1. 14 Jul, 2011 1 commit
    • Ian Lynagh's avatar
      Separate the warning flags into their own datatype · 493ea4ab
      Ian Lynagh authored
      The -w flag wasn't turning off a few warnings (Opt_WarnMissingImportList,
      Opt_WarnMissingLocalSigs, Opt_WarnIdentities). Rather than just adding
      them, I've separated the Opt_Warn* contructors off into their own type,
      so -w now just sets the list of warning flags to [].
      493ea4ab
  2. 30 Jun, 2011 1 commit
  3. 13 Jun, 2011 2 commits
  4. 10 Jun, 2011 1 commit
  5. 19 Apr, 2011 1 commit
    • Simon Peyton Jones's avatar
      This BIG PATCH contains most of the work for the New Coercion Representation · fdf86568
      Simon Peyton Jones authored
      See the paper "Practical aspects of evidence based compilation in System FC"
      
      * Coercion becomes a data type, distinct from Type
      
      * Coercions become value-level things, rather than type-level things,
        (although the value is zero bits wide, like the State token)
        A consequence is that a coerion abstraction increases the arity by 1
        (just like a dictionary abstraction)
      
      * There is a new constructor in CoreExpr, namely Coercion, to inject
        coercions into terms
      fdf86568
  6. 12 Apr, 2011 1 commit
    • Simon Marlow's avatar
      Change the way module initialisation is done (#3252, #4417) · a52ff761
      Simon Marlow authored
      Previously the code generator generated small code fragments labelled
      with __stginit_M for each module M, and these performed whatever
      initialisation was necessary for that module and recursively invoked
      the initialisation functions for imported modules.  This appraoch had
      drawbacks:
      
       - FFI users had to call hs_add_root() to ensure the correct
         initialisation routines were called.  This is a non-standard,
         and ugly, API.
      
       - unless we were using -split-objs, the __stginit dependencies would
         entail linking the whole transitive closure of modules imported,
         whether they were actually used or not.  In an extreme case (#4387,
         #4417), a module from GHC might be imported for use in Template
         Haskell or an annotation, and that would force the whole of GHC to
         be needlessly linked into the final executable.
      
      So now instead we do our initialisation with C functions marked with
      __attribute__((constructor)), which are automatically invoked at
      program startup time (or DSO load-time).  The C initialisers are
      emitted into the stub.c file.  This means that every time we compile
      with -prof or -hpc, we now get a stub file, but thanks to #3687 that
      is now invisible to the user.
      
      There are some refactorings in the RTS (particularly for HPC) to
      handle the fact that initialisers now get run earlier than they did
      before.
      
      The __stginit symbols are still generated, and the hs_add_root()
      function still exists (but does nothing), for backwards compatibility.
      a52ff761
  7. 20 Feb, 2011 1 commit
    • chak@cse.unsw.edu.au.'s avatar
      Added a VECTORISE pragma · f2aaae97
      chak@cse.unsw.edu.au. authored
      - Added a pragma {-# VECTORISE var = exp #-} that prevents
        the vectoriser from vectorising the definition of 'var'.
        Instead it uses the binding '$v_var = exp' to vectorise
        'var'.  The vectoriser checks that the Core type of 'exp'
        matches the vectorised Core type of 'var'.  (It would be
        quite complicated to perform that check in the type checker
        as the vectorisation of a type needs the state of the VM
        monad.)
      - Added parts of a related VECTORISE SCALAR pragma
      - Documented -ddump-vect
      - Added -ddump-vt-trace
      - Some clean up
      f2aaae97
  8. 02 Dec, 2010 1 commit
  9. 16 Nov, 2010 1 commit
  10. 21 Oct, 2010 1 commit
  11. 07 Oct, 2010 1 commit
    • simonpj@microsoft.com's avatar
      Implement auto-specialisation of imported Ids · 92267aa2
      simonpj@microsoft.com authored
      This big-ish patch arranges that if an Id 'f' is 
        * Type-class overloaded 
             f :: Ord a => [a] -> [a]
        * Defined with an INLINABLE pragma
             {-# INLINABLE f #-}
        * Exported from its defining module 'D'
      
      then in any module 'U' that imports D
      
      1. Any call of 'f' at a fixed type will generate 
         (a) a specialised version of f in U
         (b) a RULE that rewrites unspecialised calls to the
             specialised on
      
        e.g. if the call is (f Int dOrdInt xs) then the 
        specialiser will generate
           $sfInt :: [Int] -> [Int]
           $sfInt = <code for f, imported from D, specialised>
           {-# RULE forall d.  f Int d = $sfInt #-}
      
      2. In addition, you can give an explicit {-# SPECIALISE -#}
         pragma for the imported Id
           {-# SPECIALISE f :: [Bool] -> [Bool] #-}
         This too generates a local specialised definition, 
         and the corresponding RULE 
      
      The new RULES are exported from module 'U', so that any module
      importing U will see the specialised versions of 'f', and will
      not re-specialise them.
      
      There's a flag -fwarn-auto-orphan that warns you if the auto-generated
      RULES are orphan rules. It's not in -Wall, mainly to avoid lots of
      error messages with existing packages.
      
      Main implementation changes
      
       - A new flag on a CoreRule to say if it was auto-generated.
         This is persisted across interface files, so there's a small
         change in interface file format.
      
       - Quite a bit of fiddling with plumbing, to get the 
         {-# SPECIALISE #-} pragmas for imported Ids.  In particular, a
         new field tgc_imp_specs in TcGblEnv, to keep the specialise
         pragmas for imported Ids between the typechecker and the desugarer.
      
       - Some new code (although surprisingly little) in Specialise,
         to deal with calls of imported Ids
      92267aa2
  12. 13 Sep, 2010 1 commit
  13. 24 Dec, 2009 1 commit
  14. 05 Nov, 2009 1 commit
  15. 29 Oct, 2009 2 commits
    • simonpj@microsoft.com's avatar
      The Big INLINE Patch: totally reorganise way that INLINE pragmas work · 72462499
      simonpj@microsoft.com authored
      This patch has been a long time in gestation and has, as a
      result, accumulated some extra bits and bobs that are only
      loosely related.  I separated the bits that are easy to split
      off, but the rest comes as one big patch, I'm afraid.
      
      Note that:
       * It comes together with a patch to the 'base' library
       * Interface file formats change slightly, so you need to
         recompile all libraries
      
      The patch is mainly giant tidy-up, driven in part by the
      particular stresses of the Data Parallel Haskell project. I don't
      expect a big performance win for random programs.  Still, here are the
      nofib results, relative to the state of affairs without the patch
      
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      
      The +10.9% allocation outlier is rewrite, which happens to have a
      very delicate optimisation opportunity involving an interaction
      of CSE and inlining (see nofib/Simon-nofib-notes). The fact that
      the 'before' case found the optimisation is somewhat accidental.
      Runtimes seem to go down, but I never kno wwhether to really trust
      this number.  Binary sizes wobble a bit, but nothing drastic.
      
      
      The Main Ideas are as follows.
      
      InlineRules
      ~~~~~~~~~~~
      When you say 
            {-# INLINE f #-}
            f x = <rhs>
      you intend that calls (f e) are replaced by <rhs>[e/x] So we
      should capture (\x.<rhs>) in the Unfolding of 'f', and never meddle
      with it.  Meanwhile, we can optimise <rhs> to our heart's content,
      leaving the original unfolding intact in Unfolding of 'f'.
      
      So the representation of an Unfolding has changed quite a bit
      (see CoreSyn).  An INLINE pragma gives rise to an InlineRule 
      unfolding.  
      
      Moreover, it's only used when 'f' is applied to the
      specified number of arguments; that is, the number of argument on 
      the LHS of the '=' sign in the original source definition. 
      For example, (.) is now defined in the libraries like this
         {-# INLINE (.) #-}
         (.) f g = \x -> f (g x)
      so that it'll inline when applied to two arguments. If 'x' appeared
      on the left, thus
         (.) f g x = f (g x)
      it'd only inline when applied to three arguments.  This slightly-experimental
      change was requested by Roman, but it seems to make sense.
      
      Other associated changes
      
      * Moving the deck chairs in DsBinds, which processes the INLINE pragmas
      
      * In the old system an INLINE pragma made the RHS look like
         (Note InlineMe <rhs>)
        The Note switched off optimisation in <rhs>.  But it was quite
        fragile in corner cases. The new system is more robust, I believe.
        In any case, the InlineMe note has disappeared 
      
      * The workerInfo of an Id has also been combined into its Unfolding,
        so it's no longer a separate field of the IdInfo.
      
      * Many changes in CoreUnfold, esp in callSiteInline, which is the critical
        function that decides which function to inline.  Lots of comments added!
      
      * exprIsConApp_maybe has moved to CoreUnfold, since it's so strongly
        associated with "does this expression unfold to a constructor application".
        It can now do some limited beta reduction too, which Roman found 
        was an important.
      
      Instance declarations
      ~~~~~~~~~~~~~~~~~~~~~
      It's always been tricky to get the dfuns generated from instance
      declarations to work out well.  This is particularly important in 
      the Data Parallel Haskell project, and I'm now on my fourth attempt,
      more or less.
      
      There is a detailed description in TcInstDcls, particularly in
      Note [How instance declarations are translated].   Roughly speaking
      we now generate a top-level helper function for every method definition
      in an instance declaration, so that the dfun takes a particularly
      stylised form:
        dfun a d1 d2 = MkD (op1 a d1 d2) (op2 a d1 d2) ...etc...
      
      In fact, it's *so* stylised that we never need to unfold a dfun.
      Instead ClassOps have a special rewrite rule that allows us to
      short-cut dictionary selection.  Suppose dfun :: Ord a -> Ord [a]
                                                  d :: Ord a
      Then   
          compare (dfun a d)  -->   compare_list a d 
      in one rewrite, without first inlining the 'compare' selector
      and the body of the dfun.
      
      To support this
      a) ClassOps have a BuiltInRule (see MkId.dictSelRule)
      b) DFuns have a special form of unfolding (CoreSyn.DFunUnfolding)
         which is exploited in CoreUnfold.exprIsConApp_maybe
      
      Implmenting all this required a root-and-branch rework of TcInstDcls
      and bits of TcClassDcl.
      
      
      Default methods
      ~~~~~~~~~~~~~~~
      If you give an INLINE pragma to a default method, it should be just
      as if you'd written out that code in each instance declaration, including
      the INLINE pragma.  I think that it now *is* so.  As a result, library
      code can be simpler; less duplication.
      
      
      The CONLIKE pragma
      ~~~~~~~~~~~~~~~~~~
      In the DPH project, Roman found cases where he had
      
         p n k = let x = replicate n k
                 in ...(f x)...(g x)....
      
         {-# RULE f (replicate x) = f_rep x #-}
      
      Normally the RULE would not fire, because doing so involves 
      (in effect) duplicating the redex (replicate n k).  A new
      experimental modifier to the INLINE pragma, {-# INLINE CONLIKE
      replicate #-}, allows you to tell GHC to be prepared to duplicate
      a call of this function if it allows a RULE to fire.
      
      See Note [CONLIKE pragma] in BasicTypes
      
      
      Join points
      ~~~~~~~~~~~
      See Note [Case binders and join points] in Simplify
      
      
      Other refactoring
      ~~~~~~~~~~~~~~~~~
      * I moved endPass from CoreLint to CoreMonad, with associated jigglings
      
      * Better pretty-printing of Core
      
      * The top-level RULES (ones that are not rules for locally-defined things)
        are now substituted on every simplifier iteration.  I'm not sure how
        we got away without doing this before.  This entails a bit more plumbing
        in SimplCore.
      
      * The necessary stuff to serialise and deserialise the new
        info across interface files.
      
      * Something about bottoming floats in SetLevels
            Note [Bottoming floats]
      
      * substUnfolding has moved from SimplEnv to CoreSubs, where it belongs
      
      
      --------------------------------------------------------------------------------
              Program           Size    Allocs   Runtime   Elapsed
      --------------------------------------------------------------------------------
                 anna          +2.4%     -0.5%      0.16      0.17
                 ansi          +2.6%     -0.1%      0.00      0.00
                 atom          -3.8%     -0.0%     -1.0%     -2.5%
               awards          +3.0%     +0.7%      0.00      0.00
               banner          +3.3%     -0.0%      0.00      0.00
           bernouilli          +2.7%     +0.0%     -4.6%     -6.9%
                boyer          +2.6%     +0.0%      0.06      0.07
               boyer2          +4.4%     +0.2%      0.01      0.01
                 bspt          +3.2%     +9.6%      0.02      0.02
            cacheprof          +1.4%     -1.0%    -12.2%    -13.6%
             calendar          +2.7%     -1.7%      0.00      0.00
             cichelli          +3.7%     -0.0%      0.13      0.14
              circsim          +3.3%     +0.0%     -2.3%     -9.9%
             clausify          +2.7%     +0.0%      0.05      0.06
        comp_lab_zift          +2.6%     -0.3%     -7.2%     -7.9%
             compress          +3.3%     +0.0%     -8.5%     -9.6%
            compress2          +3.6%     +0.0%    -15.1%    -17.8%
          constraints          +2.7%     -0.6%    -10.0%    -10.7%
         cryptarithm1          +4.5%     +0.0%     -4.7%     -5.7%
         cryptarithm2          +4.3%    -14.5%      0.02      0.02
                  cse          +4.4%     -0.0%      0.00      0.00
                eliza          +2.8%     -0.1%      0.00      0.00
                event          +2.6%     -0.0%     -4.9%     -4.4%
               exp3_8          +2.8%     +0.0%     -4.5%     -9.5%
               expert          +2.7%     +0.3%      0.00      0.00
                  fem          -2.0%     +0.6%      0.04      0.04
                  fft          -6.0%     +1.8%      0.05      0.06
                 fft2          -4.8%     +2.7%      0.13      0.14
             fibheaps          +2.6%     -0.6%      0.05      0.05
                 fish          +4.1%     +0.0%      0.03      0.04
                fluid          -2.1%     -0.2%      0.01      0.01
               fulsom          -4.8%     +9.2%     +9.1%     +8.4%
               gamteb          -7.1%     -1.3%      0.10      0.11
                  gcd          +2.7%     +0.0%      0.05      0.05
          gen_regexps          +3.9%     -0.0%      0.00      0.00
               genfft          +2.7%     -0.1%      0.05      0.06
                   gg          -2.7%     -0.1%      0.02      0.02
                 grep          +3.2%     -0.0%      0.00      0.00
               hidden          -0.5%     +0.0%    -11.9%    -13.3%
                  hpg          -3.0%     -1.8%     +0.0%     -2.4%
                  ida          +2.6%     -1.2%      0.17     -9.0%
                infer          +1.7%     -0.8%      0.08      0.09
              integer          +2.5%     -0.0%     -2.6%     -2.2%
            integrate          -5.0%     +0.0%     -1.3%     -2.9%
              knights          +4.3%     -1.5%      0.01      0.01
                 lcss          +2.5%     -0.1%     -7.5%     -9.4%
                 life          +4.2%     +0.0%     -3.1%     -3.3%
                 lift          +2.4%     -3.2%      0.00      0.00
            listcompr          +4.0%     -1.6%      0.16      0.17
             listcopy          +4.0%     -1.4%      0.17      0.18
             maillist          +4.1%     +0.1%      0.09      0.14
               mandel          +2.9%     +0.0%      0.11      0.12
              mandel2          +4.7%     +0.0%      0.01      0.01
              minimax          +3.8%     -0.0%      0.00      0.00
              mkhprog          +3.2%     -4.2%      0.00      0.00
           multiplier          +2.5%     -0.4%     +0.7%     -1.3%
             nucleic2          -9.3%     +0.0%      0.10      0.10
                 para          +2.9%     +0.1%     -0.7%     -1.2%
            paraffins         -10.4%     +0.0%      0.20     -1.9%
               parser          +3.1%     -0.0%      0.05      0.05
              parstof          +1.9%     -0.0%      0.00      0.01
                  pic          -2.8%     -0.8%      0.01      0.02
                power          +2.1%     +0.1%     -8.5%     -9.0%
               pretty         -12.7%     +0.1%      0.00      0.00
               primes          +2.8%     +0.0%      0.11      0.11
            primetest          +2.5%     -0.0%     -2.1%     -3.1%
               prolog          +3.2%     -7.2%      0.00      0.00
               puzzle          +4.1%     +0.0%     -3.5%     -8.0%
               queens          +2.8%     +0.0%      0.03      0.03
              reptile          +2.2%     -2.2%      0.02      0.02
              rewrite          +3.1%    +10.9%      0.03      0.03
                 rfib          -5.2%     +0.2%      0.03      0.03
                  rsa          +2.6%     +0.0%      0.05      0.06
                  scc          +4.6%     +0.4%      0.00      0.00
                sched          +2.7%     +0.1%      0.03      0.03
                  scs          -2.6%     -0.9%     -9.6%    -11.6%
               simple          -4.0%     +0.4%    -14.6%    -14.9%
                solid          -5.6%     -0.6%     -9.3%    -14.3%
              sorting          +3.8%     +0.0%      0.00      0.00
               sphere          -3.6%     +8.5%      0.15      0.16
               symalg          -1.3%     +0.2%      0.03      0.03
                  tak          +2.7%     +0.0%      0.02      0.02
            transform          +2.0%     -2.9%     -8.0%     -8.8%
             treejoin          +3.1%     +0.0%    -17.5%    -17.8%
            typecheck          +2.9%     -0.3%     -4.6%     -6.6%
              veritas          +3.9%     -0.3%      0.00      0.00
                 wang          -6.2%     +0.0%      0.18     -9.8%
            wave4main         -10.3%     +2.6%     -2.1%     -2.3%
         wheel-sieve1          +2.7%     -0.0%     +0.3%     -0.6%
         wheel-sieve2          +2.7%     +0.0%     -3.7%     -7.5%
                 x2n1          -4.1%     +0.1%      0.03      0.04
      --------------------------------------------------------------------------------
                  Min         -12.7%    -14.5%    -17.5%    -17.8%
                  Max          +4.7%    +10.9%     +9.1%     +8.4%
       Geometric Mean          +0.9%     -0.1%     -5.6%     -7.3%
      72462499
    • simonpj@microsoft.com's avatar
      f9619479
  16. 22 Jul, 2009 1 commit
  17. 09 Dec, 2008 1 commit
    • Ian Lynagh's avatar
      Make some profiling flags dynamic · aedb94f5
      Ian Lynagh authored
      In particular:
          -fauto-sccs-on-all-toplevs          -auto-all   -no-auto-all
          -fauto-sccs-on-exported-toplevs     -auto       -no-auto
          -fauto-sccs-on-individual-cafs      -caf-all    -no-caf-all
      aedb94f5
  18. 30 Oct, 2008 1 commit
    • simonpj@microsoft.com's avatar
      Add (a) CoreM monad, (b) new Annotations feature · 9bcd95ba
      simonpj@microsoft.com authored
      This patch, written by Max Bolingbroke,  does two things
      
      1.  It adds a new CoreM monad (defined in simplCore/CoreMonad),
          which is used as the top-level monad for all the Core-to-Core
          transformations (starting at SimplCore).  It supports
             * I/O (for debug printing)
             * Unique supply
             * Statistics gathering
             * Access to the HscEnv, RuleBase, Annotations, Module
          The patch therefore refactors the top "skin" of every Core-to-Core
          pass, but does not change their functionality.
      
      2.  It adds a completely new facility to GHC: Core "annotations".
          The idea is that you can say
             {#- ANN foo (Just "Hello") #-}
          which adds the annotation (Just "Hello") to the top level function
          foo.  These annotations can be looked up in any Core-to-Core pass,
          and are persisted into interface files.  (Hence a Core-to-Core pass
          can also query the annotations of imported things.)  Furthermore,
          a Core-to-Core pass can add new annotations (eg strictness info)
          of its own, which can be queried by importing modules.
      
      The design of the annotation system is somewhat in flux.  It's
      designed to work with the (upcoming) dynamic plug-ins mechanism,
      but is meanwhile independently useful.
      
      Do not merge to 6.10!  
      9bcd95ba
  19. 15 Sep, 2008 1 commit
  20. 14 Sep, 2008 1 commit
  21. 20 Jul, 2008 1 commit
  22. 16 May, 2008 1 commit
  23. 13 May, 2008 1 commit
  24. 12 Apr, 2008 1 commit
  25. 26 Mar, 2008 1 commit
  26. 17 Jan, 2008 1 commit
  27. 06 Nov, 2007 2 commits
    • Simon Marlow's avatar
      warning police · 19a65f49
      Simon Marlow authored
      19a65f49
    • Simon Marlow's avatar
      GHC API: add checkAndLoadModule · 7379e82a
      Simon Marlow authored
      Does what the name suggests: it performs the function of both
      checkModule and load on that module, avoiding the need to process each
      module twice when checking a batch of modules.  This will make Haddock
      and ghctags much faster.
      
      Along with this is the beginnings of a refactoring of the HscMain
      interface.  HscMain now exports functions for separately running the
      parser, typechecher, and generating ModIface and ModDetails.
      Eventually the plan is to complete this interface and use it to
      replace the existing one.
      7379e82a
  28. 04 Sep, 2007 1 commit
  29. 03 Sep, 2007 1 commit
  30. 01 Sep, 2007 1 commit
  31. 26 Aug, 2007 1 commit
  32. 17 Jul, 2007 1 commit
    • andy@galois.com's avatar
      Adding pushing of hpc translation status through hi files. · c1681a73
      andy@galois.com authored
      Now, if a single module *anywhere* on the module tree is built with
      -fhpc, the binary will enable reading/writing of <bin>.tix.
      
      Previously, you needed to compile Main to allow coverage to operate.
      
      This changes the file format for .hi files; you will need to recompile every library.
      c1681a73
  33. 10 Jul, 2007 1 commit
  34. 09 Jun, 2007 1 commit
  35. 04 May, 2007 1 commit
  36. 22 Apr, 2007 1 commit
  37. 17 Apr, 2007 1 commit
    • Simon Marlow's avatar
      Re-working of the breakpoint support · cdce6477
      Simon Marlow authored
      This is the result of Bernie Pope's internship work at MSR Cambridge,
      with some subsequent improvements by me.  The main plan was to
      
       (a) Reduce the overhead for breakpoints, so we could enable 
           the feature by default without incurrent a significant penalty
       (b) Scatter more breakpoint sites throughout the code
      
      Currently we can set a breakpoint on almost any subexpression, and the
      overhead is around 1.5x slower than normal GHCi.  I hope to be able to
      get this down further and/or allow breakpoints to be turned off.
      
      This patch also fixes up :print following the recent changes to
      constructor info tables.  (most of the :print tests now pass)
      
      We now support single-stepping, which just enables all breakpoints.
      
        :step <expr>     executes <expr> with single-stepping turned on
        :step            single-steps from the current breakpoint
      
      The mechanism is quite different to the previous implementation.  We
      share code with the HPC (haskell program coverage) implementation now.
      The coverage pass annotates source code with "tick" locations which
      are tracked by the coverage tool.  In GHCi, each "tick" becomes a
      potential breakpoint location.
      
      Previously breakpoints were compiled into code that magically invoked
      a nested instance of GHCi.  Now, a breakpoint causes the current
      thread to block and control is returned to GHCi.
      
      See the wiki page for more details and the current ToDo list:
      
        http://hackage.haskell.org/trac/ghc/wiki/NewGhciDebugger
      cdce6477