL__ >= 503
import System.IO
import System.IO.Unsafe
import Debug.Trace
#else
import IO
import IOExts
#endif
-- parser produced by Happy Version 1.16
data HappyAbsSyn
= HappyTerminal Token
| HappyErrorToken Int
| HappyAbsSyn4 (Exp)
| HappyAbsSyn5 (Exp1)
| HappyAbsSyn6 (Term)
| HappyAbsSyn7 (Factor)
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x01\x00\x25\x00\x1e\x00\x1b\x00\x1d\x00\x18\x00\x00\x00\x00\x00\x00\x00\x01\x00\xf8\xff\x03\x00\x03\x00\x03\x00\x03\x00\x20\x00\x01\x00\x18\x00\x18\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x01\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x07\x00\xfe\xff\x1c\x00\x06\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfa\xff\xf7\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xfc\xff\xf8\xff\xf9\xff\xf4\xff\x00\x00\x00\x00\xfe\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x0b\x00\x03\x00\x04\x00\x03\x00\x04\x00\x02\x00\x03\x00\x03\x00\x0a\x00\x02\x00\x0a\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x03\x00\x08\x00\x09\x00\x04\x00\x06\x00\x07\x00\x05\x00\x01\x00\x0c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x13\x00\x03\x00\x16\x00\x08\x00\x09\x00\x08\x00\x09\x00\x11\x00\x06\x00\x14\x00\x0a\x00\x18\x00\x0a\x00\x18\x00\x04\x00\x05\x00\x06\x00\x16\x00\x04\x00\x05\x00\x06\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x03\x00\x04\x00\x05\x00\x06\x00\x12\x00\x06\x00\x0c\x00\x0d\x00\x10\x00\x0e\x00\x0f\x00\x11\x00\x03\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr = array (1, 11) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11)
]
happy_n_terms = 13 :: Int
happy_n_nonterms = 4 :: Int
happyReduce_1 = happyReduce 6# 0# happyReduction_1
happyReduction_1 ((HappyAbsSyn4 happy_var_6) `HappyStk`
_ `HappyStk`
(HappyAbsSyn4 happy_var_4) `HappyStk`
_ `HappyStk`
(HappyTerminal (TokenVar happy_var_2)) `HappyStk`
_ `HappyStk`
happyRest)
= HappyAbsSyn4
(Let happy_var_2 happy_var_4 happy_var_6
) `HappyStk` happyRest
happyReduce_2 = happySpecReduce_1 0# happyReduction_2
happyReduction_2 (HappyAbsSyn5 happy_var_1)
= HappyAbsSyn4
(Exp1 happy_var_1
)
happyReduction_2 _ = notHappyAtAll
happyReduce_3 = happySpecReduce_3 1# happyReduction_3
happyReduction_3 (HappyAbsSyn6 happy_var_3)
_
(HappyAbsSyn5 happy_var_1)
= HappyAbsSyn5
(Plus happy_var_1 happy_var_3
)
happyReduction_3 _ _ _ = notHappyAtAll
happyReduce_4 = happySpecReduce_3 1# happyReduction_4
happyReduction_4 (HappyAbsSyn6 happy_var_3)
_
(HappyAbsSyn5 happy_var_1)
= HappyAbsSyn5
(Minus happy_var_1 happy_var_3
)
happyReduction_4 _ _ _ = notHappyAtAll
happyReduce_5 = happySpecReduce_1 1# happyReduction_5
happyReduction_5 (HappyAbsSyn6 happy_var_1)
= HappyAbsSyn5
(Term happy_var_1
)
happyReduction_5 _ = notHappyAtAll
happyReduce_6 = happySpecReduce_3 2# happyReduction_6
happyReduction_6 (HappyAbsSyn7 happy_var_3)
_
(HappyAbsSyn6 happy_var_1)
= HappyAbsSyn6
(Times happy_var_1 happy_var_3
)
happyReduction_6 _ _ _ = notHappyAtAll
happyReduce_7 = happySpecReduce_3 2# happyReduction_7
happyReduction_7 (HappyAbsSyn7 happy_var_3)
_
(HappyAbsSyn6 happy_var_1)
= HappyAbsSyn6
(Div happy_var_1 happy_var_3
)
happyReduction_7 _ _ _ = notHappyAtAll
happyReduce_8 = happySpecReduce_1 2# happyReduction_8
happyReduction_8 (HappyAbsSyn7 happy_var_1)
= HappyAbsSyn6
(Factor happy_var_1
)
happyReduction_8 _ = notHappyAtAll
happyReduce_9 = happySpecReduce_1 3# happyReduction_9
happyReduction_9 (HappyTerminal (TokenInt happy_var_1))
= HappyAbsSyn7
(Int happy_var_1
)
happyReduction_9 _ = notHappyAtAll
happyReduce_10 = happySpecReduce_1 3# happyReduction_10
happyReduction_10 (HappyTerminal (TokenVar happy_var_1))
= HappyAbsSyn7
(Var happy_var_1
)
happyReduction_10 _ = notHappyAtAll
happyReduce_11 = happySpecReduce_3 3# happyReduction_11
happyReduction_11 _
(HappyAbsSyn4 happy_var_2)
_
= HappyAbsSyn7
(Brack happy_var_2
)
happyReduction_11 _ _ _ = notHappyAtAll
happyNewToken action sts stk [] =
happyDoAction 12# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
TokenLet -> cont 1#;
TokenIn -> cont 2#;
TokenInt happy_dollar_dollar -> cont 3#;
TokenVar happy_dollar_dollar -> cont 4#;
TokenEq -> cont 5#;
TokenPlus -> cont 6#;
TokenMinus -> cont 7#;
TokenTimes -> cont 8#;
TokenDiv -> cont 9#;
TokenOB -> cont 10#;
TokenCB -> cont 11#;
_ -> happyError' (tk:tks)
}
happyError_ tk tks = happyError' (tk:tks)
newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a
instance Monad HappyIdentity where
return = HappyIdentity
(HappyIdentity p) >>= q = q p
happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [Token] -> HappyIdentity a
happyError' = HappyIdentity . happyError
calc tks = happyRunIdentity happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> case x of {HappyAbsSyn4 z -> happyReturn z; _other -> notHappyAtAll })
happySeq = happyDontSeq
happyError tks = error "Parse error"
data Exp = Let String Exp Exp | Exp1 Exp1
data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term
data Term = Times Term Factor | Div Term Factor | Factor Factor
data Factor = Int Int | Var String | Brack Exp
data Token
= TokenLet
| TokenIn
| TokenInt Int
| TokenVar String
| TokenEq
| TokenPlus
| TokenMinus
| TokenTimes
| TokenDiv
| TokenOB
| TokenCB
lexer :: String -> [Token]
lexer [] = []
lexer (c:cs)
| isSpace c = lexer cs
| isAlpha c = lexVar (c:cs)
| isDigit c = lexNum (c:cs)
lexer ('=':cs) = TokenEq : lexer cs
lexer ('+':cs) = TokenPlus : lexer cs
lexer ('-':cs) = TokenMinus : lexer cs
lexer ('*':cs) = TokenTimes : lexer cs
lexer ('/':cs) = TokenDiv : lexer cs
lexer ('(':cs) = TokenOB : lexer cs
lexer (')':cs) = TokenCB : lexer cs
lexNum cs = TokenInt (read num) : lexer rest
where (num,rest) = span isDigit cs
lexVar cs =
case span isAlpha cs of
("let",rest) -> TokenLet : lexer rest
("in",rest) -> TokenIn : lexer rest
(var,rest) -> TokenVar var : lexer rest
runCalc :: String -> Exp
runCalc = calc . lexer
main = case runCalc "1 + 2 + 3" of {
(Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) ->
case runCalc "1 * 2 + 3" of {
(Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) ->
case runCalc "1 + 2 * 3" of {
(Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
case runCalc "let x = 2 in x * (x - 2)" of {
(Let "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) -> print "Test works\n";
_ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit }
quit = print "Test failed\n"
{-# LINE 1 "GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command line>" #-}
{-# LINE 1 "GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp
{-# LINE 28 "GenericTemplate.hs" #-}
data Happy_IntList = HappyCons Int# Happy_IntList
{-# LINE 49 "GenericTemplate.hs" #-}
{-# LINE 59 "GenericTemplate.hs" #-}
happyTrace string expr = unsafePerformIO $ do
hPutStr stderr string
return expr
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
-----------------------------------------------------------------------------
-- starting the parse
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
-----------------------------------------------------------------------------
-- Accepting the parse
-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser). We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
-----------------------------------------------------------------------------
-- Arrays only: do the next action
happyDoAction i tk st
= (happyTrace ("state: " ++ show (I# (st)) ++ ",\ttoken: " ++ show (I# (i)) ++ ",\taction: ")) $
case action of
0# -> (happyTrace ("fail.\n")) $
happyFail i tk st
-1# -> (happyTrace ("accept.\n")) $
happyAccept i tk st
n | (n <# (0# :: Int#)) -> (happyTrace ("reduce (rule " ++ show rule ++ ")")) $
(happyReduceArr ! rule) i tk st
where rule = (I# ((negateInt# ((n +# (1# :: Int#))))))
n -> (happyTrace ("shift, enter state " ++ show (I# (new_state)) ++ "\n")) $
happyShift new_state i tk st
where new_state = (n -# (1# :: Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off +# i)
check = if (off_i >=# (0# :: Int#))
then (indexShortOffAddr happyCheck off_i ==# i)
else False
action | check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
{-# LINE 127 "GenericTemplate.hs" #-}
indexShortOffAddr (HappyA# arr) off =
#if __GLASGOW_HASKELL__ > 500
narrow16Int# i
#elif __GLASGOW_HASKELL__ == 500
intToInt16# i
#else
(i `iShiftL#` 16#) `iShiftRA#` 16#
#endif
where
#if __GLASGOW_HASKELL__ >= 503
i = word2Int# ((high `uncheckedShiftL#` 8#) `or#` low)
#else
i = word2Int# ((high `shiftL#` 8#) `or#` low)
#endif
high = int2Word# (ord# (indexCharOffAddr# arr (off' +# 1#)))
low = int2Word# (ord# (indexCharOffAddr# arr off'))
off' = off *# 2#
data HappyAddr = HappyA# Addr#
-----------------------------------------------------------------------------
-- HappyState data type (not arrays)
{-# LINE 170 "GenericTemplate.hs" #-}
-----------------------------------------------------------------------------
-- Shifting a token
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case x of { HappyErrorToken (I# (i)) -> i }) in
-- trace "shifting the error token" $
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((HappyTerminal (tk))`HappyStk`stk)
-- happyReduce is specialised for the common cases.
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k -# (1# :: Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in -- it doesn't hurt to always seq here...
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off +# nt)
new_state = indexShortOffAddr happyTable off_i
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n -# (1# :: Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n -# (1#::Int#)) xs
-----------------------------------------------------------------------------
-- Moving to a new state after a reduction
happyGoto nt j tk st =
(happyTrace (", goto state " ++ show (I# (new_state)) ++ "\n")) $
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off +# nt)
new_state = indexShortOffAddr happyTable off_i
-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)
-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk =
-- trace "failing" $
happyError_ tk
{- We don't need state discarding for our restricted implementation of
"error". In fact, it can cause some bogus parses, so I've disabled it
for now --SDM
-- discard a state
happyFail 0# tk old_st (HappyCons ((action)) (sts))
(saved_tok `HappyStk` _ `HappyStk` stk) =
-- trace ("discarding state, depth " ++ show (length stk)) $
happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}
-- Enter error recovery: generate an error token,
-- save the old token and carry on.
happyFail i tk (action) sts stk =
-- trace "entering error recovery" $
happyDoAction 0# tk action sts ( (HappyErrorToken (I# (i))) `HappyStk` stk)
-- Internal happy errors:
notHappyAtAll = error "Internal Happy error\n"
-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions
happyTcHack :: Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}
-----------------------------------------------------------------------------
-- Seq-ing. If the --strict flag is given, then Happy emits
-- happySeq = happyDoSeq
-- otherwise it emits
-- happySeq = happyDontSeq
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b
-----------------------------------------------------------------------------
-- Don't inline any functions from the template. GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.
{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}
{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}
-- end of Happy Template.
......@@ -19,6 +19,7 @@ test('print016', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_scri
test('print017', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['print017.script'])
test('print018', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['print018.script'])
test('print019', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['print019.script'])
test('print020', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['print020.script'])
test('break001', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['break001.script'])
test('break002', extra_run_opts('-fno-warn-monomorphism-restriction'), ghci_script, ['break002.script'])
......
:l ../HappyTest.hs
:break lexer
main
:force _result
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment