1. 14 Nov, 2015 1 commit
  2. 11 Nov, 2015 1 commit
    • Alan Zimmerman's avatar
      Remove fun_infix from Funbind, as it is now in Match · f0f9365f
      Alan Zimmerman authored
      One of the changes D538 introduced is to add `m_fun_id_infix` to `Match`
      
      ```lang=hs
      data Match id body
        = Match {
              m_fun_id_infix :: (Maybe (Located id,Bool)),
                -- fun_id and fun_infix for functions with multiple equations
                -- only present for a RdrName. See note [fun_id in Match]
              m_pats :: [LPat id], -- The patterns
              m_type :: (Maybe (LHsType id)),
                                       -- A type signature for the result of the match
                                       -- Nothing after typechecking
              m_grhss :: (GRHSs id body)
        } deriving (Typeable)
      ```
      
      This was done to track the individual locations and fixity of the
      `fun_id` for each of the defining equations for a function when there
      are more than one.
      
      For example, the function `(&&&)` is defined with some prefix and some
      infix equations below.
      
      ```lang=hs
          (&&&  ) [] [] =  []
          xs    &&&   [] =  xs
          (  &&&  ) [] ys =  ys
      ```
      
      This means that the fun_infix is now superfluous in the `FunBind`. This
      has not been removed as a potentially risky change just before 7.10 RC2,
      and so must be done after.
      
      This ticket captures that task, which includes processing these fields
      through the renamer and beyond.
      
      Ticket #9988 introduced these fields into `Match` through renaming, this
      ticket it to continue through type checking and then remove it from
      `FunBind` completely.
      
      The split happened so that #9988 could land in 7.10
      
      Trac ticket : #10061
      
      Test Plan: ./validate
      
      Reviewers: goldfire, austin, simonpj, bgamari
      
      Reviewed By: bgamari
      
      Subscribers: simonpj, thomie, mpickering
      
      Differential Revision: https://phabricator.haskell.org/D1285
      
      GHC Trac Issues: #10061
      f0f9365f
  3. 30 Oct, 2015 1 commit
    • Ben Gamari's avatar
      Generate Typeable info at definition sites · 91c6b1f5
      Ben Gamari authored
      This is the second attempt at merging D757.
      
      This patch implements the idea floated in Trac #9858, namely that we
      should generate type-representation information at the data type
      declaration site, rather than when solving a Typeable constraint.
      
      However, this turned out quite a bit harder than I expected. I still
      think it's the right thing to do, and it's done now, but it was quite
      a struggle.
      
      See particularly
      
       * Note [Grand plan for Typeable] in TcTypeable (which is a new module)
       * Note [The overall promotion story] in DataCon (clarifies existing
      stuff)
      
      The most painful bit was that to generate Typeable instances (ie
      TyConRepName bindings) for every TyCon is tricky for types in ghc-prim
      etc:
      
       * We need to have enough data types around to *define* a TyCon
       * Many of these types are wired-in
      
      Also, to minimise the code generated for each data type, I wanted to
      generate pure data, not CAFs with unpackCString# stuff floating about.
      
      Performance
      ~~~~~~~~~~~
      Three perf/compiler tests start to allocate quite a bit more. This isn't
      surprising, because they all allocate zillions of data types, with
      practically no other code, esp. T1969
      
       * T1969:    GHC allocates 19% more
       * T4801:    GHC allocates 13% more
       * T5321FD:  GHC allocates 13% more
       * T9675:    GHC allocates 11% more
       * T783:     GHC allocates 11% more
       * T5642:    GHC allocates 10% more
      
      I'm treating this as acceptable. The payoff comes in Typeable-heavy
      code.
      
      Remaining to do
      ~~~~~~~~~~~~~~~
      
       * I think that "TyCon" and "Module" are over-generic names to use for
         the runtime type representations used in GHC.Typeable. Better might
      be
         "TrTyCon" and "TrModule". But I have not yet done this
      
       * Add more info the the "TyCon" e.g. source location where it was
         defined
      
       * Use the new "Module" type to help with Trac Trac #10068
      
       * It would be possible to generate TyConRepName (ie Typeable
         instances) selectively rather than all the time. We'd need to persist
         the information in interface files. Lacking a motivating reason I
      have
         not done this, but it would not be difficult.
      
      Refactoring
      ~~~~~~~~~~~
      As is so often the case, I ended up refactoring more than I intended.
      In particular
      
       * In TyCon, a type *family* (whether type or data) is repesented by a
         FamilyTyCon
           * a algebraic data type (including data/newtype instances) is
             represented by AlgTyCon This wasn't true before; a data family
             was represented as an AlgTyCon. There are some corresponding
             changes in IfaceSyn.
      
           * Also get rid of the (unhelpfully named) tyConParent.
      
       * In TyCon define 'Promoted', isomorphic to Maybe, used when things are
         optionally promoted; and use it elsewhere in GHC.
      
       * Cleanup handling of knownKeyNames
      
       * Each TyCon, including promoted TyCons, contains its TyConRepName, if
         it has one. This is, in effect, the name of its Typeable instance.
      
      Updates haddock submodule
      
      Test Plan: Let Harbormaster validate
      
      Reviewers: austin, hvr, goldfire
      
      Subscribers: goldfire, thomie
      
      Differential Revision: https://phabricator.haskell.org/D1404
      
      GHC Trac Issues: #9858
      91c6b1f5
  4. 29 Oct, 2015 2 commits
    • Ben Gamari's avatar
      Revert "Generate Typeable info at definition sites" · bbaf76f9
      Ben Gamari authored
      This reverts commit bef2f03e.
      
      This merge was botched
      
      Also reverts haddock submodule.
      bbaf76f9
    • Ben Gamari's avatar
      Generate Typeable info at definition sites · bef2f03e
      Ben Gamari authored
      This patch implements the idea floated in Trac #9858, namely that we
      should generate type-representation information at the data type
      declaration site, rather than when solving a Typeable constraint.
      
      However, this turned out quite a bit harder than I expected. I still
      think it's the right thing to do, and it's done now, but it was quite
      a struggle.
      
      See particularly
      
       * Note [Grand plan for Typeable] in TcTypeable (which is a new module)
       * Note [The overall promotion story] in DataCon (clarifies existing stuff)
      
      The most painful bit was that to generate Typeable instances (ie
      TyConRepName bindings) for every TyCon is tricky for types in ghc-prim
      etc:
      
       * We need to have enough data types around to *define* a TyCon
       * Many of these types are wired-in
      
      Also, to minimise the code generated for each data type, I wanted to
      generate pure data, not CAFs with unpackCString# stuff floating about.
      
      Performance
      ~~~~~~~~~~~
      Three perf/compiler tests start to allocate quite a bit more. This isn't
      surprising, because they all allocate zillions of data types, with
      practically no other code, esp. T1969
      
       * T3294:   GHC allocates 110% more (filed #11030 to track this)
       * T1969:   GHC allocates 30% more
       * T4801:   GHC allocates 14% more
       * T5321FD: GHC allocates 13% more
       * T783:    GHC allocates 12% more
       * T9675:   GHC allocates 12% more
       * T5642:   GHC allocates 10% more
       * T9961:   GHC allocates 6% more
      
       * T9203:   Program allocates 54% less
      
      I'm treating this as acceptable. The payoff comes in Typeable-heavy
      code.
      
      Remaining to do
      ~~~~~~~~~~~~~~~
      
       * I think that "TyCon" and "Module" are over-generic names to use for
         the runtime type representations used in GHC.Typeable. Better might be
         "TrTyCon" and "TrModule". But I have not yet done this
      
       * Add more info the the "TyCon" e.g. source location where it was
         defined
      
       * Use the new "Module" type to help with Trac Trac #10068
      
       * It would be possible to generate TyConRepName (ie Typeable
         instances) selectively rather than all the time. We'd need to persist
         the information in interface files. Lacking a motivating reason I have
         not done this, but it would not be difficult.
      
      Refactoring
      ~~~~~~~~~~~
      As is so often the case, I ended up refactoring more than I intended.
      In particular
      
       * In TyCon, a type *family* (whether type or data) is repesented by a
         FamilyTyCon
           * a algebraic data type (including data/newtype instances) is
             represented by AlgTyCon This wasn't true before; a data family
             was represented as an AlgTyCon. There are some corresponding
             changes in IfaceSyn.
      
           * Also get rid of the (unhelpfully named) tyConParent.
      
       * In TyCon define 'Promoted', isomorphic to Maybe, used when things are
         optionally promoted; and use it elsewhere in GHC.
      
       * Cleanup handling of knownKeyNames
      
       * Each TyCon, including promoted TyCons, contains its TyConRepName, if
         it has one. This is, in effect, the name of its Typeable instance.
      
      Requires update of the haddock submodule.
      
      Differential Revision: https://phabricator.haskell.org/D757
      bef2f03e
  5. 15 Oct, 2015 1 commit
  6. 08 Oct, 2015 1 commit
  7. 23 Sep, 2015 1 commit
  8. 22 Sep, 2015 1 commit
  9. 05 Aug, 2015 1 commit
  10. 30 Jul, 2015 1 commit
    • Simon Peyton Jones's avatar
      Define DsUtils.mkCastDs and use it · 92d25672
      Simon Peyton Jones authored
      This change avoids a spurious WARNing from mkCast.  In the output of
      the desugarer (only, I think) we can have a cast where the type of the
      expression and cast don't syntactically match, because of an enclosing
      type-let binding.
      92d25672
  11. 07 Jul, 2015 1 commit
  12. 21 Jun, 2015 1 commit
  13. 20 Jun, 2015 1 commit
    • Edward Z. Yang's avatar
      Filter orphan rules based on imports, fixes #10294 and #10420. · 0cb1f5cf
      Edward Z. Yang authored
      Summary:
      If we have an orphan rule in our database, don't apply it
      unless the defining module is transitively imported by the
      module we are processing.  We do this by defining a new RuleEnv
      data type which includes both the RuleBase as well as the set
      of visible orphan modules, and threading this through the
      relevant environments (CoreReader, RuleCheckEnv and ScEnv).
      
      This is analogous to the instances fix we applied in #2182
      4c834fdd
      
      , but done for RULES.
      An important knock-on effect is that we can remove some buggy
      code in LoadInterface which tried to avoid loading interfaces
      that were loaded by plugins (which sometimes caused instances
      and rules to NEVER become visible).
      
      One note about tests: I renamed the old plugins07 test to T10420
      and replaced plugins07 with a test to ensure that a plugin
      import did not cause new rules to be loaded in.
      Signed-off-by: default avatarEdward Z. Yang <ezyang@cs.stanford.edu>
      
      Test Plan: validate
      
      Reviewers: simonpj, austin, goldfire
      
      Subscribers: bgamari, thomie
      
      Differential Revision: https://phabricator.haskell.org/D950
      
      GHC Trac Issues: #10420
      0cb1f5cf
  14. 22 May, 2015 1 commit
    • Simon Peyton Jones's avatar
      Reduce magic for seqId · eae703aa
      Simon Peyton Jones authored
      An upcoming commit means that the RULES for 'seq' get only
      one value arg, not two.  This patch prepares for that by
      
      - reducing the arity of seq's built-in rule, to take one value arg
      - making 'seq' not inline on the LHS of RULES
      - and removing the horrid un-inlining in DsBinds.decomposeRuleLhs
      eae703aa
  15. 18 May, 2015 1 commit
    • Simon Peyton Jones's avatar
      Refactor tuple constraints · ffc21506
      Simon Peyton Jones authored
      Make tuple constraints be handled by a perfectly ordinary
      type class, with the component constraints being the
      superclasses:
          class (c1, c2) => (c2, c2)
      
      This change was provoked by
      
        #10359  inability to re-use a given tuple
                constraint as a whole
      
        #9858   confusion between term tuples
                and constraint tuples
      
      but it's generally a very nice simplification. We get rid of
       -  In Type, the TuplePred constructor of PredTree,
          and all the code that dealt with TuplePreds
       -  In TcEvidence, the constructors EvTupleMk, EvTupleSel
      
      See Note [How tuples work] in TysWiredIn.
      
      Of course, nothing is ever entirely simple. This one
      proved quite fiddly.
      
      - I did quite a bit of renaming, which makes this patch
        touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
      
      - I made constraint tuples known-key rather than wired-in.
        This is different to boxed/unboxed tuples, but it proved
        awkward to have all the superclass selectors wired-in.
        Easier just to use the standard mechanims.
      
      - While I was fiddling with known-key names, I split the TH Name
        definitions out of DsMeta into a new module THNames.  That meant
        that the known-key names can all be gathered in PrelInfo, without
        causing module loops.
      
      - I found that the parser was parsing an import item like
            T( .. )
        as a *data constructor* T, and then using setRdrNameSpace to
        fix it.  Stupid!  So I changed the parser to parse a *type
        constructor* T, which means less use of setRdrNameSpace.
      
        I also improved setRdrNameSpace to behave better on Exact Names.
        Largely on priciple; I don't think it matters a lot.
      
      - When compiling a data type declaration for a wired-in thing like
        tuples (,), or lists, we don't really need to look at the
        declaration.  We have the wired-in thing!  And not doing so avoids
        having to line up the uniques for data constructor workers etc.
        See Note [Declarations for wired-in things]
      
      - I found that FunDeps.oclose wasn't taking superclasses into
        account; easily fixed.
      
      - Some error message refactoring for invalid constraints in TcValidity
      
      - Haddock needs to absorb the change too; so there is a submodule update
      ffc21506
  16. 14 May, 2015 1 commit
    • Austin Seipp's avatar
      Revert multiple commits · 3cf8ecdc
      Austin Seipp authored
      This reverts multiple commits from Simon:
      
        - 04a484ea Test Trac #10359
        - a9ccd37a Test Trac #10403
        - c0aae6f6 Test Trac #10248
        - eb6ca851 Make the "matchable-given" check happen first
        - ca173aa3 Add a case to checkValidTyCon
        - 51cbad15 Update haddock submodule
        - 6e1174da Separate transCloVarSet from fixVarSet
        - a8493e03 Fix imports in HscMain (stage2)
        - a154944b Two wibbles to fix the build
        - 5910a1bc Change in capitalisation of error msg
        - 130e93aa Refactor tuple constraints
        - 8da785d5 Delete commented-out line
      
      These break the build by causing Haddock to fail mysteriously when
      trying to examine GHC.Prim it seems.
      3cf8ecdc
  17. 13 May, 2015 1 commit
    • Simon Peyton Jones's avatar
      Refactor tuple constraints · 130e93aa
      Simon Peyton Jones authored
      Make tuple constraints be handled by a perfectly ordinary
      type class, with the component constraints being the
      superclasses:
          class (c1, c2) => (c2, c2)
      
      This change was provoked by
      
        #10359  inability to re-use a given tuple
                constraint as a whole
      
        #9858   confusion between term tuples
                and constraint tuples
      
      but it's generally a very nice simplification. We get rid of
       -  In Type, the TuplePred constructor of PredTree,
          and all the code that dealt with TuplePreds
       -  In TcEvidence, the constructors EvTupleMk, EvTupleSel
      
      See Note [How tuples work] in TysWiredIn.
      
      Of course, nothing is ever entirely simple. This one
      proved quite fiddly.
      
      - I did quite a bit of renaming, which makes this patch
        touch a lot of modules. In partiuclar tupleCon -> tupleDataCon.
      
      - I made constraint tuples known-key rather than wired-in.
        This is different to boxed/unboxed tuples, but it proved
        awkward to have all the superclass selectors wired-in.
        Easier just to use the standard mechanims.
      
      - While I was fiddling with known-key names, I split the TH Name
        definitions out of DsMeta into a new module THNames.  That meant
        that the known-key names can all be gathered in PrelInfo, without
        causing module loops.
      
      - I found that the parser was parsing an import item like
            T( .. )
        as a *data constructor* T, and then using setRdrNameSpace to
        fix it.  Stupid!  So I changed the parser to parse a *type
        constructor* T, which means less use of setRdrNameSpace.
      
        I also improved setRdrNameSpace to behave better on Exact Names.
        Largely on priciple; I don't think it matters a lot.
      
      - When compiling a data type declaration for a wired-in thing like
        tuples (,), or lists, we don't really need to look at the
        declaration.  We have the wired-in thing!  And not doing so avoids
        having to line up the uniques for data constructor workers etc.
        See Note [Declarations for wired-in things]
      
      - I found that FunDeps.oclose wasn't taking superclasses into
        account; easily fixed.
      
      - Some error message refactoring for invalid constraints in TcValidity
      130e93aa
  18. 22 Apr, 2015 1 commit
  19. 16 Apr, 2015 1 commit
  20. 09 Apr, 2015 1 commit
  21. 07 Apr, 2015 1 commit
  22. 19 Mar, 2015 1 commit
  23. 07 Mar, 2015 1 commit
    • Iavor S. Diatchki's avatar
      Custom `Typeable` solver, that keeps track of kinds. · b359c886
      Iavor S. Diatchki authored
      Summary:
      This implements the new `Typeable` solver: when GHC sees `Typeable` constraints
      it solves them on the spot.
      
      The current implementation creates `TyCon` representations on the spot.
      
      Pro: No overhead at all in code that does not use `Typeable`
      Cons: Code that uses `Typeable` may create multipe `TyCon` represntations.
      
      We have discussed an implementation where representations of `TyCons` are
      computed once, in the module, where a datatype is declared.  This would
      lead to more code being generated:  for a promotable datatype we need to
      generate `2 + number_of_data_cons` type-constructro representations,
      and we have to do that for all programs, even ones that do not intend to
      use typeable.
      
      I added code to emit warning whenevar `deriving Typeable` is encountered---
      the idea being that this is not needed anymore, and shold be fixed.
      
      Also, we allow `instance Typeable T` in .hs-boot files, but they result
      in a warning, and are ignored.  This last one was to avoid breaking exisitng
      code, and should become an error, eventually.
      
      Test Plan:
      1. GHC can compile itself.
      2. I compiled a number of large libraries, including `lens`.
          - I had to make some small changes:
            `unordered-containers` uses internals of `TypeReps`, so I had to do a 1 line fix
          - `lens` needed one instance changed, due to a poly-kinded `Typeble` instance
      
      3. I also run some code that uses `syb` to traverse a largish datastrucutre.
      I didn't notice any signifiant performance difference between the 7.8.3 version,
      and this implementation.
      
      Reviewers: simonpj, simonmar, austin, hvr
      
      Reviewed By: austin, hvr
      
      Subscribers: thomie
      
      Differential Revision: https://phabricator.haskell.org/D652
      
      GHC Trac Issues: #9858
      b359c886
  24. 19 Jan, 2015 1 commit
    • Eric Seidel's avatar
      Expose source locations via Implicit Parameters of type GHC.Location.Location · c024af13
      Eric Seidel authored
      Summary:
      IPs with this type will always be solved for the current source
      location. If another IP of the same type is in scope, the two locations will be
      appended, creating a call-stack. The Location type is kept abstract so users
      cannot create them, but a Location can be turned into a list of SrcLocs, which
      correspond to individual locations in a program. Each SrcLoc contains a
      package/module/file name and start/end lines and columns.
      
      The only thing missing from the SrcLoc in my opinion is the name of the
      top-level definition it inhabits. I suspect that would also be useful, but it's
      not clear to me how to extract the current top-level binder from within the
      constraint solver. (Surely I'm just missing something here?)
      
      I made the (perhaps controversial) decision to have GHC completely ignore
      the names of Location IPs, meaning that in the following code:
      
          bar :: (?myloc :: Location) => String
          bar = foo
      
          foo :: (?loc :: Location) => String
          foo = show ?loc
      
      if I call `bar`, the resulting call-stack will include locations for
      
      1. the use of `?loc` inside `foo`,
      2. `foo`s call-site inside `bar`, and
      3. `bar`s call-site, wherever that may be.
      
      This makes Location IPs very special indeed, and I'm happy to change it if the
      dissonance is too great.
      
      I've also left out any changes to base to make use of Location IPs, since there
      were some concerns about a snowball effect. I think it would be reasonable to
      mark this as an experimental feature for now (it is!), and defer using it in
      base until we have more experience with it. It is, after all, quite easy to
      define your own version of `error`, `undefined`, etc. that use Location IPs.
      
      Test Plan: validate, new test-case is testsuite/tests/typecheck/should_run/IPLocation.hs
      
      Reviewers: austin, hvr, simonpj
      
      Reviewed By: simonpj
      
      Subscribers: simonmar, rodlogic, carter, thomie
      
      Differential Revision: https://phabricator.haskell.org/D578
      
      GHC Trac Issues: #9049
      c024af13
  25. 14 Jan, 2015 1 commit
  26. 06 Jan, 2015 1 commit
    • Simon Peyton Jones's avatar
      Major patch to add -fwarn-redundant-constraints · 32973bf3
      Simon Peyton Jones authored
      The idea was promted by Trac #9939, but it was Christmas, so I did
      some recreational programming that went much further.
      
      The idea is to warn when a constraint in a user-supplied context is
      redundant.  Everything is described in detail in
        Note [Tracking redundant constraints]
      in TcSimplify.
      
      Main changes:
      
       * The new ic_status field in an implication, of type ImplicStatus.
         It replaces ic_insol, and includes information about redundant
         constraints.
      
       * New function TcSimplify.setImplicationStatus sets the ic_status.
      
       * TcSigInfo has sig_report_redundant field to say whenther a
         redundant constraint should be reported; and similarly
         the FunSigCtxt constructor of UserTypeCtxt
      
       * EvBinds has a field eb_is_given, to record whether it is a given
         or wanted binding. Some consequential chagnes to creating an evidence
         binding (so that we record whether it is given or wanted).
      
       * AbsBinds field abs_ev_binds is now a *list* of TcEvBiinds;
         see Note [Typechecking plan for instance declarations] in
         TcInstDcls
      
       * Some significant changes to the type checking of instance
         declarations; Note [Typechecking plan for instance declarations]
         in TcInstDcls.
      
       * I found that TcErrors.relevantBindings was failing to zonk the
         origin of the constraint it was looking at, and hence failing to
         find some relevant bindings.  Easy to fix, and orthogonal to
         everything else, but hard to disentangle.
      
      Some minor refactorig:
      
       * TcMType.newSimpleWanteds moves to Inst, renamed as newWanteds
      
       * TcClassDcl and TcInstDcls now have their own code for typechecking
         a method body, rather than sharing a single function. The shared
         function (ws TcClassDcl.tcInstanceMethodBody) didn't have much code
         and the differences were growing confusing.
      
       * Add new function TcRnMonad.pushLevelAndCaptureConstraints, and
         use it
      
       * Add new function Bag.catBagMaybes, and use it in TcSimplify
      32973bf3
  27. 23 Dec, 2014 1 commit
    • Simon Peyton Jones's avatar
      Eliminate so-called "silent superclass parameters" · a6f0f5ab
      Simon Peyton Jones authored
      The purpose of silent superclass parameters was to solve the
      awkward problem of superclass dictinaries being bound to bottom.
      See THE PROBLEM in Note [Recursive superclasses] in TcInstDcls
      
      Although the silent-superclass idea worked,
      
        * It had non-local consequences, and had effects even in Haddock,
          where we had to discard silent parameters before displaying
          instance declarations
      
        * It had unexpected peformance costs, shown up by Trac #3064 and its
          test case.  In monad-transformer code, when constructing a Monad
          dictionary you had to pass an Applicative dictionary; and to
          construct that you neede a Functor dictionary. Yet these extra
          dictionaries were often never used.  (All this got much worse when
          we added Applicative as a superclass of Monad.) Test T3064
          compiled *far* faster after silent superclasses were eliminated.
      
        * It introduced new bugs.  For example SilentParametersOverlapping,
          T5051, and T7862, all failed to compile because of instance overlap
          directly because of the silent-superclass trick.
      
      So this patch takes a new approach, which I worked out with Dimitrios
      in the closing hours before Christmas.  It is described in detail
      in THE PROBLEM in Note [Recursive superclasses] in TcInstDcls.
      
      Seems to work great!
      
      Quite a bit of knock-on effect
      
       * The main implementation work is in tcSuperClasses in TcInstDcls
         Everything else is fall-out
      
       * IdInfo.DFunId no longer needs its n-silent argument
         * Ditto IDFunId in IfaceSyn
         * Hence interface file format changes
      
       * Now that DFunIds do not have silent superclass parameters, printing
         out instance declarations is simpler. There is tiny knock-on effect
         in Haddock, so that submodule is updated
      
       * I realised that when computing the "size of a dictionary type"
         in TcValidity.sizePred, we should be rather conservative about
         type functions, which can arbitrarily increase the size of a type.
         Hence the new datatype TypeSize, which has a TSBig constructor for
         "arbitrarily big".
      
       * instDFunType moves from TcSMonad to Inst
      
       * Interestingly, CmmNode and CmmExpr both now need a non-silent
         (Ord r) in a couple of instance declarations. These were previously
         silent but must now be explicit.
      
       * Quite a bit of wibbling in error messages
      a6f0f5ab
  28. 18 Dec, 2014 1 commit
    • Iavor S. Diatchki's avatar
      Add a provenance field to universal coercions. · 1d4e94d1
      Iavor S. Diatchki authored
      Universal coercions allow casting between arbitrary types, so it is a
      good idea to keep track where they came from, which now we can do by
      using the provenance field in `UnivCo`.
      
      This is also handy for type-checker plugins that provide functionality
      beyond what's expressible by GHC's standard coercions:  such plugins
      can generate universal coercions, but they should still tag them,
      so that if something goes wrong we can link the casts to the plugin.
      1d4e94d1
  29. 12 Dec, 2014 1 commit
    • eir@cis.upenn.edu's avatar
      Rewrite `Coercible` solver · 0cc47eb9
      eir@cis.upenn.edu authored
      Summary:
      This is a rewrite of the algorithm to solve for Coercible "instances".
      
      A preliminary form of these ideas is at
      https://ghc.haskell.org/trac/ghc/wiki/Design/NewCoercibleSolver
      
      The basic idea here is that the `EqPred` constructor of `PredTree`
      now is parameterised by a new type `EqRel` (where
      `data EqRel = NomEq | ReprEq`). Thus, every equality constraint can
      now talk about nominal equality (the usual case) or representational
      equality (the `Coercible` case).
      
      This is a change from the previous
      behavior where `Coercible` was just considered a regular class with
      a special case in `matchClassInst`.
      
      Because of this change, representational equalities are now
      canonicalized just like nominal ones, allowing more equalities
      to be solved -- in particular, the case at the top of #9117.
      
      A knock-on effect is that the flattener must be aware of the
      choice of equality relation, because the inert set now stores
      both representational inert equalities alongside the nominal
      inert equalities. Of course, we can use representational equalities
      to rewrite only within another representational equality --
      thus the parameterization of the flattener.
      
      A nice side effect of this change is that I've introduced a new
      type `CtFlavour`, which tracks G vs. W vs. D, removing some ugliness
      in the flattener.
      
      This commit includes some refactoring as discussed on D546.
      It also removes the ability of Deriveds to rewrite Deriveds.
      
      This fixes bugs #9117 and #8984.
      
      Reviewers: simonpj, austin, nomeata
      
      Subscribers: carter, thomie
      
      Differential Revision: https://phabricator.haskell.org/D546
      
      GHC Trac Issues: #9117, #8984
      0cc47eb9
  30. 03 Dec, 2014 1 commit
  31. 21 Nov, 2014 1 commit
    • Simon Peyton Jones's avatar
      Implement full co/contra-variant subsumption checking (fixes Trac #9569) · b6855422
      Simon Peyton Jones authored
      This is a pretty big patch, but which substantially iproves the subsumption
      check.  Trac #9569 was the presenting example, showing how type inference could
      depend rather delicately on eta expansion.  But there are other less exotic
      examples; see Note [Co/contra-variance of subsumption checking] in TcUnify.
      
      The driving change is to TcUnify.tcSubType.  But also
      
      * HsWrapper gets a new constructor WpFun, which behaves very like CoFun:
             if     wrap1 :: exp_arg <= act_arg
                    wrap2 :: act_res <= exp_res
             then   WpFun wrap1 wrap2 : (act_arg -> arg_res) <= (exp_arg -> exp_res)
      
      * I generalised TcExp.tcApp to call tcSubType on the result,
        rather than tcUnifyType.  I think this just makes it consistent
        with everything else, notably tcWrapResult.
      
      As usual I ended up doing some follow-on refactoring
      
      * AmbigOrigin is gone (in favour of TypeEqOrigin)
      * Combined BindPatSigCtxt and PatSigCxt into one
      * Improved a bit of error message generation
      b6855422
  32. 04 Nov, 2014 1 commit
  33. 14 Oct, 2014 1 commit
  34. 26 Sep, 2014 1 commit
  35. 29 Aug, 2014 1 commit
  36. 28 Aug, 2014 1 commit
    • Simon Peyton Jones's avatar
      Refactor unfoldings · 6e0f6ede
      Simon Peyton Jones authored
      There are two main refactorings here
      
      1.  Move the uf_arity field
             out of CoreUnfolding
             into UnfWhen
          It's a lot tidier there.  If I've got this right, no behaviour
          should change.
      
      2.  Define specUnfolding and use it in DsBinds and Specialise
           a) commons-up some shared code
           b) makes sure that Specialise correctly specialises DFun
              unfoldings (which it didn't before)
      
      The two got put together because both ended up interacting in the
      specialiser.
      
      They cause zero difference to nofib.
      6e0f6ede
  37. 01 Aug, 2014 2 commits
  38. 15 May, 2014 1 commit
    • Herbert Valerio Riedel's avatar
      Add LANGUAGE pragmas to compiler/ source files · 23892440
      Herbert Valerio Riedel authored
      In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
      reorganized, while following the convention, to
      
      - place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
        any `{-# OPTIONS_GHC #-}`-lines.
      
      - Moreover, if the list of language extensions fit into a single
        `{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
        line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
        individual language extension. In both cases, try to keep the
        enumeration alphabetically ordered.
        (The latter layout is preferable as it's more diff-friendly)
      
      While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
      occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
      23892440