1. 19 Dec, 2011 1 commit
    • Ian Lynagh's avatar
      Add a class HasDynFlags(getDynFlags) · 06c6d970
      Ian Lynagh authored
      We no longer have many separate, clashing getDynFlags functions
      
      I've given each GhcMonad its own HasDynFlags instance, rather than
      using UndecidableInstances to make a GhcMonad m => HasDynFlags m
      instance.
      06c6d970
  2. 16 Nov, 2011 1 commit
  3. 04 Nov, 2011 1 commit
  4. 23 Sep, 2011 2 commits
    • Simon Peyton Jones's avatar
      Make a new type synonym CoreProgram = [CoreBind] · 488e21c8
      Simon Peyton Jones authored
      and comment its invariants in Note [CoreProgram] in CoreSyn
      
      I'm not totally convinced that CoreProgram is the right name
      (perhaps CoreTopBinds might better), but it is useful to have
      a clue that you are looking at the top-level bindings.
      
      This is only a matter of a type synonym change; no deep
      refactoring here.
      488e21c8
    • Simon Peyton Jones's avatar
      Add a transformation limit to the simplifier (Trac #5448) · 24a2353a
      Simon Peyton Jones authored
      This addresses the rare cases where the simplifier diverges
      (see the above ticket).  We were already counting how many simplifier
      steps were taking place, but with no limit.  This patch adds a limit;
      at which point we halt compilation, and print out useful stats. The
      stats show what is begin inlined, and how often, which points you
      directly to the problem.  The limit is set based on the size of the
      program.
      
      Instead of halting compilation, we could instead just inhibit
      inlining, which would let compilation of the module complete. This is
      a bit harder to implement, and it's likely to mean that you unrolled
      the function 1143 times and then ran out of ticks; you probably don't
      want to complete parsing on this highly-unrolled program.
      
      Flags: -dsimpl-tick-factor=N.  Default is 100 (percent).
             A bigger number increases the allowed maximum tick count.
      24a2353a
  5. 29 Jul, 2011 1 commit
    • batterseapower's avatar
      Add CoreMonad.reinitializeGlobals so plugins can work around linker issues · 0e765db4
      batterseapower authored
      When a plugin is loaded, it currently gets linked against a *newly loaded* copy
      of the GHC package. This would not be a problem, except that the new copy has its
      own mutable state that is not shared with that state that has already been initialized by
      the original GHC package.
      
      This leads to loaded plugins calling GHC code which pokes the static flags,
      and then dying with a panic because the static flags *it* sees are uninitialized.
      
      There are two possible solutions:
        1. Export the symbols from the GHC executable from the GHC library and link
           against this existing copy rather than a new copy of the GHC library
        2. Carefully ensure that the global state in the two copies of the GHC
           library matches
      
      I tried 1. and it *almost* works (and speeds up plugin load times!) except
      on Windows. On Windows the GHC library tends to export more than 65536 symbols
      (see #5292) which overflows the limit of what we can export from the EXE and
      causes breakage.
      
      (Note that if the GHC exeecutable was dynamically linked this wouldn't be a problem,
      because we could share the GHC library it links to.)
      
      We are going to try 2. instead. Unfortunately, this means that every plugin
      will have to say `reinitializeGlobals` before it does anything, but never mind.
      
      I've threaded the cr_globals through CoreM rather than giving them as an
      argument to the plugin function so that we can turn this function into
      (return ()) without breaking any plugins when we eventually get 1. working.
      0e765db4
  6. 27 Jul, 2011 1 commit
  7. 21 Jul, 2011 1 commit
  8. 15 Jul, 2011 1 commit
  9. 16 Jun, 2011 1 commit
    • Simon Peyton Jones's avatar
      Add dynamically-linked plugins (see Trac #3843) · 592def09
      Simon Peyton Jones authored
      This patch was originally developed by Max Bolingbroke, and worked on
      further by Austin Seipp.  It allows you to write a Core-to-Core pass
      and have it dynamically linked into an otherwise-unmodified GHC, and
      run at a place you specify in the Core optimisation pipeline.
      
      Main components:
        - CoreMonad: new types Plugin, PluginPass
                     plus a new constructor CoreDoPluginPass in CoreToDo
      
        - SimplCore: stuff to dynamically load any plugins, splice
          them into the core-to-core pipeline, and invoke them
      
        - Move "getCoreToDo :: DynFlags -> [CoreToDo]"
            which constructs the main core-to-core pipeline
            from CoreMonad to SimplCore
          SimplCore is the driver for the optimisation pipeline, and it
          makes more sense to have the pipeline construction in the driver
          not in the infrastructure module.
      
        - New module DynamicLoading: invoked by SimplCore to load any plugins
          Some consequential changes in Linker.
      
        - New module GhcPlugins: this should be imported by plugin modules; it
          it not used by GHC itself.
      592def09
  10. 27 Apr, 2011 1 commit
  11. 02 Mar, 2011 1 commit
  12. 20 Feb, 2011 1 commit
    • chak@cse.unsw.edu.au.'s avatar
      Added a VECTORISE pragma · f2aaae97
      chak@cse.unsw.edu.au. authored
      - Added a pragma {-# VECTORISE var = exp #-} that prevents
        the vectoriser from vectorising the definition of 'var'.
        Instead it uses the binding '$v_var = exp' to vectorise
        'var'.  The vectoriser checks that the Core type of 'exp'
        matches the vectorised Core type of 'var'.  (It would be
        quite complicated to perform that check in the type checker
        as the vectorisation of a type needs the state of the VM
        monad.)
      - Added parts of a related VECTORISE SCALAR pragma
      - Documented -ddump-vect
      - Added -ddump-vt-trace
      - Some clean up
      f2aaae97
  13. 16 Nov, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Refactoring of the way that inlinings and rules are activated · c177e43f
      simonpj@microsoft.com authored
      Principally, the SimplifierMode now carries several (currently
      four) flags in *all* phases, not just the "Gentle" phase.
      This makes things simpler and more uniform.
      
      As usual I did more refactoring than I had intended.
      
      This stuff should go into 7.0.2 in due course, once
      we've checked it solves the DPH performance problems.
      c177e43f
  14. 27 Oct, 2010 1 commit
    • Simon Marlow's avatar
      Refactoring and tidyup of HscMain and related things (also fix #1666) · 94bf0d36
      Simon Marlow authored
      While trying to fix #1666 (-Werror aborts too early) I decided to some
      tidyup in GHC/DriverPipeline/HscMain.
      
       - The GhcMonad overloading is gone from DriverPipeline and HscMain
         now.  GhcMonad is now defined in a module of its own, and only
         used in the top-level GHC layer.  DriverPipeline and HscMain
         use the plain IO monad and take HscEnv as an argument.
      
       - WarnLogMonad is gone.  printExceptionAndWarnings is now called
         printException (the old name is deprecated).  Session no longer
         contains warnings.
      
       - HscMain has its own little monad that collects warnings, and also
         plumbs HscEnv around.  The idea here is that warnings are collected
         while we're in HscMain, but on exit from HscMain (any function) we
         check for warnings and either print them (via log_action, so IDEs
         can still override the printing), or turn them into an error if
         -Werror is on.
      
       - GhcApiCallbacks is gone, along with GHC.loadWithLogger.  Thomas
         Schilling told me he wasn't using these, and I don't see a good
         reason to have them.
      
       - there's a new pure API to the parser (suggestion from Neil Mitchell):
            parser :: String
                   -> DynFlags
                   -> FilePath
                   -> Either ErrorMessages (WarningMessages, 
                                            Located (HsModule RdrName))
      94bf0d36
  15. 08 Oct, 2010 1 commit
    • Simon Marlow's avatar
      Float out partial applications · a66541af
      Simon Marlow authored
      This fixes at least one case of performance regression in 7.0, and
      is nice win on nofib:
      
              Program           Size    Allocs   Runtime   Elapsed
                  Min          +0.3%    -63.0%    -38.5%    -38.7%
                  Max          +1.2%     +0.2%     +0.9%     +0.9%
       Geometric Mean          +0.6%     -3.0%     -6.4%     -6.6%
      a66541af
  16. 14 Sep, 2010 1 commit
    • Ian Lynagh's avatar
      Remove (most of) the FiniteMap wrapper · e95ee1f7
      Ian Lynagh authored
      We still have
          insertList, insertListWith, deleteList
      which aren't in Data.Map, and
          foldRightWithKey
      which works around the fold(r)WithKey addition and deprecation.
      e95ee1f7
  17. 07 Sep, 2010 1 commit
  18. 27 Jul, 2010 1 commit
  19. 12 Aug, 2010 1 commit
  20. 20 Mar, 2010 1 commit
  21. 24 Dec, 2009 1 commit
  22. 18 Dec, 2009 1 commit
    • simonpj@microsoft.com's avatar
      Move all the CoreToDo stuff into CoreMonad · 63e3a411
      simonpj@microsoft.com authored
      This patch moves a lot of code around, but has zero functionality change.
      The idea is that the types
      
          CoreToDo
          SimplifierSwitch	
          SimplifierMode
          FloatOutSwitches
      
      and 
      
          the main core-to-core pipeline construction
      
      belong in simplCore/, and *not* in DynFlags.
      63e3a411
  23. 04 Dec, 2009 1 commit
    • rl@cse.unsw.edu.au's avatar
      Fix loading of annotations · 99d1354f
      rl@cse.unsw.edu.au authored
      The problem was that we collected all annotations we knew about once when the
      simplifier started and threaded them through the CoreM monad. If new interface
      files were loaded during simplification, their annotations would not be
      visible to the simplifier.
      
      Now, we rebuild the annotation list at the start of every simplifier pass that
      needs it (which is only SpecConstr at the moment). This ensures that we see
      all annotations that have been loaded so far. This is somewhat similar to how
      RULES are handled.
      99d1354f
  24. 30 Oct, 2009 1 commit
  25. 29 Oct, 2009 2 commits
    • simonpj@microsoft.com's avatar
      The Big INLINE Patch: totally reorganise way that INLINE pragmas work · 72462499
      simonpj@microsoft.com authored
      This patch has been a long time in gestation and has, as a
      result, accumulated some extra bits and bobs that are only
      loosely related.  I separated the bits that are easy to split
      off, but the rest comes as one big patch, I'm afraid.
      
      Note that:
       * It comes together with a patch to the 'base' library
       * Interface file formats change slightly, so you need to
         recompile all libraries
      
      The patch is mainly giant tidy-up, driven in part by the
      particular stresses of the Data Parallel Haskell project. I don't
      expect a big performance win for random programs.  Still, here are the
      nofib results, relative to the state of affairs without the patch
      
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      
      The +10.9% allocation outlier is rewrite, which happens to have a
      very delicate optimisation opportunity involving an interaction
      of CSE and inlining (see nofib/Simon-nofib-notes). The fact that
      the 'before' case found the optimisation is somewhat accidental.
      Runtimes seem to go down, but I never kno wwhether to really trust
      this number.  Binary sizes wobble a bit, but nothing drastic.
      
      
      The Main Ideas are as follows.
      
      InlineRules
      ~~~~~~~~~~~
      When you say 
            {-# INLINE f #-}
            f x = <rhs>
      you intend that calls (f e) are replaced by <rhs>[e/x] So we
      should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
      with it.  Meanwhile, we can optimise <rhs> to our heart's content,
      leaving the original unfolding intact in Unfolding of 'f'.
      
      So the representation of an Unfolding has changed quite a bit
      (see CoreSyn).  An INLINE pragma gives rise to an InlineRule 
      unfolding.  
      
      Moreover, it's only used when 'f' is applied to the
      specified number of arguments; that is, the number of argument on 
      the LHS of the '=' sign in the original source definition. 
      For example, (.) is now defined in the libraries like this
         {-# INLINE (.) #-}
         (.) f g = \x -> f (g x)
      so that it'll inline when applied to two arguments. If 'x' appeared
      on the left, thus
         (.) f g x = f (g x)
      it'd only inline when applied to three arguments.  This slightly-experimental
      change was requested by Roman, but it seems to make sense.
      
      Other associated changes
      
      * Moving the deck chairs in DsBinds, which processes the INLINE pragmas
      
      * In the old system an INLINE pragma made the RHS look like
         (Note InlineMe <rhs>)
        The Note switched off optimisation in <rhs>.  But it was quite
        fragile in corner cases. The new system is more robust, I believe.
        In any case, the InlineMe note has disappeared 
      
      * The workerInfo of an Id has also been combined into its Unfolding,
        so it's no longer a separate field of the IdInfo.
      
      * Many changes in CoreUnfold, esp in callSiteInline, which is the critical
        function that decides which function to inline.  Lots of comments added!
      
      * exprIsConApp_maybe has moved to CoreUnfold, since it's so strongly
        associated with "does this expression unfold to a constructor application".
        It can now do some limited beta reduction too, which Roman found 
        was an important.
      
      Instance declarations
      ~~~~~~~~~~~~~~~~~~~~~
      It's always been tricky to get the dfuns generated from instance
      declarations to work out well.  This is particularly important in 
      the Data Parallel Haskell project, and I'm now on my fourth attempt,
      more or less.
      
      There is a detailed description in TcInstDcls, particularly in
      Note [How instance declarations are translated].   Roughly speaking
      we now generate a top-level helper function for every method definition
      in an instance declaration, so that the dfun takes a particularly
      stylised form:
        dfun a d1 d2 = MkD (op1 a d1 d2) (op2 a d1 d2) ...etc...
      
      In fact, it's *so* stylised that we never need to unfold a dfun.
      Instead ClassOps have a special rewrite rule that allows us to
      short-cut dictionary selection.  Suppose dfun :: Ord a -> Ord [a]
                                                  d :: Ord a
      Then   
          compare (dfun a d)  -->   compare_list a d 
      in one rewrite, without first inlining the 'compare' selector
      and the body of the dfun.
      
      To support this
      a) ClassOps have a BuiltInRule (see MkId.dictSelRule)
      b) DFuns have a special form of unfolding (CoreSyn.DFunUnfolding)
         which is exploited in CoreUnfold.exprIsConApp_maybe
      
      Implmenting all this required a root-and-branch rework of TcInstDcls
      and bits of TcClassDcl.
      
      
      Default methods
      ~~~~~~~~~~~~~~~
      If you give an INLINE pragma to a default method, it should be just
      as if you'd written out that code in each instance declaration, including
      the INLINE pragma.  I think that it now *is* so.  As a result, library
      code can be simpler; less duplication.
      
      
      The CONLIKE pragma
      ~~~~~~~~~~~~~~~~~~
      In the DPH project, Roman found cases where he had
      
         p n k = let x = replicate n k
                 in ...(f x)...(g x)....
      
         {-# RULE f (replicate x) = f_rep x #-}
      
      Normally the RULE would not fire, because doing so involves 
      (in effect) duplicating the redex (replicate n k).  A new
      experimental modifier to the INLINE pragma, {-# INLINE CONLIKE
      replicate #-}, allows you to tell GHC to be prepared to duplicate
      a call of this function if it allows a RULE to fire.
      
      See Note [CONLIKE pragma] in BasicTypes
      
      
      Join points
      ~~~~~~~~~~~
      See Note [Case binders and join points] in Simplify
      
      
      Other refactoring
      ~~~~~~~~~~~~~~~~~
      * I moved endPass from CoreLint to CoreMonad, with associated jigglings
      
      * Better pretty-printing of Core
      
      * The top-level RULES (ones that are not rules for locally-defined things)
        are now substituted on every simplifier iteration.  I'm not sure how
        we got away without doing this before.  This entails a bit more plumbing
        in SimplCore.
      
      * The necessary stuff to serialise and deserialise the new
        info across interface files.
      
      * Something about bottoming floats in SetLevels
            Note [Bottoming floats]
      
      * substUnfolding has moved from SimplEnv to CoreSubs, where it belongs
      
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                 anna          +2.4%     -0.5%      0.16      0.17
                 ansi          +2.6%     -0.1%      0.00      0.00
                 atom          -3.8%     -0.0%     -1.0%     -2.5%
               awards          +3.0%     +0.7%      0.00      0.00
               banner          +3.3%     -0.0%      0.00      0.00
           bernouilli          +2.7%     +0.0%     -4.6%     -6.9%
                boyer          +2.6%     +0.0%      0.06      0.07
               boyer2          +4.4%     +0.2%      0.01      0.01
                 bspt          +3.2%     +9.6%      0.02      0.02
            cacheprof          +1.4%     -1.0%    -12.2%    -13.6%
             calendar          +2.7%     -1.7%      0.00      0.00
             cichelli          +3.7%     -0.0%      0.13      0.14
              circsim          +3.3%     +0.0%     -2.3%     -9.9%
             clausify          +2.7%     +0.0%      0.05      0.06
        comp_lab_zift          +2.6%     -0.3%     -7.2%     -7.9%
             compress          +3.3%     +0.0%     -8.5%     -9.6%
            compress2          +3.6%     +0.0%    -15.1%    -17.8%
          constraints          +2.7%     -0.6%    -10.0%    -10.7%
         cryptarithm1          +4.5%     +0.0%     -4.7%     -5.7%
         cryptarithm2          +4.3%    -14.5%      0.02      0.02
                  cse          +4.4%     -0.0%      0.00      0.00
                eliza          +2.8%     -0.1%      0.00      0.00
                event          +2.6%     -0.0%     -4.9%     -4.4%
               exp3_8          +2.8%     +0.0%     -4.5%     -9.5%
               expert          +2.7%     +0.3%      0.00      0.00
                  fem          -2.0%     +0.6%      0.04      0.04
                  fft          -6.0%     +1.8%      0.05      0.06
                 fft2          -4.8%     +2.7%      0.13      0.14
             fibheaps          +2.6%     -0.6%      0.05      0.05
                 fish          +4.1%     +0.0%      0.03      0.04
                fluid          -2.1%     -0.2%      0.01      0.01
               fulsom          -4.8%     +9.2%     +9.1%     +8.4%
               gamteb          -7.1%     -1.3%      0.10      0.11
                  gcd          +2.7%     +0.0%      0.05      0.05
          gen_regexps          +3.9%     -0.0%      0.00      0.00
               genfft          +2.7%     -0.1%      0.05      0.06
                   gg          -2.7%     -0.1%      0.02      0.02
                 grep          +3.2%     -0.0%      0.00      0.00
               hidden          -0.5%     +0.0%    -11.9%    -13.3%
                  hpg          -3.0%     -1.8%     +0.0%     -2.4%
                  ida          +2.6%     -1.2%      0.17     -9.0%
                infer          +1.7%     -0.8%      0.08      0.09
              integer          +2.5%     -0.0%     -2.6%     -2.2%
            integrate          -5.0%     +0.0%     -1.3%     -2.9%
              knights          +4.3%     -1.5%      0.01      0.01
                 lcss          +2.5%     -0.1%     -7.5%     -9.4%
                 life          +4.2%     +0.0%     -3.1%     -3.3%
                 lift          +2.4%     -3.2%      0.00      0.00
            listcompr          +4.0%     -1.6%      0.16      0.17
             listcopy          +4.0%     -1.4%      0.17      0.18
             maillist          +4.1%     +0.1%      0.09      0.14
               mandel          +2.9%     +0.0%      0.11      0.12
              mandel2          +4.7%     +0.0%      0.01      0.01
              minimax          +3.8%     -0.0%      0.00      0.00
              mkhprog          +3.2%     -4.2%      0.00      0.00
           multiplier          +2.5%     -0.4%     +0.7%     -1.3%
             nucleic2          -9.3%     +0.0%      0.10      0.10
                 para          +2.9%     +0.1%     -0.7%     -1.2%
            paraffins         -10.4%     +0.0%      0.20     -1.9%
               parser          +3.1%     -0.0%      0.05      0.05
              parstof          +1.9%     -0.0%      0.00      0.01
                  pic          -2.8%     -0.8%      0.01      0.02
                power          +2.1%     +0.1%     -8.5%     -9.0%
               pretty         -12.7%     +0.1%      0.00      0.00
               primes          +2.8%     +0.0%      0.11      0.11
            primetest          +2.5%     -0.0%     -2.1%     -3.1%
               prolog          +3.2%     -7.2%      0.00      0.00
               puzzle          +4.1%     +0.0%     -3.5%     -8.0%
               queens          +2.8%     +0.0%      0.03      0.03
              reptile          +2.2%     -2.2%      0.02      0.02
              rewrite          +3.1%    +10.9%      0.03      0.03
                 rfib          -5.2%     +0.2%      0.03      0.03
                  rsa          +2.6%     +0.0%      0.05      0.06
                  scc          +4.6%     +0.4%      0.00      0.00
                sched          +2.7%     +0.1%      0.03      0.03
                  scs          -2.6%     -0.9%     -9.6%    -11.6%
               simple          -4.0%     +0.4%    -14.6%    -14.9%
                solid          -5.6%     -0.6%     -9.3%    -14.3%
              sorting          +3.8%     +0.0%      0.00      0.00
               sphere          -3.6%     +8.5%      0.15      0.16
               symalg          -1.3%     +0.2%      0.03      0.03
                  tak          +2.7%     +0.0%      0.02      0.02
            transform          +2.0%     -2.9%     -8.0%     -8.8%
             treejoin          +3.1%     +0.0%    -17.5%    -17.8%
            typecheck          +2.9%     -0.3%     -4.6%     -6.6%
              veritas          +3.9%     -0.3%      0.00      0.00
                 wang          -6.2%     +0.0%      0.18     -9.8%
            wave4main         -10.3%     +2.6%     -2.1%     -2.3%
         wheel-sieve1          +2.7%     -0.0%     +0.3%     -0.6%
         wheel-sieve2          +2.7%     +0.0%     -3.7%     -7.5%
                 x2n1          -4.1%     +0.1%      0.03      0.04
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      72462499
    • rl@cse.unsw.edu.au's avatar
      Utility functions for annotations · f0183230
      rl@cse.unsw.edu.au authored
      f0183230
  26. 07 Jul, 2009 1 commit
  27. 24 May, 2009 1 commit
  28. 07 Nov, 2008 1 commit
  29. 31 Oct, 2008 1 commit
  30. 30 Oct, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Add (a) CoreM monad, (b) new Annotations feature · 9bcd95ba
      simonpj@microsoft.com authored
      This patch, written by Max Bolingbroke,  does two things
      
      1.  It adds a new CoreM monad (defined in simplCore/CoreMonad),
          which is used as the top-level monad for all the Core-to-Core
          transformations (starting at SimplCore).  It supports
             * I/O (for debug printing)
             * Unique supply
             * Statistics gathering
             * Access to the HscEnv, RuleBase, Annotations, Module
          The patch therefore refactors the top "skin" of every Core-to-Core
          pass, but does not change their functionality.
      
      2.  It adds a completely new facility to GHC: Core "annotations".
          The idea is that you can say
             {#- ANN foo (Just "Hello") #-}
          which adds the annotation (Just "Hello") to the top level function
          foo.  These annotations can be looked up in any Core-to-Core pass,
          and are persisted into interface files.  (Hence a Core-to-Core pass
          can also query the annotations of imported things.)  Furthermore,
          a Core-to-Core pass can add new annotations (eg strictness info)
          of its own, which can be queried by importing modules.
      
      The design of the annotation system is somewhat in flux.  It's
      designed to work with the (upcoming) dynamic plug-ins mechanism,
      but is meanwhile independently useful.
      
      Do not merge to 6.10!  
      9bcd95ba