- 29 Dec, 2006 1 commit
-
-
chak@cse.unsw.edu.au. authored
-
- 01 Dec, 2006 1 commit
-
-
simonpj@microsoft.com authored
-
- 23 Nov, 2006 1 commit
-
-
simonpj@microsoft.com authored
For a long time TcSimplify used a three-way classification of constraints, into Free Irred ReduceMe (see the data type WhatToDo). In the new world of implication constraints, the Free case does not make so much sense, and I managed to elminate it altogether, thus simplifying the story somewhat. Now WhatToDo has constructors Stop ReduceMe There should be no change in behaviour.
-
- 10 Nov, 2006 1 commit
-
-
simonpj@microsoft.com authored
-
- 13 Oct, 2006 1 commit
-
-
simonpj@microsoft.com authored
A type variable has a flag saying whether it is a *type* variable or a *coercion* variable. This patch adds assertions to check the flag. And it adds fixes to places which were Wrong (and hence fired the assertion)! Also removed isCoVar from Coercion, since it's done by Var.isCoVar.
-
- 11 Oct, 2006 2 commits
-
-
simonpj@microsoft.com authored
-
Simon Marlow authored
This patch is a start on removing import lists and generally tidying up the top of each module. In addition to removing import lists: - Change DATA.IOREF -> Data.IORef etc. - Change List -> Data.List etc. - Remove $Id$ - Update copyrights - Re-order imports to put non-GHC imports last - Remove some unused and duplicate imports
-
- 29 Sep, 2006 2 commits
-
-
simonpj@microsoft.com authored
Linear implicit parameters have been in GHC quite a while, but we decided they were a mis-feature and scheduled them for removal. This patch does the job.
-
simonpj@microsoft.com authored
-
- 20 Sep, 2006 5 commits
-
-
chak@cse.unsw.edu.au. authored
Mon Sep 18 17:45:06 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Another comment Wed Aug 9 04:48:18 EDT 2006 simonpj@microsoft.com * Another comment
-
chak@cse.unsw.edu.au. authored
Mon Sep 18 14:43:22 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Complete the evidence generation for GADTs Sat Aug 5 21:39:51 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Complete the evidence generation for GADTs Thu Jul 13 17:18:07 EDT 2006 simonpj@microsoft.com This patch completes FC evidence generation for GADTs. It doesn't work properly yet, because part of the compiler thinks (t1 :=: t2) => t3 is represented with FunTy/PredTy, while the rest thinks it's represented using ForAllTy. Once that's done things should start to work.
-
chak@cse.unsw.edu.au. authored
Mon Sep 18 14:31:59 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * newtype deriving still not working Sat Aug 5 21:25:43 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * newtype deriving still not working Mon Jul 10 10:27:20 EDT 2006 kevind@bu.edu
-
chak@cse.unsw.edu.au. authored
Mon Sep 18 14:24:27 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * newtype fixes, coercions for non-recursive newtypes now optional Sat Aug 5 21:19:58 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * newtype fixes, coercions for non-recursive newtypes now optional Fri Jul 7 06:11:48 EDT 2006 kevind@bu.edu
-
chak@cse.unsw.edu.au. authored
Fri Sep 15 18:56:58 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Massive patch for the first months work adding System FC to GHC #34 Fri Aug 4 18:20:57 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Massive patch for the first months work adding System FC to GHC #34 Broken up massive patch -=chak Original log message: This is (sadly) all done in one patch to avoid Darcs bugs. It's not complete work... more FC stuff to come. A compiler using just this patch will fail dismally.
-
- 25 Jul, 2006 1 commit
-
-
Simon Marlow authored
This patch pushes through one fundamental change: a module is now identified by the pair of its package and module name, whereas previously it was identified by its module name alone. This means that now a program can contain multiple modules with the same name, as long as they belong to different packages. This is a language change - the Haskell report says nothing about packages, but it is now necessary to understand packages in order to understand GHC's module system. For example, a type T from module M in package P is different from a type T from module M in package Q. Previously this wasn't an issue because there could only be a single module M in the program. The "module restriction" on combining packages has therefore been lifted, and a program can contain multiple versions of the same package. Note that none of the proposed syntax changes have yet been implemented, but the architecture is geared towards supporting import declarations qualified by package name, and that is probably the next step. It is now necessary to specify the package name when compiling a package, using the -package-name flag (which has been un-deprecated). Fortunately Cabal still uses -package-name. Certain packages are "wired in". Currently the wired-in packages are: base, haskell98, template-haskell and rts, and are always referred to by these versionless names. Other packages are referred to with full package IDs (eg. "network-1.0"). This is because the compiler needs to refer to entities in the wired-in packages, and we didn't want to bake the version of these packages into the comiler. It's conceivable that someone might want to upgrade the base package independently of GHC. Internal changes: - There are two module-related types: ModuleName just a FastString, the name of a module Module a pair of a PackageId and ModuleName A mapping from ModuleName can be a UniqFM, but a mapping from Module must be a FiniteMap (we provide it as ModuleEnv). - The "HomeModules" type that was passed around the compiler is now gone, replaced in most cases by the current package name which is contained in DynFlags. We can tell whether a Module comes from the current package by comparing its package name against the current package. - While I was here, I changed PrintUnqual to be a little more useful: it now returns the ModuleName that the identifier should be qualified with according to the current scope, rather than its original module. Also, PrintUnqual tells whether to qualify module names with package names (currently unused). Docs to follow.
-
- 07 Apr, 2006 1 commit
-
-
Simon Marlow authored
Most of the other users of the fptools build system have migrated to Cabal, and with the move to darcs we can now flatten the source tree without losing history, so here goes. The main change is that the ghc/ subdir is gone, and most of what it contained is now at the top level. The build system now makes no pretense at being multi-project, it is just the GHC build system. No doubt this will break many things, and there will be a period of instability while we fix the dependencies. A straightforward build should work, but I haven't yet fixed binary/source distributions. Changes to the Building Guide will follow, too.
-
- 25 Jan, 2006 1 commit
-
-
simonpj@microsoft.com authored
This very large commit adds impredicativity to GHC, plus numerous other small things. *** WARNING: I have compiled all the libraries, and *** a stage-2 compiler, and everything seems *** fine. But don't grab this patch if you *** can't tolerate a hiccup if something is *** broken. The big picture is this: a) GHC handles impredicative polymorphism, as described in the "Boxy types: type inference for higher-rank types and impredicativity" paper b) GHC handles GADTs in the new simplified (and very sligtly less epxrssive) way described in the "Simple unification-based type inference for GADTs" paper But there are lots of smaller changes, and since it was pre-Darcs they are not individually recorded. Some things to watch out for: c) The story on lexically-scoped type variables has changed, as per my email. I append the story below for completeness, but I am still not happy with it, and it may change again. In particular, the new story does not allow a pattern-bound scoped type variable to be wobbly, so (\(x::[a]) -> ...) is usually rejected. This is more restrictive than before, and we might loosen up again. d) A consequence of adding impredicativity is that GHC is a bit less gung ho about converting automatically between (ty1 -> forall a. ty2) and (forall a. ty1 -> ty2) In particular, you may need to eta-expand some functions to make typechecking work again. Furthermore, functions are now invariant in their argument types, rather than being contravariant. Again, the main consequence is that you may occasionally need to eta-expand function arguments when using higher-rank polymorphism. Please test, and let me know of any hiccups Scoped type variables in GHC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ January 2006 0) Terminology. A *pattern binding* is of the form pat = rhs A *function binding* is of the form f pat1 .. patn = rhs A binding of the formm var = rhs is treated as a (degenerate) *function binding*. A *declaration type signature* is a separate type signature for a let-bound or where-bound variable: f :: Int -> Int A *pattern type signature* is a signature in a pattern: \(x::a) -> x f (x::a) = x A *result type signature* is a signature on the result of a function definition: f :: forall a. [a] -> a head (x:xs) :: a = x The form x :: a = rhs is treated as a (degnerate) function binding with a result type signature, not as a pattern binding. 1) The main invariants: A) A lexically-scoped type variable always names a (rigid) type variable (not an arbitrary type). THIS IS A CHANGE. Previously, a scoped type variable named an arbitrary *type*. B) A type signature always describes a rigid type (since its free (scoped) type variables name rigid type variables). This is also a change, a consequence of (A). C) Distinct lexically-scoped type variables name distinct rigid type variables. This choice is open; 2) Scoping 2(a) If a declaration type signature has an explicit forall, those type variables are brought into scope in the right hand side of the corresponding binding (plus, for function bindings, the patterns on the LHS). f :: forall a. a -> [a] f (x::a) = [x :: a, x] Both occurences of 'a' in the second line are bound by the 'forall a' in the first line A declaration type signature *without* an explicit top-level forall is implicitly quantified over all the type variables that are mentioned in the type but not already in scope. GHC's current rule is that this implicit quantification does *not* bring into scope any new scoped type variables. f :: a -> a f x = ...('a' is not in scope here)... This gives compatibility with Haskell 98 2(b) A pattern type signature implicitly brings into scope any type variables mentioned in the type that are not already into scope. These are called *pattern-bound type variables*. g :: a -> a -> [a] g (x::a) (y::a) = [y :: a, x] The pattern type signature (x::a) brings 'a' into scope. The 'a' in the pattern (y::a) is bound, as is the occurrence on the RHS. A pattern type siganture is the only way you can bring existentials into scope. data T where MkT :: forall a. a -> (a->Int) -> T f x = case x of MkT (x::a) f -> f (x::a) 2a) QUESTION class C a where op :: forall b. b->a->a instance C (T p q) where op = <rhs> Clearly p,q are in scope in <rhs>, but is 'b'? Not at the moment. Nor can you add a type signature for op in the instance decl. You'd have to say this: instance C (T p q) where op = let op' :: forall b. ... op' = <rhs> in op' 3) A pattern-bound type variable is allowed only if the pattern's expected type is rigid. Otherwise we don't know exactly *which* skolem the scoped type variable should be bound to, and that means we can't do GADT refinement. This is invariant (A), and it is a big change from the current situation. f (x::a) = x -- NO; pattern type is wobbly g1 :: b -> b g1 (x::b) = x -- YES, because the pattern type is rigid g2 :: b -> b g2 (x::c) = x -- YES, same reason h :: forall b. b -> b h (x::b) = x -- YES, but the inner b is bound k :: forall b. b -> b k (x::c) = x -- NO, it can't be both b and c 3a) You cannot give different names for the same type variable in the same scope (Invariant (C)): f1 :: p -> p -> p -- NO; because 'a' and 'b' would be f1 (x::a) (y::b) = (x::a) -- bound to the same type variable f2 :: p -> p -> p -- OK; 'a' is bound to the type variable f2 (x::a) (y::a) = (x::a) -- over which f2 is quantified -- NB: 'p' is not lexically scoped f3 :: forall p. p -> p -> p -- NO: 'p' is now scoped, and is bound to f3 (x::a) (y::a) = (x::a) -- to the same type varialble as 'a' f4 :: forall p. p -> p -> p -- OK: 'p' is now scoped, and its occurences f4 (x::p) (y::p) = (x::p) -- in the patterns are bound by the forall 3b) You can give a different name to the same type variable in different disjoint scopes, just as you can (if you want) give diferent names to the same value parameter g :: a -> Bool -> Maybe a g (x::p) True = Just x :: Maybe p g (y::q) False = Nothing :: Maybe q 3c) Scoped type variables respect alpha renaming. For example, function f2 from (3a) above could also be written: f2' :: p -> p -> p f2' (x::b) (y::b) = x::b where the scoped type variable is called 'b' instead of 'a'. 4) Result type signatures obey the same rules as pattern types signatures. In particular, they can bind a type variable only if the result type is rigid f x :: a = x -- NO g :: b -> b g x :: b = x -- YES; binds b in rhs 5) A *pattern type signature* in a *pattern binding* cannot bind a scoped type variable (x::a, y) = ... -- Legal only if 'a' is already in scope Reason: in type checking, the "expected type" of the LHS pattern is always wobbly, so we can't bind a rigid type variable. (The exception would be for an existential type variable, but existentials are not allowed in pattern bindings either.) Even this is illegal f :: forall a. a -> a f x = let ((y::b)::a, z) = ... in Here it looks as if 'b' might get a rigid binding; but you can't bind it to the same skolem as a. 6) Explicitly-forall'd type variables in the *declaration type signature(s)* for a *pattern binding* do not scope AT ALL. x :: forall a. a->a -- NO; the forall a does Just (x::a->a) = Just id -- not scope at all y :: forall a. a->a Just y = Just (id :: a->a) -- NO; same reason THIS IS A CHANGE, but one I bet that very few people will notice. Here's why: strange :: forall b. (b->b,b->b) strange = (id,id) x1 :: forall a. a->a y1 :: forall b. b->b (x1,y1) = strange This is legal Haskell 98 (modulo the forall). If both 'a' and 'b' both scoped over the RHS, they'd get unified and so cannot stand for distinct type variables. One could *imagine* allowing this: x2 :: forall a. a->a y2 :: forall a. a->a (x2,y2) = strange using the very same type variable 'a' in both signatures, so that a single 'a' scopes over the RHS. That seems defensible, but odd, because though there are two type signatures, they introduce just *one* scoped type variable, a. 7) Possible extension. We might consider allowing \(x :: [ _ ]) -> <expr> where "_" is a wild card, to mean "x has type list of something", without naming the something.
-
- 18 Jan, 2006 1 commit
-
-
simonpj authored
Expunge all mention of CCallable/CReturnable
-
- 06 Jan, 2006 1 commit
-
-
simonmar authored
Add support for UTF-8 source files GHC finally has support for full Unicode in source files. Source files are now assumed to be UTF-8 encoded, and the full range of Unicode characters can be used, with classifications recognised using the implementation from Data.Char. This incedentally means that only the stage2 compiler will recognise Unicode in source files, because I was too lazy to port the unicode classifier code into libcompat. Additionally, the following synonyms for keywords are now recognised: forall symbol (U+2200) forall right arrow (U+2192) -> left arrow (U+2190) <- horizontal ellipsis (U+22EF) .. there are probably more things we could add here. This will break some source files if Latin-1 characters are being used. In most cases this should result in a UTF-8 decoding error. Later on if we want to support more encodings (perhaps with a pragma to specify the encoding), I plan to do it by recoding into UTF-8 before parsing. Internally, there were some pretty big changes: - FastStrings are now stored in UTF-8 - Z-encoding has been moved right to the back end. Previously we used to Z-encode every identifier on the way in for simplicity, and only decode when we needed to show something to the user. Instead, we now keep every string in its UTF-8 encoding, and Z-encode right before printing it out. To avoid Z-encoding the same string multiple times, the Z-encoding is cached inside the FastString the first time it is requested. This speeds up the compiler - I've measured some definite improvement in parsing at least, and I expect compilations overall to be faster too. It also cleans up a lot of cruft from the OccName interface. Z-encoding is nicely hidden inside the Outputable instance for Names & OccNames now. - StringBuffers are UTF-8 too, and are now represented as ForeignPtrs. - I've put together some test cases, not by any means exhaustive, but there are some interesting UTF-8 decoding error cases that aren't obvious. Also, take a look at unicode001.hs for a demo.
-
- 22 Jul, 2005 1 commit
-
-
simonpj authored
Import trimming
-
- 19 Jul, 2005 1 commit
-
-
simonpj authored
WARNING: this is a big commit. You might want to wait a few days before updating, in case I've broken something. However, if any of the changes are what you wanted, please check it out and test! This commit does three main things: 1. A re-organisation of the way that GHC handles bindings in HsSyn. This has been a bit of a mess for quite a while. The key new types are -- Bindings for a let or where clause data HsLocalBinds id = HsValBinds (HsValBinds id) | HsIPBinds (HsIPBinds id) | EmptyLocalBinds -- Value bindings (not implicit parameters) data HsValBinds id = ValBindsIn -- Before typechecking (LHsBinds id) [LSig id] -- Not dependency analysed -- Recursive by default | ValBindsOut -- After typechecking [(RecFlag, LHsBinds id)]-- Dependency analysed 2. Implement Mark Jones's idea of increasing polymoprhism by using type signatures to cut the strongly-connected components of a recursive group. As a consequence, GHC no longer insists on the contexts of the type signatures of a recursive group being identical. This drove a significant change: the renamer no longer does dependency analysis. Instead, it attaches a free-variable set to each binding, so that the type checker can do the dep anal. Reason: the typechecker needs to do *two* analyses: one to find the true mutually-recursive groups (which we need so we can build the right CoreSyn) one to find the groups in which to typecheck, taking account of type signatures 3. Implement non-ground SPECIALISE pragmas, as promised, and as requested by Remi and Ross. Certainly, this should fix the current problem with GHC, namely that if you have g :: Eq a => a -> b -> b then you can now specialise thus SPECIALISE g :: Int -> b -> b (This didn't use to work.) However, it goes further than that. For example: f :: (Eq a, Ix b) => a -> b -> b then you can make a partial specialisation SPECIALISE f :: (Eq a) => a -> Int -> Int In principle, you can specialise f to *any* type that is "less polymorphic" (in the sense of subsumption) than f's actual type. Such as SPECIALISE f :: Eq a => [a] -> Int -> Int But I haven't tested that. I implemented this by doing the specialisation in the typechecker and desugarer, rather than leaving around the strange SpecPragmaIds, for the specialiser to find. Indeed, SpecPragmaIds have vanished altogether (hooray). Pragmas in general are handled more tidily. There's a new data type HsBinds.Prag, which lives in an AbsBinds, and carries pragma info from the typechecker to the desugarer. Smaller things - The loop in the renamer goes via RnExpr, instead of RnSource. (That makes it more like the type checker.) - I fixed the thing that was causing 'check_tc' warnings to be emitted.
-
- 21 Jun, 2005 1 commit
-
-
simonmar authored
Relax the restrictions on conflicting packages. This should address many of the traps that people have been falling into with the current package story. Now, a local module can shadow a module in an exposed package, as long as the package is not otherwise required by the program. GHC checks for conflicts when it knows the dependencies of the module being compiled. Also, we now check for module conflicts in exposed packages only when importing a module: if an import can be satisfied from multiple packages, that's an error. It's not possible to prevent GHC from starting by installing packages now (unless you install another base package). It seems to be possible to confuse GHCi by having a local module shadowing a package module that goes away and comes back again. I think it's nearly right, but strange happenings have been observed. I'll try to merge this into the STABLE branch.
-
- 23 May, 2005 1 commit
-
-
simonpj authored
Dead code (HEAD only)
-
- 19 May, 2005 1 commit
-
-
simonpj authored
Tune up the reporting of unused imports Merge to STABLE (I think the earlier change made it across) (PS: the commit also does some trimming of redundant imports. If they don't merge, just discard them.) My earlier fixes to the reporting of unused imports still missed some obscure cases, some of which are now fixed by this commit. I had to make the import-provenance data type yet richer, but in fact it has more sharing now, so it may be cheaper on space. There's still one infelicity. Consider import M( x ) imoprt N( x ) where the same underlying 'x' is involved in both cases. Currently we don't report a redundant import, because dropping either import would change the qualified names in scope (M.x, N.x). But if the qualified names aren't used, the import is indeed redundant. Sadly we don't know that, because we only know what Names are used. Left for the future! There's a comment in RnNames.warnDuplicateImports This commit also trims quite a few redundant imports disovered by the new setup.
-
- 28 Apr, 2005 1 commit
-
-
simonpj authored
This big commit does several things at once (aeroplane hacking) which change the format of interface files. So you'll need to recompile your libraries! 1. The "stupid theta" of a newtype declaration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Retain the "stupid theta" in a newtype declaration. For some reason this was being discarded, and putting it back in meant changing TyCon and IfaceSyn slightly. 2. Overlap flags travel with the instance ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Arrange that the ability to support overlap and incoherence is a property of the *instance declaration* rather than the module that imports the instance decl. This allows a library writer to define overlapping instance decls without the library client having to know. The implementation is that in an Instance we store the overlap flag, and preseve that across interface files 3. Nuke the "instnce pool" and "rule pool" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A major tidy-up and simplification of the way that instances and rules are sucked in from interface files. Up till now an instance decl has been held in a "pool" until its "gates" (a set of Names) are in play, when the instance is typechecked and added to the InstEnv in the ExternalPackageState. This is complicated and error-prone; it's easy to suck in too few (and miss an instance) or too many (and thereby be forced to suck in its type constructors, etc). Now, as we load an instance from an interface files, we put it straight in the InstEnv... but the Instance we put in the InstEnv has some Names (the "rough-match" names) that can be used on lookup to say "this Instance can't match". The detailed dfun is only read lazily, and the rough-match thing meansn it is'nt poked on until it has a chance of being needed. This simply continues the successful idea for Ids, whereby they are loaded straightaway into the TypeEnv, but their TyThing is a lazy thunk, not poked on until the thing is looked up. Just the same idea applies to Rules. On the way, I made CoreRule and Instance into full-blown records with lots of info, with the same kind of key status as TyCon or DataCon or Class. And got rid of IdCoreRule altogether. It's all much more solid and uniform, but it meant touching a *lot* of modules. 4. Allow instance decls in hs-boot files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Allowing instance decls in hs-boot files is jolly useful, becuase in a big mutually-recursive bunch of data types, you want to give the instances with the data type declarations. To achieve this * The hs-boot file makes a provisional name for the dict-fun, something like $fx9. * When checking the "mother module", we check that the instance declarations line up (by type) and generate bindings for the boot dfuns, such as $fx9 = $f2 where $f2 is the dfun generated by the mother module * In doing this I decided that it's cleaner to have DFunIds get their final External Name at birth. To do that they need a stable OccName, so I have an integer-valued dfun-name-supply in the TcM monad. That keeps it simple. This feature is hardly tested yet. 5. Tidy up tidying, and Iface file generation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ main/TidyPgm now has two entry points: simpleTidyPgm is for hi-boot files, when typechecking only (not yet implemented), and potentially when compiling without -O. It ignores the bindings, and generates a nice small TypeEnv. optTidyPgm is the normal case: compiling with -O. It generates a TypeEnv rich in IdInfo MkIface.mkIface now only generates a ModIface. A separate procedure, MkIface.writeIfaceFile, writes the file out to disk.
-
- 04 Apr, 2005 2 commits
-
-
simonpj authored
Wibble: invert sense of test
-
simonpj authored
This commit combines three overlapping things: 1. Make rebindable syntax work for do-notation. The idea here is that, in particular, (>>=) can have a type that has class constraints on its argument types, e.g. (>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b The consequence is that a BindStmt and ExprStmt must have individual evidence attached -- previously it was one batch of evidence for the entire Do Sadly, we can't do this for MDo, because we use bind at a polymorphic type (to tie the knot), so we still use one blob of evidence (now in the HsStmtContext) for MDo. For arrow syntax, the evidence is in the HsCmd. For list comprehensions, it's all built-in anyway. So the evidence on a BindStmt is only used for ordinary do-notation. 2. Tidy up HsSyn. In particular: - Eliminate a few "Out" forms, which we can manage without (e.g. - It ought to be the case that the type checker only decorates the syntax tree, but doesn't change one construct into another. That wasn't true for NPat, LitPat, NPlusKPat, so I've fixed that. - Eliminate ResultStmts from Stmt. They always had to be the last Stmt, which led to awkward pattern matching in some places; and the benefits didn't seem to outweigh the costs. Now each construct that uses [Stmt] has a result expression too (e.g. GRHS). 3. Make 'deriving( Ix )' generate a binding for unsafeIndex, rather than for index. This is loads more efficient. (This item only affects TcGenDeriv, but some of point (2) also affects TcGenDeriv, so it has to be in one commit.)
-
- 31 Mar, 2005 1 commit
-
-
simonmar authored
Tweaks to get the GHC sources through Haddock. Doesn't quite work yet, because Haddock complains about the recursive modules. Haddock needs to understand SOURCE imports (it can probably just ignore them as a first attempt).
-
- 18 Mar, 2005 1 commit
-
-
simonmar authored
Flags cleanup. Basically the purpose of this commit is to move more of the compiler's global state into DynFlags, which is moving in the direction we need to go for the GHC API which can have multiple active sessions supported by a single GHC instance. Before: $ grep 'global_var' */*hs | wc -l 78 After: $ grep 'global_var' */*hs | wc -l 27 Well, it's an improvement. Most of what's left won't really affect our ability to host multiple sessions. Lots of static flags have become dynamic flags (yay!). Notably lots of flags that we used to think of as "driver" flags, like -I and -L, are now dynamic. The most notable static flags left behind are the "way" flags, eg. -prof. It would be nice to fix this, but it isn't urgent. On the way, lots of cleanup has happened. Everything related to static and dynamic flags lives in StaticFlags and DynFlags respectively, and they share a common command-line parser library in CmdLineParser. The flags related to modes (--makde, --interactive etc.) are now private to the front end: in fact private to Main itself, for now.
-
- 09 Mar, 2005 1 commit
-
-
simonpj authored
Fix the superclass translation for instance decls Merge to STABLE There is a long-standing difficulty whereby it's surprisingly easy to accidentally generate an entirely-bogus recursive dictionary when generating the definitions for the superclasses of an instance decl. The problem arises because the default story is that whenever we add a constraint to our pile of solved constraints, we automatically add all its superclasses. But that is simply wrong when we are trying to generate superclasses. Solution: do no auto-superclass addition when solving the superclass constraints of an instance declaration. I think should fix it once and for all. tcrun021, tcrun033 are test cases tcrun033 showed up the bug; thanks to Simon Foster and Ralf Laemmel.
-
- 25 Feb, 2005 1 commit
-
-
simonpj authored
--------------------------------------------- Type signatures are no longer instantiated with skolem constants --------------------------------------------- Merge to STABLE Consider p :: a q :: b (p,q,r) = (r,r,p) Here, 'a' and 'b' end up being the same, because they are both bound to the type for 'r', which is just a meta type variable. So 'a' and 'b' can't be skolems. Sigh. This commit goes back to an earlier way of doing things, by arranging that type signatures get instantiated with *meta* type variables; then at the end we must check that they have not been unified with types, nor with each other. This is a real bore. I had to do quite a bit of related fiddling around to make error messages come out right. Improved one or two. Also a small unrelated fix to make :i (:+) print with parens in ghci. Sorry this got mixed up in the same commit.
-
- 18 Jan, 2005 1 commit
-
-
simonpj authored
------------------------ Reorganisation of hi-boot files ------------------------ The main point of this commit is to arrange that in the Compilation Manager's dependendency graph, hi-boot files are proper nodes. This is important to make sure that we compile everything in the right order. It's a step towards hs-boot files. * The fundamental change is that CompManager.ModSummary has a new field, ms_boot :: IsBootInterface I also tided up CompManager a bit. No change to the Basic Plan. ModSummary is now exported abstractly from CompManager (was concrete) * Hi-boot files now have import declarations. The idea is they are compulsory, so that the dependency analyser can find them * I changed an invariant: the Compilation Manager used to ensure that hscMain was given a HomePackageTable only for the modules 'below' the one being compiled. This was really only important for instances and rules, and it was a bit inconvenient. So I moved the filter to the compiler itself: see HscTypes.hptInstances and hptRules. * Module Packages.hs now defines data PackageIdH = HomePackage -- The "home" package is the package -- curently being compiled | ExtPackage PackageId -- An "external" package is any other package It was just a Maybe type before, so this makes it a bit clearer. * I tried to add a bit better location info to the IfM monad, so that errors in interfaces come with a slightly more helpful error message. See the if_loc field in TcRnTypes --- and follow-on consequences * Changed Either to Maybes.MaybeErr in a couple of places (more perspicuous)
-
- 05 Jan, 2005 1 commit
-
-
simonpj authored
------------------------ GADTs and unification ------------------------ 1. Adjustment to typechecking of pattern matching the call to gadtRefineTys in TcPat. Now wobbly types are treated as wild cards in the unification process. 2. Add the WildCard possibility to the BindFlag in types/Unify.lhs 3. Some related refactoring of tcMatchTys etc.
-
- 22 Dec, 2004 1 commit
-
-
simonpj authored
---------------------------------------- Add more scoped type variables ---------------------------------------- Now the top-level forall'd variables of a type signature scope over the right hand side of that function. f :: a -> a f x = .... The type variable 'a' is in scope in the RHS, and in f's patterns. It's implied by -fglasgow-exts, but can also be switched off independently using -fscoped-type-variables (and the -fno variant)
-
- 21 Dec, 2004 1 commit
-
-
simonpj authored
--------------------------------- Improve handling of lexically scoped type variables --------------------------------- If we have f :: T a -> a f (x :: T b) = ... then the lexically scoped variable 'b' should refer to the rigid type variable 'a', without any intervening wobbliness. Previously the in-scope type variables were always mutable TyVars, which were instantatiated to point to the type they were bound to; but since the advent of GADTs the intervening mutable type variable is a bad thing. Hence * In the type environment, ATyVar now carries a type * The call to refineTyVars in tc_pat on SigPatIn finds the types by matching * Then tcExtendTyVarEnv3 extends the type envt appropriately Rater a lot of huff and puff, but it's quite natural for ATyVar to contain a type. Various other small nomenclature changes along the way.
-
- 26 Nov, 2004 1 commit
-
-
simonmar authored
Further integration with the new package story. GHC now supports pretty much everything in the package proposal. - GHC now works in terms of PackageIds (<pkg>-<version>) rather than just package names. You can still specify package names without versions on the command line, as long as the name is unambiguous. - GHC understands hidden/exposed modules in a package, and will refuse to import a hidden module. Also, the hidden/eposed status of packages is taken into account. - I had to remove the old package syntax from ghc-pkg, backwards compatibility isn't really practical. - All the package.conf.in files have been rewritten in the new syntax, and contain a complete list of modules in the package. I've set all the versions to 1.0 for now - please check your package(s) and fix the version number & other info appropriately. - New options: -hide-package P sets the expose flag on package P to False -ignore-package P unregisters P for this compilation For comparison, -package P sets the expose flag on package P to True, and also causes P to be linked in eagerly. -package-name is no longer officially supported. Unofficially, it's a synonym for -ignore-package, which has more or less the same effect as -package-name used to. Note that a package may be hidden and yet still be linked into the program, by virtue of being a dependency of some other package. To completely remove a package from the compiler's internal database, use -ignore-package. The compiler will complain if any two packages in the transitive closure of exposed packages contain the same module. You *must* use -ignore-package P when compiling modules for package P, if package P (or an older version of P) is already registered. The compiler will helpfully complain if you don't. The fptools build system does this. - Note: the Cabal library won't work yet. It still thinks GHC uses the old package config syntax. Internal changes/cleanups: - The ModuleName type has gone away. Modules are now just (a newtype of) FastStrings, and don't contain any package information. All the package-related knowledge is in DynFlags, which is passed down to where it is needed. - DynFlags manipulation has been cleaned up somewhat: there are no global variables holding DynFlags any more, instead the DynFlags are passed around properly. - There are a few less global variables in GHC. Lots more are scheduled for removal. - -i is now a dynamic flag, as are all the package-related flags (but using them in {-# OPTIONS #-} is Officially Not Recommended). - make -j now appears to work under fptools/libraries/. Probably wouldn't take much to get it working for a whole build.
-
- 08 Oct, 2004 1 commit
-
-
simonpj authored
------------------------------------------------------ Fix an interaction between zonking of Insts and GADTs ------------------------------------------------------ Insts float outwards, perhaps out of the scope of a type-refining GADT case. So we have to make sure they are fully zonked wrt the type refinement. tcSimplifyCheck does this, but there were two omissions a) the tcInstStupidTheta in TcPat.tcConPat didn't get zonked b) a Dict and Lit Inst contained an Id that wasn't zonked, to save work To fix (b), Insts have a little less cached info; the Name is held instead of the Id, so that the Id doesn't need to be zonked. One test in typecheck/should_compile/tc182
-
- 30 Sep, 2004 1 commit
-
-
simonpj authored
------------------------------------ Add Generalised Algebraic Data Types ------------------------------------ This rather big commit adds support for GADTs. For example, data Term a where Lit :: Int -> Term Int App :: Term (a->b) -> Term a -> Term b If :: Term Bool -> Term a -> Term a ..etc.. eval :: Term a -> a eval (Lit i) = i eval (App a b) = eval a (eval b) eval (If p q r) | eval p = eval q | otherwise = eval r Lots and lots of of related changes throughout the compiler to make this fit nicely. One important change, only loosely related to GADTs, is that skolem constants in the typechecker are genuinely immutable and constant, so we often get better error messages from the type checker. See TcType.TcTyVarDetails. There's a new module types/Unify.lhs, which has purely-functional unification and matching for Type. This is used both in the typechecker (for type refinement of GADTs) and in Core Lint (also for type refinement).
-
- 16 Aug, 2004 1 commit
-
-
simonpj authored
------------------------------- Add instance information to :i Get rid of the DeclPool ------------------------------- 1. Add instance information to :info command. GHCi now prints out which instances a type or class belongs to, when you use :i 2. Tidy up printing of unqualified names in user output. Previously Outputable.PrintUnqualified was type PrintUnqualified = Name -> Bool but it's now type PrintUnqualified = ModuleName -> OccName -> Bool This turns out to be tidier even for Names, and it's now also usable when printing IfaceSyn stuff in GHCi, eliminating a grevious hack. 3. On the way to doing this, Simon M had the great idea that we could get rid of the DeclPool holding pen, which held declarations read from interface files but not yet type-checked. We do this by eagerly populating the TypeEnv with thunks what, when poked, do the type checking. This is just a logical continuation of lazy import mechanism we've now had for some while. The InstPool and RulePool still exist, but I plan to get rid of them in the same way. The new scheme does mean that more rules get sucked in than before, because previously the TypeEnv was used to mean "this thing was needed" and hence to control which rules were sucked in. But now the TypeEnv is populated more eagerly => more rules get sucked in. However this problem will go away when I get rid of the Inst and Rule pools. I should have kept these changes separate, but I didn't. Change (1) affects mainly TcRnDriver, HscMain, CompMan, InteractiveUI whereas change (3) is more wide ranging.
-
- 06 Apr, 2004 1 commit
-
-
simonpj authored
The "rebindable-syntax" stuff wasn't dealing with the new location information correctly. This commit fixes the problem, and thereby makes mdofail004 work right. Maybe others too.
-